
independent. (This is seen most clearly in the momen-
tum representation where the transversality condition
becomes an algebraic constraint. ) In terms of these
the "reduced" Hamiltonian may be written in the form

satisfy the commutation relations:

ds*{-',LEr(x) cioAr(x)+Er(x) Er(x)

—A (x) 7'A (x)g+j(x) Ar(x))

Note the nonlocal interaction corresponding to the
(instantaneous, nonretarded) Coulomb interaction be-
tween the sources. The apparent noncovariance of the
theory is irrelevant and it can be shown that this theory
is relativistically invariant. The explicit representation
of the field operators can be obtained by proceeding
to the momentum representation in which the operators

It is now straightforward to introduce the creation and
destruction operators for "photons" with arbitrary
momentum it and left- or right-circular polarizations.

The theory thus formulated does not contain either
supplementary conditions or an indednite metric; all

the states entering in the formalism are physical states
and all Hermitian operators are observables. However,
this "reduced" theory is formally much more compli-
cated; it is particularly interesting to note that there
is now an instantaneous "action at a distance" which

is consistent with relativistic invariance; and the true
observables of the electromagnetic field, namely, the
transverse fteld operators (and their functionals), are
not "localizable" since transversality is a nonlocal
condition.
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Several simple models, similar to that of Lee, involving indefinite metric are studied in this paper. In
this connection, a dispersion-theoretic treatment is applied to a simple "equal-mass" model. It is shown

that, at least for these models, the scattering amplitude is analytic in the upper-half energy plane provided
time-reversal invariance holds; the rules of the dispersion-theoretic formulation in the case of an inde6nite
metric theory are given. The solution is reinterpreted as the exact solution of a slightly different model,
which can also be obtained by Hamiltonian techniques; further techniques are generalized to include recoil
in a relativistic no-pair model. Certain basic questions of interpretation are discussed in some detail in the
concluding section.

I. INTRODUCTION
" 'N the preceding paper' it. had been suggested that
- - in a truly dynamical theory of quantized fields the
principle of simplicity could be reinstated and a
consistent theory formulated by the formal introduction
of an indefinite metric. The systems discussed in that
section were very simple and the important problem
of interacting particles and the structure of the scatter-
ing amplitudes was not discussed in detail. Nor was it
shown how the interpretive postulate restricting
"physical" states to the subspace spanned by the
eigenstates of the 5 matrix with positive definite
norm could be reconciled with certain intuitive notions
regarding asymptotic bare particle amplitudes, par-

* Supported in part by the U. S. Atomic Energy Commission.
t On leave of absence from the Tata Institute of Fundamental

Research, Bombay, India.'E. C. G. Sudarshan, preceding paper fPhys. Rev. 123, 2183
(1961)j.

ticularly in view of some recent discussions in the
literature' regarding the lack of a consistent physical
interpretation for such theories. This paper attempts
to remedy these shortcomings and, in this sense, is to
be considered as a sequel to the preceding paper. Ke
choose for discussion certain models patterned after a
simple example considered by Lee.' In the course of
this analysis we formulate the rules for applying
dispersion-theoretic techniques to a theory involving
an indefinite metric. We also analyze, in the framework
of this model, the construction of physical particle
variables and physical configuration amplitudes.

In Sec. 2 we develop the dispersion-theoretic
techniques to solve for the scattering amplitude in
theories with an indefinite metric; and these are

'G. Kallen and W. Pauli, Kgl. Danske Videnskab Selskab,
Mat-fys. Medd. BO, No. 7 (1955};G. Barton, Nuovo cimento 17,
864 (1960).

s T. D. Lee, Phys. Rev. 93, 1329 (1934).
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applied to a simple "equal-mass model" in the "one-
meson approximation. " In Sec. 3 this solution is
reinterpreted as the exact solution to a slightly different
model; and hence the solution is generalized and
rederived by a direct solution of the Hamiltonian
equations. The subsequent section generalizes this to
include nucleon recoil in the construction of a rela-
tivistic no-pair model. The questions of physical
interpretation are discussed in Sec. 5; and Sec. 6
concludes the paper with several remarks.

