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It is shown that the matrix element for decay processes involving the emission of a single photon may
be obtained from the matrix element for the corresponding nonradiative decay and the magnetic moments
of the particles involved, up to terms that vanish as the photon frequency E —+ 0. Detailed discussions
are given for decays involving three and four spinless particles, as well as for four spin —, particles. The
results are similar to those obtained by Low for bremsstrahlung in scattering processes, but some novel

features arise when the nonradiative decay is forbidden by selection rules.

1. INTRODUCTION

'N this note we wish to discuss briefly the structure
~ - of the matrix element for decay processes involving
the emission of a single photon. In order to be as
explicit as possible, we shall consider first (Sec. 2)
the specific case of radiative decay of a E+ meson

giving two or three pions. The more complicated case
of fermion decays is then discussed in Sec. 3.

2. DECAYS INVOLVING BOSONS ONLY

Consider the nonradiative decay E+~ 3~. We
denote the matrix element by

T(n=Q' P=Pi2 y=P ' 8=Pa''
X= (P,+P3)') I =Pi (P2—P3)), (1)

where Q„, Pi„are the four-momenta of the K+ meson

(mass m) and a final 7r+ meson (mass p), respectively,

and I'2„, Pa„are the four-momenta of the other two
final pions (charges e', —e'). For the physical matrix
element, we have n= —m' and P=y=5= —p'. The
variables X, I"are independent internal variables which
characterize the sharing of the decay energy among
the pions.

The matrix element for the emission of a photon with
momentum E and polarization vector e„consists of
two kinds of contributions: (a) those arising from the
emission of the photon by an ingoing or outgoing
charged particle (the process of inner bremsstrahlung),
and (b) those arising from "direct emission, " which
reQect the internal structure of the interactions re-
sponsible for the'nonradiative decay, and of which
some (but not all) may be deduced from gauge invari-
ance.

As pointed out by Low, ' the use of renormalized
currents for the ingoing and outgoing bosons gives the
same factors as occur in perturbation theory. As a
result, the contributions (a) lead to a matrix element

+j
T(—rw' —2Q K, —p', —p', —p", X, V)+ T( m' p'+—2P, K ——p' —p' X V+K (P P))—

1'

-P'2 e
+e' T( m', P—p-,, —p'+2P, K, ——p~; X+2K. (P,+P,), V+K.P,)

2.

T(—m', P—p,, —p', p'+2PS K; x+—2K (P,+Pa), Y KP,), (2)—
3.

where the variables X, I' still refer to the internal
motion in the three-pion system. The case e'=e corre-

sponds to 7 decay, and e'=0 to ~' decay. The matrix
element (2) is not gauge invariant and needs to be
supplemented by the terms linear in e„obtained by
making the replacements Q —+ Q —e«; Pi ~ Pi e«;-
P2 —+P2 e'«; P~ —+ P~—+e'« in (1). These terms are
as follows:
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e[ 2Q. «T ( m2 p2 p2 p2 ~ X V')

(P2 P3)'«Tr( tN p, , —p, —p X, V)]
+e'[—2Pg «T, (—nr' —p' —p,

' —p,'X V)
+2P3. «Tg( —yP —p2 —p2. —p2 X V)
—2P, «Tr( m', —p', p2, ——p'; X, V)]-

+«V(K), (3)

where the notation Tz denotes the partial derivative
«lT/ciZ with respect to the subscript Z. The last term

' F. E. Low, Phys, Rev. 110, 974 (1958).
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~ U(K) is nonsingular in K Q, E Pi, E Pi, and K Pi
and must vanish as E—& 0.

In order to relate the complete radiative decay
matrix element to the physical matrix element To
= T( m' ——p,

' —pP —p'& X, F) for the nonradiative
decay, we make an expansion of (2) about the point
K=0 and add the direct emission terms (3). The terms
proportional to T, Tp, T~, T~ cancel, and the sum
takes the form

to the spectrum comes from the M„„ term in (4). In
this case, the spectrum will have the form E'dE at
low frequencies.