2. EQUAL MASS MODEL

In this section we will first review the calculation of
the V propagator in the I,ee model, which illustrates
the property common to all models of this type, where
one is able to solve for the propagator exactly.

The Lee modeP is characterized by the Hamiltonian
H =Hp+ Hi where

H, =mv~ dP~vz(~V. (~)+m "dP~ (P)~ (~)

Since the V particle can only emit and absorb one
meson at a time, it is clear that the right-hand side of
Eq. (5) must be a geometric series, with the sum

Z(k) =
pp —mv 1+$1/(zp —mv)]Fp(pi+ze)

(7)

M —mv+F p(co+zp)

If the V particle can emit more than one kind of
meson, but. only one meson at a time, then a repetition
of the above method would allow us to solve for the
V-particle propagator. Ke will exploit this in construct-
ing the models to be described in what follows.

Ke consider a model which has two static physical
fermions V and V' of equal mass, with the V' a
negative-norm state, and a boson 8, which has no
antiparticle. We will consider the sector described by
the quantum numbers Ev+Ev =1, Ep=1. We will

forbid intermediate states with two 8 particles (the
one-meson approximation). We will try to describe the
scattering amplitudes in this sector by means of

f(~)
Hi= gp d P dzk

(2~)-:

+ d'k p&(k)az(k)a(k), (1)
+

V N V VNVN V

FIG. i. V propagator.

XLIt vt(p+k)k~(p)a(k)+h. c.), (2)

where f(zp) is a form factor and pzz(k) =zp'= k'+zz'. The
constants of motion are

&=Xv+Nzz and Q= lVv+lVp.

The commutation relations are

Z(k) =
1 1 p" d'k' gfpz( zp)p

zp —mv zp —mv ~ „(2zp') (pp zp'+i p)—

x + " (5)

fa(k), at(k')i=8(k —k'),

{Pv(V), Its'(lz') }=b(Iz- Iz'), (4)

{~I~(Iz),4~'(Iz') }= b(Iz —Ii')

We can calculate the exact V propagator by diagram
techniques, as shown in Fig. 1. For convenience we
set m~ ——0.

solutions of static dispersion equa, tions. The Born
approximation amplitudes, with seeormalised coupling
constants, are chosen as

fvp, vp =f11 1)p~y

v'e, v'e = 22

veve = 21=-
v'e ve = 12 p

where p is real and p&= (kz+zzz)' is the 8 energy. The
choice of signs rejects the use of indefinite metric. '
Ke demand that the scattering amplitudes satisfy
no-crossing (since there is no 8) static dispersion
relations, and have the property that the scattering
matrix in this representation for this sector be
pseudo-unitary.

If 3 is a two-dimensional matrix, then the adjoint of
A in the metric, Az, is defined as follows (the asterisk
means complex conjugate);

I'a b q t' a* —c*q
the '=(

I (9)
(c d) E —b* d*) '

where

1— Fp(pp+zc)+

t
"dk' k'f'(zp')

Fp(s) = (2zr) gp' )'

for a diagonal metric operator. For our model we can
relate the S matrix to the matrix f by'

S=1+2ikf, (10)

which enables us to define a T matrix through the

4 C. Mgller, Kgl. Danske Videnskab Selskab, Mat-fys. Medd.
23, No. 1 (1945).
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equation
S=1+2iT.

The requirement that 5 be pseudo-unitary means
S~S= 1, which implies

which obviously satisfies Eq. (21), We are now able to
de6ne our "causality" condition in terms of a static,
uncrossed dispersion relation, by virtue of (22). For
example, for f»(~) we have

In general

Tt T= ,'i (T-t T)—. (12) 1 (' Imfii(M )
f»(~)=f» (~)+ (24)

S p= lin; JMLSn)(out; JMLSP!.

The adjoint is defined, consistent with (13), as

(15)

where g is the real metric operator and q'= j., and T' is
the Hermitian conjugate of T, i.e., (T p)'= (Tp )*—with
this choice of 2I =2I ', T"= (2IT&)'. By using time-reversal
invariance, we can show that

(T-p)'= (T-p)*.

To prove this, we define the 8 matrix connecting
state u to state P, with J and M as good quantum
numbers, by

and similarly for the other amplitudes. We make the
ansatz

(d =, yy (0.
& —P —P2&

(25)

Mgii((d)
(26)

If fi, (+) has no zeros, then

Ke will verify that this satisfies all our conditions.
We define an inverse amplitude' by

l~)*= ((~l~)'.

Then if U is the time-reversal operator,

(d f dM Imgii(M )
gii(~)=1+- ~

2l '& M (CO CO $6)
(27)

Ulin; JMLsc2)= lout; J, MLsn}—~
Then, by virtue of (22) and (25)= ((out; J, MLSniq)r, —(17)

where an arbitrary phase factor has been set equal to
unity; then, removing the explicit spin dependence,

USU '=5,
S.p= Ulin; JMn)(out; JMpl U-'.

1 Imf, i(~)
Imgii(co) = -= ——(1—P') k.

CO II 4) M

g»(~)= —~(1—p') (~)—'( —p') /~, ( )

Using the rotational invariance, we have

s.p
——(2&!in; JMp))((out; JMa!2I),

S.p ——(&S&)p,

where
1 eke' k'

E(~)=—I'
7l" & CO (d GO

(30)

which means
Tp.= (iiT2I).p, (21)

ii(~)=-
a'(1 —P')I (o)—) i (1 P—')k— (31)

TtT= ImT. (22)

and so Eq. (14) is proved. Combining Eqs. (13) and and we can check that
(14), we find

(32)

TtT=
l

1 P~
l(1—P')IT l',

& —p —pJ

t' 1 P~T=
l I

ImT
p p2)

(34)
1t 1 Pq

(O & —p —p2~
(23)

By virtue of (10), (11), and (32) we see that (22) is
indeed satisfied. Similarly one can verify that the
amplitudes fi2, f», and f22 with the ansatz satisfy the
above conditions.

' The dispersion-theoretic techniques have been used for such
models by Y. D. Lee and R. Serber (unpublished); C. J. Goebel,
Phys. Rev. 109, 1846 (1958);M. L. Goldberger and S.B.Treirnan,
~bid. 113, 1663 (1959).

This is a general result which may be used for any We can check (22) by noting
theory with indefinite metric. One can then use (22),
together with the definition of the adjoint operator, to
work with dispersion theories' even when there is an
indefinite metric. and

To return to our problem, we de6ne our Born
matrix, by (8) as
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f(),f( ')
X go a(k)+go' b(k)

- (2~)' (2~')'1 0

t 0 1+2i(1 P'—)kfii&
(35)

+J"J
d'P d'k 4~'(f))kv(f1+k)

Direct computation, using (31) shows that S' is
unitary. There are two eigenstates of 5', one with
positive norm and one with negative norm. Ke choose
the physical state as the one with positive norm for
P'(1. Then this state has scattering for all energies. '

We wish to emphasize that the solution to this model
can be obtained by analytic continuation in P' from
positive values for P' for the case with two physical
V particles to negative values of P', which then yields
the solution to our model.

When there are two physical V particles, the S matrix
is unitary, and there are two observables, the relative
phase between 5» and 5» and the "inelasticity. " If
one diagonalizes 5, then the two variables are the
phase of the state with scattering in S' and the "angle
of rotation" of 5 to 5', i.e., a mixing parameter. The
eigenbeam is de6ned by the appropriate mixture of Ve
and U'8 states, with transitions between Vt5I and V'8

measured by this mixing parameter. However when V'
is a ghost, there is owly one observable state, the state
with positive definite norm, a pseudo-unitary trans-
formation diagonalizes S. The mixing parameter is no
longer an observable. The only observable in the Ve,
V'8 sector is the eigenbeam of VH and U'tII states, which
one can call the two-particle state V8.