A case of particular simplicity is radiative E 2 decay.
Here, the nonradiative matrix element T is a function
of only three variables, n=g', P=PP, and &=Pii,
where I'~, I'~ refer to the positive and neutral pions,
respectively. The inner bremsstrahlung term corre-
sponding to (2) is simply

(Pi & Q'~ )
e/

— /To
EP, K QKJ

—e (P,—P,) e—
I1'6

K (Pg —Pg) Tr
I'1-E

T(—ni' —2Q E, —pi', —p, i')
~ E

~1' 6

+ T( eP y—P+2—Pi K —pg') (6)
I'g E

(Pi e Pi e)
+e'~ —

~
[Tp+2K (Pi+Pa) TxjP;K)

(Pi t Pi
+e'

I

—+ IP, .K 2P, ' T,—
&P, K P, K)

+eM„„(E)(K„e, K„e„). (—4)

In this expression the terms of order (1/K) and (1)
are given explicitly and the terms of higher order in E
are collected together in the last term. This last term
must be gauge invariant and vanish for E=O, and may
always be written in the form shown above where

M„„(0) is finite. M„„ is an antisymmetric tensor, and
is referred to as the structure-dependent term.

The important point to be noted here is that the
first two terms of this matrix element are obtainable
from a knowledge of the physical matrix element To
for the nonradiative decay. The only derivatives Tz
and Ty that survive are with respect to internal
variables which are not subject to constraint. In the
nonradiative 7-' decay, for example, X is linearly
related to the m+ energy in the ~' rest frame and V has
the form F(X,cose) where 8 is the angle between the
momenta of the positive pion and one of the neutral
pions. The values of (X,V) that can be reached in the
radiative decay are always within the range of the
possible values of (X,V) for the nonradiative decay.
The derivatives Tx and Ty are therefore computable
from the nonradiative decay amplitude on the mass and
energy shell. The photon spectrum therefore has the
low-frequency form,

dp(K)/dK= (1/K)(~+73K+" ),

where A and 8 may be deduced from the amplitude for
the nonradiative decay. This result is the analog of
I.ow's theorem' for low-energy bremsstrahlung in the
scattering of a charged particle by a neutral particle.
If it happens that To=0 on the mass shell owing to
some selection rule, it follows at once that both these
terms A and 8 vanish and that the only contribution

These are the only terms which are singular in I'j E
and Q K. When we add to this the direct emission
contributions corresponding to (3) and expand (6) in
ascending powers of E, we find that, since the terms
T, Tp, and T~ cancel precisely, the comstaet term ie
the expansion is identically sero The to. tal matrix
element becomes

( Pi EQ.
IT(—~', —ui', —~~')

LP, K QK)
+eN„„(K)(K„c„K„e„),—(7)

where N„„ is not singular in Pi E and Q K and ap-
proaches a finite limit as E~O. The form of this
limit will generally be

N" (K ~ o) =P(Q.Pi.—Q.Pi.)
+Go„„,.(Q,Pi.—Q.Pi,), (8)

as used by Good in his discussion of the radiative E 2

decay spectrum. An important difference between (7)
and the corresponding matrix element (4) for K —+ 3ir
+y is that no term of order constant appears in (7).

If the AI=~ selection rule held strictly for E 2

decay, the matrix element T(—ni', —pP, —p&') would
be zero (assuming pP=pP). In this case the leading
terms of the amplitude for radiative E & decay would
be of the form (8) and the low-frequency spectrum
would be proportional to E'dE. In fact, the AI=~
rule does not hold precisely and the matrix element
To T(—ni', —pi', —pii) h——as a reduced value relative
to the matrix element for the E&' decay. As we have
shown, all contributions from (off the mass shell) decay
amplitudes consistent with the DI=~ rule, however,
can only have the form (8), and must vanish as K —+ 0.
Recently Cabibbo and Gatto' have suggested using

T(g', PP)PP) = To+ f(PP —Pi'). (9)

In the approximation p~'= p2' the latter term vanishes
when both pions are on the mass shell and therefore
does not contribute to the E & decay. Our discussion

2 J. Good, Phys. Rev. 113, 352 (1959).' N. Cabibbo and R. Gatto, Phys. Rev. Letters 5, 382 (1960).
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shows that the f term cannot contribute to the radiative
decay either, and that the only additional contributions
are those arising from structure-dependent terms (8)
discussed by Good. ' No terms of the structure discussed
by Cabbibo and Gatto' can arise.