The particularly simple results we have here are
possible because, in the one-meson approximation, the
denominator function g(o)) is independent of the state
considered. The results we have can be considered to
be the exact solution for the scattering of two mesons
of equal mass 8 and 8' and no crossing (with 8' a ghost)
from an E. That is, for a model similar to that above
in the 8N, 8'N sector with a single V(V —& 8N or O'N),
our solution is exact if the sign of the Born terms are
reversed. These lead us to consider a Hamiltonian
model for this situation, which we will describe in the
next section.

f(~),f(~')
X go a'(k)+go' bt(k), (37)

(2o))1 (2o)') 1

where f(e)) is a form factor. We have set the mass of
the N particle to be zero for convenience (which we
may do since this is a static model).

e) (k) = (k'+tiP)-*,

~'(k) = (k'+~o'),

where p~ is the mass of the 8 and p~ is the mass of the 0'.

[a(k), a"(k') j= [tb)v(k), tt)vt(k') J
=Q v(k), Pvt(k') j= tl(k —k'), (38)

[b(k), b'(k') j= -b(k-k').

All other commutators vanish. There are two conserved
quantum numbers,

d'PL%~'(u)4~(n)+4vt(f))4 v(f )l, (39)

Q= ~ d'k[at(k)a(k)+tt'vt(k)trav(k) —bt(k)b(k)]. (40)

The sector {8=0,Q=O} is the vacuum, {8=1,Q=O}
the 1-baryon state, and {8=0,Q=1} the 1-meson or
1-ghost state. The 6rst nontrivial sector with inter-
action is {8=1,Q=1} which we will solve by well-
known methods. ' We denote the wave function for the
8=1, Q=1 sector by

(41)

Applying the Hamiltonian

(z—e,) ie)=a, ie), (42)
which gives

We proceed to diagonalize the S matrix by means of
d' d'k ' ta pseudo-unitary matrix; we find for the diagonalized i J J P '&v (1'+ )~ ~(P)

matrix

3. MODEL VGTH MESON GHOST FIELDS

We will de6ne our model by the Hamiltonian
&=FIo+%:

Bo=moJ~dop fvt(p)pv(p)+ J~d'k e)(k)at(k)a(k)

f(~)
(8—mo)c= t d'k go y(k)

(2')'

, f(~'),
+Jt d'k go' )»'(k), (43)

(2oo')-'*

(~-~)tt (k) =g«f(~)/(2~)',

o W, Heisenberg, Nuclear Phys. 4, 532 (1957).

4—~')0'(k) = —go'cf(~')/(2~') '.—J) d'k e)'(k)bt(k)b(k), (36)



QUANTUM MECHANICAL SYSTEMS WITH INDEFINITE METRIC 2197

I' p (~) )
(44)

o (~), p '(~')

k(4~)l k(4~)'

Since the interaction takes place only in S waves we The continuous wave channels have amplitudes
can put

For a bound state (E—
&o) and (E—co') have no zeros;

hence,

cgof(~), cgo'f(~')e(i)=, ; e'(1)=—. . . (45)
(2~)'(E—~) (2~')'(E —~')

and

gof((e)kA
nb(E —cv)+

(2(o)&h(E+ie) (E—po+ie)

gp f(M )kA
n'8(E —o)')—

(2(o') Ih(E+ie) (E—(o'+ie),

(53)

go'f'(~)
c (E—mo) — d'k

(2~) (E—~)

go"f'(~')
+)t d'k' =0, (46)

which is the eigenvalue equation for the bound states.
For the scattering states, we have

By standard methods we find

4n'if'( E) ( gp'ko

h(E+ie) 4 —gpgp'(kokp')'

From (11) we have

2~'f'(E)
T=

h(E+ie)

gpgp (kpkp ) ' i
(54)—go"kp' )

cgpf(po)k(4~) i

p ((o)=nb(E —a&)+
(2') I(E M+ee)

cgp'f (a)') k (4m)
''

p '((v') =n'8(E —ro')—
(2G) )2(E po +ze)

We substitute in (43), obtaining

(E—mp)c

( go'ko

xi
~ —

gogo (koko )'

gogo'(koko')'*) ko ——(E' pP)—
—go"ko' ~ ko'= (E'—pop)'.

(55)

Since Imh(E+ie) = —2m'(gp'kp —go"kp') f'(E), it is easy
to verify Eq. (22). If we diagonalize Eq. (55), we again
find only one state with scattering:

, Ef(E) . . . f(E')
=n(4r) '*go -+n'(47r)~g p'E

(2E)'* (2E)*'

t1 Oy
2'=e"& & sin&(E)(

&0 oi
(56)

d'k f'(rp)
+go c

(2(o) (E re+ie)—
d'k f'((o')

(4g)
(2(o') (E—rp'+ie)

Ef(E)
c= (4 ) 'Lngo+n'g'o)

(2E)I
(E—mo)+ 'I d'k

Define

go"f'( ') go'f'( )

(2cp') (E—~'+ ie) (2a)) (E ++ie)—(49)

Then

f(E)
A =

t ngp+n'gp'j(4~) E,
(2E)I

(51)

go"f'(~') go'f'( )
h(s)=(s —mp)+ I d'k —,(50)

~ (2a)') (s—(o') (2(o) (s—po)

and

where

2m'f'(E)
e"&e& sin5(E)= Lgp kp —

gp kp j.
h(E+i e)

(57)

The single scattering state of T' has positive or negative
square depending on whether go'ko& go'ko' or go'ko
(go'oko'. We note that (go'/go ') (kp/ko ) ~ go'/go '
monotonically for high energies, so we must have
go'&go" if there is to be physical scattering for all
energies.

We note that the original Hamiltonian contains
bare coupling constants go and go', and the bare t/"

mass, mo. We will sketch the renormalization of these
quantities for the case of a cutoB, below the critical
coupling. From Eq. (46), we have

d'k f'(~)
my —mo —go',

(2(o).(my —
&u)

d'k f'(( ')
+gp" I =0, (58)

(2(u') (my —co')

C=
h(E+ie)

(52)
as ih implicit equation for the physical V mass mz.
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For convenience, we define and all other commutators zero.

d'k f'(zp) t d'k f'(zp') ~l ~ ~2 m &1 Pl 2 p2
Jp(.)=go'

I

— —g,";(59)
~' (2 )( - ) ~ (2 ')( '—s)

'
Again there are two constants of motion:

then

We also note that

mo —mv ——Jo(mv). (60) 8= ~dzk[at(k)a(k)+bt(k)b(k)],

(69)
h(s) = s —mp+ Jp(s),

thus the "propagator"

(61) Q= '

dzk[az(k)a(k)+ct(k)c(k) —dz(k)d(k)],

h(E+ie) =E mv+—[Jp(E+ie) Jp(m—v)]. (62)

For the case with no cutoff, Jp(mv) diverges linearly;
however, the bracketed term in (62) only diverges
logarithmically. Now from (55) we have

with non-negative integral values. As before, a pair of
their eigenvalues defines a sector. We again use an
indefinite metric to define the states. As for our previous
models, the first nontrivial sector is for 8=1, Q=1.
If

&zz(E)

kp

2zrf z( E)go'
(63)

E mv+[J—o(E+io) Jo(mv) ]—

C

@(k)
-0'(k).

&iz(E) m2'f (zm)go'

ko ~ ' (E—mv) [1+Jo'(mv)]
(64)

Thus it is natural to define the renormalized coupling
constant by the relation;

g'= gp'f'(mv)/[1+ Jp'(mv)].

Similarly, we define

g"=go"f'(mv)/[1+ Jp'(mv)],

(65)

4. MODEL WITH RECOIL

The model is defined by

thus, we note that g'/g"=goo/go", so that our condition
which specifies the physical states is not altered if
formulated in terms of the renormalized coupling
constants.