3. FERMION DECAYS AND RELATED PROCESSES

These remarks can readily be extended to decay
processes involving fermions. Consider for definiteness
the decay of a spin ~ particle of mass m, four-momentum

Q, charge e, and anomalous magnetic moment h, into
a photon (momentum K and polarization vector e„)
and three spin —,'particles with masses m~, m2, m3,
momenta P~, P2, P3, charges e~, e2, e3, and anomalous

magnetic moments X&, X&, X3, respectively. We take the
fermion with momentum P'3 to be an antiparticle
described by a spinor V(P&), and denote the matrix
element for the nonradiative decay by (P&P2P3~ T ~Q).
Then the inner bremsstrahlung terms may be written

e(P'iP2PS~ T
~ Q E)e—„J,(Q)

+eye„J„(Pg)(Pg+E, P2 P3
~
T

~ Q)
+e,e„J„(P)(P,, P +K, P3~ T~Q)

+e;„J„(P,)(P„I'„P,+E~ T
~ Q), (1O)

where J„(Q), etc. denote the renormalized currents of
the incoming and outgoing particles. It is shown in
the Appendix that these currents are given by

e„J„(P,) = U(P, ) (ieger y+i)„o„.e„K„)[ip (Pg+E)+m&] '+0(K)
= U(Pg)(ie, e y+ih, o„,e„K„)[mg iy (P—&+E)]/(2P, E)+0(E)
=U(P&)[2 &Peg. +eegy ey E+ih,g„„K.e„(m~ ip P~)]—/(2P~ K)+0(K),

with a similar expression for
e„J„(P2),

and

(11a)

(11b)

„J„(Q)= —(2Q E) '[2eQ —ey Ey +ih(m ip —Q) „„E„„]U(Q)+0(E), (11c)

e„J„(P3)=[2P3 E][2e3P3 e+e3y Ey e+ih3(m3+ip P3)o„„K„e„]V(P3)+0(E). (11d)

The most general form of the matrix element (PiP~P2~ Tl Q) consistent with Lorentz invariance is, when all
particles are real,

(P P P,
~
T

~ Q) =Q, G,(,P,&,5; X,V) U(P )I',U(Q) U(P )I','V(P, ), (12)

where F,, F,' are some basic set of y matrices con-
tracted with appropriate covariants formed from the
momenta P~, P2, P3, and Q. The invariant functions
G; are assumed to be known from the nonradiative
decay. If one of the particles, say, the one with momen-
tum P~, is off the mass shell, the spinor U(P~) goes
over into a propagator SI (P~) and the matrix element

may contain additional terms of the form

2*S~(P~)R'U(Q) U(P2)
XI','V(P3)H, '"(u,P,y,6; X,Y'), (13)

where R' is a matrix which gives zero when operating

on U(P~) from the right, and where the functions H,'"
are no longer obtainable from the amplitude of the real

nonradiative decay. Since, however, U(P,)R'=0, we

may factor out the operator (ip P&+m&) from R' and

write R'=(ip P&+m&)R&. Similarly, when one of the

other particles is off the mass shell, the additional

unknown terms may be written

P, U(P~)R [iy Q+m]S~(Q)B,H, (n,P,y, &; X,V) (when Q'4 —m'), (14a)

P, SF(P~)[iy P~+m2] R2V(P3)B,H, ' (~,P,y, 5;X,V) (when Pq'W mP), — (14b)

P, U(P2)R3 [—iy Pa+ma]SF(Pq)A, H, "(n,P,y,5; X,V) (when P32& —mP), (14c)

with A, = U(P~)1', U(Q), 8,= U(P2)1', 'V(P3). It is convenient to denote the expressions obtained from I'„ I', ', R,
etc. by the replacement P; +P,&K by I', (P—;+K), I', '(P,&E), R(P;+K), etc. With these notations, the inner
bremsstrahlung term (9) becomes