We can generalize this model to include the heavy-
particle recoils. The advantage of this is that the
self-mass only diverges logarithmically, with no cutoG,
when the recoil is included.

is the wave function, then applying the total
Hamiltonian Hf= EP gives us a coupled set of equations
which we may solve, as before. We will work in the
center-of-mass system, with p+k=0. Then

gp tS
(E—m)c=

~,

d'k y(k)
(4zr) & & Ez(k) (2&p,) *'

go p tn
+ J

dk
(4zr) l . E,(k)

1
X p'(k), (70)

(2~z)'*

gp tS
(E—

ppz —E,)y(k) = c
(4zr)'* . Ez(k) (24pi) l

gp ss ' 1
(E—~ —Ez)0'(k) =

(4zr)'* E,(k) (2ppp) l

The method of solution is identical to that of the
previous section, so we will not repeat the details. The
solution may be written as

JI= I d'k(at(k)a(k)E

+bt(k) b(k) Ez+c"(k) c(k)zpz —d'(k)d(k)zp, }
z.

'p
(4zr)l " " (Ez(p+k)Ep(p))

gpc'(k) gp'd'(k)
X a(p+k)bz(p) + +h.c.

[24pi(k)]' [24pz(k)]:.

where

t fzz f,fz ) e"&s& sinb(E)

& —fifz fzz & fzz f—z'—
e"'&s& = h(I~' ze)/h(E+z p), —

g [E4 (mz ~ z)z]—~g

fz —gp'[E4 (m' —zzz')'] —l, — —

h(s) =M—s+m/Szr[gpzn(zzz, s) —gp"a(zzz, s)], (72)

(67) zz(zz, s) =
P+f1b

[(x+zz+m) (x zz+m) (x+Iz m) (x zz+m—)]'——
X

x'(x—s)

with the commutation rules

[a(k), az(k')]= [b(k), bt(k')]= [c(k), c'(k')]
=[dt(k), d(k')]=b(k-k'), (6g)
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The discussion of the previous section may be repeated
here. Although the 5 matrix is only pseudo-unitary,
there is only one state with scattering with positive or
negative norm depending on fp) fp or fp(fp. We
project out the negative-norm states and have a two-
particle system with only one channel and an energy-
dependent phase shift.

Again the model is defined in terms of unrenormalized
coupling constants and mass M. The renormalization
may be carried out exactly. As we remarked, the
renormalizations (without cutoff) are only logarithmic-
ally divergent except for the special case gp'P=gpP. In
this case the integral in (72) converges, and all re-
normalizations are finite. This occurs because of the
cancellation of the high energy components in
[n (pi, s)—n (p2, s)j. For the case gpP =gp'P, fP)fP
implies:

(m' —pp)') (m' —p2p)'

they may be thought of as describing a one-dimensional
two-particle system. ) The "wavefunctions" of the
physical V-particle state

~
V), and the two-particle

scattering states ~I; E), ~II; E) corresponding to only
"incident waves" of Ã0~ and EH~, respectively, are
given by

0—
[n'(~)3*'

(73)

4 p'(~) =
[n'(M) jl E—ep

The "success" of these models vras made possible
by the fact that the "reduced" matrix elements
(corresponding to diagrams with external lines
amputated) is the same irrespective of the external
lines. In each of these models there are questions which
arise in relation to asymptotic conditions, two-particle
states, and the measuring process. This will be discussed
in the following section.

A'(E ~)=
Fi(E) F2(ep)

~ . )
n+(E) E—~p+ie

Fp(E)—

Fi(F) Fi(ep)
II;E)~ 4i'(E;~)=~(E—~)+

n+(E) E—pi+ie

5. ASYMPTOTIC CONDITION AND
PARTICLE VARIABLES

In the last section it was mentioned that while on
the one hand the amplitudes are analytic functions of
the coupling constants and the amplitudes for a theory
with indefinite metric can be obtained by analytic
continuation from a theory with a definite metric, the
number of observables changes discontinuously, and
simultaneously the operator structure changes discon-
tinuously. This decrease in the number of "observables"
is an essential element of our theory; while the inter-
pretive postulate' restricting physical states to the
subspace spanned by positive-norm eigenstates of the
scattering matrix is a self-consistent postulate, the
physical interpretation of such a theory presents
certain new features; therefore it is worthvrhile to
discuss this question in some detail.