—(2Q E) 'Q, G, (o. 2Q E, P, y, 8;—X, V)U(P~)1', (Q —K)[2eQ e ey Ey e+ih—(m —iy Q)o„„E„e„]U(Q).
XU(P, )1", (Q—K)V(P,)

+(2P&.E) ' P, G, (n, P+2P& K, y, 8; X, I +K (P2 —P3))U(P~)[2e~Pi e+e~y ey K+ih~o„,K„e„(m~ ip P )]—
XI',(Pi+E)U(Q) U(P~)I'''(Pi+K) V(P3)

+(2P K) 'P, G,(, P, p+2P K, 5; X+2K (P +P ), &+P E)U(P')I', (P +E.)U(Q)
XU(P2)[2e~P2 e+e~y ey K+ihpo„„K„e,(m2 ip P2)]I"., (P2+K)V—(P,)

+ (2P, E)—' Q, G, (n, p, 8+2P, E; X+2K (P2+P3), V—E.P))U(Pg)1', (Pg+E) U(Q)
XU(P2)I' (P~+E)[2e3P3 e+eay Ey e+ih3(m3+iy Pg)O.„,E,e„]V(P,,)
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—(2Q E) ' P, U(Pi)R(Q —K)[iy (Q —K)—m][2eQ c e—y Ey e+iX(m —iy Q)a„„E„e„]U(Q)
&& U(P,)r,'(Q —E)v(P, )H, (n —2Q E, P, ~, s; x, Y)

+(2P E) Z; U(Pi)[2e,P e+e y ey K+ih, ie„„E„e„(mi —iy P )][iy (Pi+K)+mi]Ri(Pi+E) U(Q)
X U(P2)r, '.(Pi+E)V(P3)H,'"(~, p+2E Pi, y, 8; X, Y+E (P,—P,))

+(2P E) ' p; H, "(n, p, y+2P~ K, 5; X+2E (P,+P3), Y+P, K)U(P,)r, (P,+K)U(Q)
XU(P)[2.P'.+ v'~ K+'~ „E,.(m —'v P)]['v. (P+K)+ ]R (P+K)V(P)

+(2P, K)—' P, H, ~~3( i,iP, y, e+2P, K; X+2E (P,+P ), Y P, —K)U(P,)r, (P +E)U(Q)
&(U(P2)R3(P3+K)[ma iy —(P3+E)][2e3P3 &+cap Ey c+zk3(ma+i' P3)o„„K„.e„]V(P3)+0(K) (15.)

(—2Q;A;B;(eQ eG;,„+eiPi eG, , e

+emP2 eG;,,+egP3 eG, ,))
iP—; U(P, )(eH,Ry e+eiH, &'&y eRi) U(Q)B,

+A~U(P&)(e2H, &@y eR& e3HP~R—3+ e) V(P3))
—p, A;B,(2(eg+e3)(P2+P3) ~G;,x

+[ei(P2—P3) e+(e~—e3)Pi e]G'.r)

—g g e,e„A,U(P.) V(P3)—
j=1 QI ~~

ar,
+U(Pi) U(Q)B; G;+0(E),

BI',„
(16)

As in the boson case, the direct emission term is
obtained by making the replacements I'~~I'I —e~e,

etc. in the matrix element for the nonradiative decay
and keeping only the terms linear in e„. It should be
noted that although U(Pi) (O'Pi+mi) =0, U(Pi)
X (8/BPi„) (iy P,+m, )e„=U(Pi) (iy e) is difkrent
from zero, so that the functions H, in (13)—(14c) will

also contribute. The result is

where P4 Q, e4=——e, G; =BG,/Bn, and all invariant
functions are evaluated at E=O, i.e., for (n,P,y,8; X,Y)

( m ml m2 m8 (P2+P8) Pl' (P2 P8)) ~

ge have collected all the terms involving derivatives
or functions unobtainable from the real nonradiative
decay amplitude within the braces. The total matrix
element for the radiative decay is given by the sum of
(15) and (16). It will be seen that up to order 0(E),
all unphysical terms cancel out and the remaining
terms involve only the magnetic moments P;, the
nonradiative decay amplitude, and its physical deriva-
tives. Note first that expansion of the terms involving
the functions G; in (15) in powers of E reproduces the
first summation within the braces in (16) with the
opposite sign, plus some physical terms and terms of
order E. To show that the unknown functions H;&")

also drop out, it suffices to consider the terms involving

Fl; in (15). Since (iy Q+m)U(Q) =0 and (iy Q+m)
&& (m —iy Q) =m'+Q'=0, these terms reduce to

—(2Q E) ' Q, B,H,U(P,)R [—2ieQ q E iey Qp K—y e—em' Ey. e]U(Q)+0(E)
=+ieQ, B,H, U(Pi)Ry. eU(Q) j0(E), (17)

which cancel the H, terms in (16) up to order E. The other H functions drop out in precisely the same way.
The final expression for the matrix element of the radiative decay is then (recall that e= ei+e2+e3)

( Qe Pie P2e Piie) (P2e
{Pi,P~,P31 TIQ&l —e +ei +e2 +e3 I+& A'B 2 e~I

QE Pi K P2K P3KJ i EP2K )
(P3e ) (Pie e

+e3I ——P~.E
I

G x+ eiI (P2—P3) K—(P2—P3)' I+e21
&P3 K) . t.Pi.E ) EPg E )
( P3e ( P~" e p r3r, Qr,.

+e3I Pi e — Pi K
I

G'r +2 2 eiI —K.—"
I A.U(P~) V(P3)+U(Pi) U(Q)B; G,

Pa E J i i=i t.P,"IC ) BP,„ l9I gp

—(2Q K)-'2 GB U(Pi)r;L —ep Kv e+iX(m —iv Q)~„,e„K„]U(Q)

+(2P3.K) ' g, G A, U(P2)r,'[e~y Ep. e+iX (m~+i7 P&)o.„„e„E„]V(.P3)

+ (2P2'K) Q ' G A U(P2)[e2 Y' e r 'E+1Ii2gy epE, (m —i r P2)]r 'V'(Ps)

+(2Pi E) Q; G,B,U(Pi)[eiy ey K+ikio„,e„K,(mi iy P,)]r,U(Q)+—0(K), (1g)

where all invariant functions are evaluated at It is clear that the above considerations are com-
(n, p,y,p; X,Y) = (—m', —mP, —mP, —mP; (P2+P,,)', pletely general and are applicable to processes involving
Pi (P2—P3)). any number of bosons and fermions. Up to terms of
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order E, the unphysical functions and derivatives
always cancel and the radiative matrix element is
expressible in terms of the magnetic moments of the
particles and quantities known from the nonradiative
process. In particular, if the nonradiative decay is
allowed, the photon spectrum has the form (1/E)(A
+BE+ )dE with A and B predictable. If, however,
the allowed nonradiative reaction involves no moving
charged particles (such as zz capture at rest in hydrogen),
the low-energy photon spectrum becomes CEdE, where
C is determined by the magnetic moments and the
nonradiative matrix element. ' This may be seen .by
noting that the only terms of order 1/K in the radiative
matrix element are proportional to e,p;. e/P,"K, ' where
the index i refers to the ith particle. These singular
terms vanish if either e,=0 or P, =O, in which latter
case I'; &=0, since we may choose a gauge with &4=0.
The matrix element contains, therefore, only terms
which are either finite or zero as E~O, and our
conclusion follows. Finally, if the nonradiative process
is forbidden, the photon spectrum begins with DE'd;E.
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APPENDIX