For the consistency of the interpretation of the
positive-norm scattering state in the 8= 1, Q= 1 sector
as a physical two-particle state of a system with
physical one-particle states in the 8=1, Q=O and
B=O, Q=1 sectors with suitable masses, it is necessary
and sufficient to show that these states can be made to
correspond to the scattering states of a two-particle
system (with positive-definite metric) with the same
energy-dependent phase-shift and scalar products.
This we proceed to do by employing the "wave matrix'
of Mgller. ' To avoid unessential complications we deal
with the 5-wave amplitudes alone. (Equivalently,

where the p are the three components of the indicated
wave functions and vrhere

t FP(p~) —F2'(ep)
n+(s) = s—mp —i' (76)

with

f(~)
Fi(ep) =e(ep-pi)gi

(2ep)-'*

Fp(pp) = 0(ep —pp)gp
(2(p) &

(77)

We have normalized the wave functions to be on the
energy scale. Ke now assert that these wave functions
are the elements of the Mgller wave matrix. For this
purpose it is necessary and sufficient to shovr that
these wave functions are orthonormal and complete. 4

The demonstration of this result is straightforward
and is omitted. Let us novr construct the "physical"

F2(E) Fi(~p)
~II;E)~ @,rr(E; )=

n (E) E ed+pe

F,(E) F,(~)
yp" (E; ep) =b(E a&)+-

n+(E) E pi+ie—
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and "unphysical" scattering states:

F,(E) i I; E)+F,(E) i 11;E)
iA; E)=

F,(E)
~
I; E)yF, (E) i

11;E)
P" '(E)-F-"(E)3'

which diagonalize the phase shift matrix of these states
corresponding to the phase shifts

1 n (E)
6 (E)=—In— —; E&ttr,

2i n+(E)

P(E)= 0.
(79)

For constructing the physical particle variables, we
now construct a "comparison theory" consisting of
only positive-norm states and having one bound state
~v) and one set of scattering states ~E) with E&ttr
which corresponds to the scattering of a meson of
mass p~ and which has the same phase shifts; the
"wave functions" are now two-component entities
which may be interpreted as the bare one-particle and
two-particle amplitudes. These wave functions have
the components:

[v) —+ ~

Xpo ——

[n'(M)j'
—1 F(ro)

Xr (Co) =
fn'(M)]l E ro—

(80)

(E)~,
xpr(E) =—

n+(E)

F (E) F(to)
Xi'(E; po) =5(E ro)+-

n (E) E pc+re

7 Compare T. D. Newton and E. P. %igner, Revs. Modern
Phys. 21, 400 (1949); R. Acharya and E. C. G. Sudarshan, J.
Math. Phys. (to be published).

where n+(s) is the same expression as before and
F (to) = ttFrs(to) Fss(to)fl. It is eas—ily verified that these
wave functions do predict exactly the same phase shift
as given by P(E) in Eq. (79). One observes that the
physical states

~
V), ~A; E) of the original theory

involving physical and unphysical states are in one-to-
one correspondence with the states ~v), ~E) of the
comparison theory and this correspondence preserves
scalar products (and phase shifts). Hence dynamical
variables defined by linear operations on these wave
functions of the two systems can be put in one-to-one
correspondence with each other.

We may now employ this correspondence to define
the relative momentum and position variables~ for the

original system; and it is then easily seen that the
configuration wave furtctiort for the "physical" scatterirtg
state is given by the Fourier transform of Xi'(E; ~~)

(rather than of Pr'(E; co) or of LFi(E)pr'(E; co)

+F,(E)@,"(E;ro) j/LFrs(E) —Fs'(E) j'). Hence it is ap-
parent that the system involving two kinds of mesons
and an indefinite metric is equivalent, in this sector, to
an alternative theory involving only one kind of meson
with an appropriate form factor and no indefinite
metric. '

The essential restriction imposed on the construction
of a particle interpretation is that all "physical"
dynamical variables operating on any physical state
generate a combination of physical states only; in the
terminology of Foldy and 4Vouthuysen, ' all physical
variables should be "even operators. " All intuitive
objections to our interpretive postulate regarding
physical states are based on gedarskee experiments
which violate the characterization of physically
measurable dynamical variables.

The use of the indefinite metric thus leads to the
construction of models which are equivalent to models
with a definite metric but an effective form factor.
They are thus trivial in nonrelativistic theories except
perhaps to introduce "simple" form factors; but they
are far from trivial for relativistic theories where
nonlocal theories are normally beset, with conceptual
and consistency difhculties. ' The advantages of gener-
ating effective form factors is seen quite transparently
in the model involving the heavy-particle recoil in the
previous section.

For completeness we should perhaps mention that
in the above demonstration we had assumed that
Frs(E) —Fss(E) &0 for all E. If this is not so, we must
note that at some critical energy E, the quantity
Fi'(E) F2'(E) changes si—gn and vanishes at E=E.;
the role of the physical and unphysical states are
interchanged for E&E,. One has the scattering phase
shift for the physical state

~ -(E)&
b(E) =—.l I l~(E.-E),

2i En+(E))

and n+(E,) is real. These circumstances do not add
anything essentially new to the interpretation.

The analysis of measurements presented above shows
that one has to be very careful in dealing with the
"asymptotic conditions" in any realistic theory with
interaction, since if the interactions are local the
theory may involve an indefinite metric; on the other
hand, if the theory involves only a positive-definite
metric then the effective interactions are nonlocal and
appeal to covariance may be unwarranted. In any
case the physical characterization of asymptotic fields

s L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).' See, for example, Proceedirtgs oj the Internatiortat Comferertce
of Theoretical Physics, Eyoto urId Tokyo, 1953 (Science Council of
Japan, Tokyo, 1954).
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in manifestly covariant quantum theories of interacting
6elds may not be as simple as the characterizations in
current use."

6. DISCUSSION

In this paper we have dealt in detail with several
simple model theories which are solvable and at the
same time exhibit scattering. There are three major
points demonstrated by this study:

(1) The nature of the "physical" solutions of a
quantum-mechanical system with an inde6nite metric;
and the equivalence of the Hamiltonian and dispersion-
theoretic treatments of the problem.

(2) The analytic structure of the amplitudes in such
models; the upper half-plane analyticity ("causality" )
of the amplitude continues to be true provided time-
reversal invariance holds. Further the exact solutions
are analytic functions of the coupling strength parame-
ters and (while the operator structure and physical
interpretation changes discontinuously when one of the
coupling strength parameters changes sign) the solu-
tions can be obtained by analytic continuation from
a "normal" case."

(3) The interpretive postulate of the present theory
and its realization in terms of physical particle variables
illustrates the new physical principles involved and
shows that notions relating to asymptotic conditions

'0 See, for example, A. S. Wightman, Proceedings of the Conference
orI, Mathematical Problems oj' QNuetum Field Theory, L~lle, 1957
(unpublished)."Contrast this with the discussion by F. j'. Dyson, Phys. Rev.
S5, 631 (1952).

have to be handled very carefully. In particular, if
one wants to interpret every singularity of a scattering
amplitude in terms of many-particle states" at least
some of these states may be unphysical; a particularly
interesting case in point is the analysis of the Mfiller
(electron-electron) scattering amplitude in terms of a
"complete set of intermediate" states, where if one
wants to get the Coulomb potential unphysical states
have to be included. "

Admittedly all the systems discussed in the present
paper are highly idealized models chosen only by
virtue of the fact that they could be solved exactly.
The success of the new physical principles involved
for a quantitative discussion of physical phenomena
can only be tested by the study of more elaborate and
realistic systems. But the relevance of the general
questions discussed here is already apparent from the
solutions to the model and may have to be considered
in any fussdamen4al theory.
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