We derive here an approximate expression for the
renormalized current operator J„(p',P)U(p)=SF(P')
XI'„(P'P)U(P) for an ingoing fernuon with nmrnentuin
P. Here Sp(P') denotes the renorinalized fernuon
propagator and I'„(P',P) denotes the irreducible electro-
magnetic vertex operator for the fermion. The latter
may be written in the form

r„(P',P) U(P) ={[A(P")+(iq P'+ m)B(P")]q„
+[C(P")+(iy P'+m)D(P")]o„„E„}U(P), (A.1)

where E„=(P' P)„. The fun—ctions A, B, C, D are
nonsingular at the point P"=—m' (i.e., E=O). This
follows from the fact that the only Lorentz-invariant
singularity that can arise in the operator J„(P',P) U(p)
inay be expressed in the form [1/(P K)]F„(P',P) U(P),
with F„(p',P) U(P) finite. ' Since, however, P K
= ~[(P+E)'—P']= z (P"+mz), this singularity is con-
tained in th'e propagator Si (P'). [Note that 5p(p') —+

(zy P'+m) ' as P' P. =E—+ 0.]The rem—aining factor
F„(P',P) U(P) is, therefore, finite as E—+ 0.

Multiplying (A.1) on the left by U(p'), we have

U(p')r„(P, P) U(p)
= U(P') (Ap„+Ca„„K,)U(p)
= U(P') (zep„+8 o„:,K,) U(P) for E—+ 0.. (A.2)

' See, for example, J. Bernstein, Phys. Rev. 115, 694 (1959),
especially Kq. (30a).' See (18) and (4), for example. (18) can be easily modified to
describe the reaction with two incoming and two outgoing
fermions by applying the substitution law.

' For a real photon, P' E.=P.IC. Singularities of higher order
in 1/(P. /6) would involve ghost states and may be excluded.
We thank Professor Y. Nambu for helpful comments on this point.

Hence A (—m') =ze, C (—m') =i'. The propagator
Sz(p') is of the form

F(P")+G(P")(zy P'+m)
[zp P'+. m+2(y P')] '=

zy P+m
with

Z(zm)=0; [aZ/a(y P)], p ., =0——, (A.3)

and where Ii and G are both nonsingular at I'"=—m',
and F(—m') =1.

The product Sp(p')I'„(P', P) U(P) is then equal to

(iy Pm) '(([AF—BG(mz+P")]
+[BF+AG+2mBG](zp. P'+m))y„
+([CF DG(m—z+P')]+ [DF+CG

+2mDG](zy P'+m))o„„K„}U(P). (A.4)

Each of the square brackets represents a function of
I'" which is nonsingular at I'"=—m'.

Now we appeal to the generalized Ward's identity7
which here reduces to the equality

K„J„(P',P) U(P) =eU(P) (A.5)

for all P'. Since E„o„„E„=O,and y E=y (P' P)—
=—z(iy P'+m), (A.5) becomes, after substituting
(A.4),

i ( [AF B—G (m'+ P—")]+[BF+AG+2mBG]

X (zp P'+m)} U(p) =eU(P). (A.6)

This implies that for all I",
AF BG(m'+P'z) =—ze, (A.7a)

BF+AG+ 2mBG =0. (A.7b)

Note that (A.7a) is satisfied at P"=—m' by virtue of
(A.2) and (A.3). Ward's identity shows that (A.7a) is
valid for all I". The expression for the current now
becomes

J.(P',P) U(P) = ~.+~

~

iy P+m

CF (mz+ P')DG—

zy P+m

+(DF+CG+2mDG) o„„E„U(P). (A.8)

Note that we may write

CF (m'+P")DG= z—li+ (P"+m')X(p") (A 9)

DF+CG+ 2mDG = F'(P") (A.10)

where X(P"), I'(P") are unknown functions of P" and
are finite at I'"=—m'. Finally,

J„(p',P) U(P)
= f (z~ P'+m) '[ze~„+zz~„„K-„]

+[&(P")+X(p")(m zp P')]o„„K,}U(P—)
= (zp. P'+m) '(zey„+ihr„„K„)U(P)+O(K). (A.11)

This establishes (11c). The derivations for the out-
going currents (11a,b,d) are essentially the same and
need not be repeated here.

z Y. Takahaahi, Nuovo cimento 6, 371 (1957).


