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The structure of quantum theories with inde6nite metric is studied with the aid of several simple models.
It is shown that the pseudo-unitary scattering matrices entering such a theory are not inconsistent with
physical interpretation provided a suitable invariant projection of physical state is carried out from among
all the states. A relativistic quantum theory of interacting 6elds is outlined and is suggested as a basis
for a dynamical theory of elementary particles. It is argued that the formal introduction of an indefinite
metric together with supplementary interpretive postulates may help to reinstate the principle of simplicity
in a consistent theory of elementary particles.

1. INTRODUCTION

'EGATIVE probabilities and the notion of an
indefinite metric have been considered many

times previously in quantum theory; and while no
explicit contradictions could be pointed out it has often
been suggested that the introduction of an indefinite
metric would make quantum theory inconsistent. On
the other hand, it has also been suggested that if it is
ever possible to construct a self-consistent quantum
theory using an indefinite metric it should be possible
to reformulate the theory without using an indefinite
metric; this suggestion, which derives some confirmation
from the structure of quantum electrodynamics (where
it is possible either to work with the Gupta-Bleuler
form involving an indefinite metric or with the Dirac-
Schwinger form involving an instantaneous Coulomb
interaction), also points to the possibility that the
indefinite metric with "local" interactions may actually
be a method of presenting a theory with a definite
metric but "nonlocal" interactions. Thus, rather than
suggest that the indefinite metric is superQuous in this
case, it in fact suggests that the use of the indefinite
metric may provide the most elegant method of
construction of consistent nonlocal relativistic theories.

The question of "local" versus "nonlocal" interactions
has also been discussed often and it has sometimes been
claimed that nonlocal theories cannot satisfy both
relativistic invariance and the dynamical principles
leading to specification of Cauchy data for the operator
fields entering a Lagrangian theory of quantized fields.
This claim is unsound in view of the existence of the
Dirac-Schwinger formulation of quantum electrody-
namics. Since such a success is not duplicated. in any
other quantum field theory, one is not able to generalize
the dynamical structure of quantum electrodynamics;
such a situation is very unsatisfactory.

In recent years methods of dealing with strong
interactions not explicitly dependent upon a Lagrangian

Supported in part by the U. S. Atomic Energy Commission.
l' ¹teadded sn proof Since this paper was .submitted for pub-

lication, the author has come across the following related papers:
G. Barton, Nuovo cimento 17, 864 (1960),L. A. Maksimov, Zhur.
Eksp. Theoret. Fiz. 36, 465 {1959)and K. L. Nagy, Nuovo cimento
17, 92S (1960). Nagy gives a brief review of the indefinite metric
theories; it is curious that according to the discussion of Nagy our
theory is "non-interpretable. "
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formulation have been developed. The success of these
methods in regard to quantitative correlation of strong-
interaction data have to a certain extent hidden the
fact that such a theory is primarily an elegant scheme of
"self-consistent field approximation" and the basic
questions of elementary particle architecture (as distinct
from the calculation of strong-interaction transition
amplitudes) are outside the scope of such a theory. The
various conventional Lagrangian schemes for relativ-
istic fields have been completely powerless in providing
an answer to these questions; the exceptions are certain
unorthodox attempts but these do not subscribe to the
"orthodox" postulational scheme, noticeably the one
relating to the restriction to positive definite proba-
bilities. On the basis of the case of quantum electro-
dynamics (and to a certain extent, on the basis of some
of the simple models discussed. below), one is led to
assert that for a Lagrangian formulation of theory of
interacting field. s manifest covariance and. positive-
definite metric are complementary aspects, and that
if we indulge in the luxury of manifest covariance it
may not be possible to argue on the basis of physics to
rule out negative probabilities. This view is elaborated
in the following sections of this paper. In Sec. 2 we
discuss the simple example of a two-level system with
indefinite metric and. several elementary results are
deduced. In Sec. 3 this case is generalized to provide a
discussion of the neutral scalar theory; this particular
case which is completely solvable in closed form
exhibits many interesting features. In Sec. 4 we again
consider a simple model which cannot be completely
solved but a partial diagonalization into "sectors" can
be obtained. and explicit solutions for several sectors
can be obtained. The resemblance of the Lee model to
this case is also discussed. A system similar to the ones
discussed by Pais and Uhlenbeck is considered in Sec. 5.
A mod. el of quantized. field theory which involves the
indefinite metric for which certain scattering states can
be explicitly solved. is constructed in Sec. 6. A new

formulation of a relativistic theory of interacting
quantized fields is outlined in Sec, 7. The theory is
compared with some earlier work of Bogoliubov in
Sec. 8. Certain questions of principle and outlook are
discussed in Sec. 9. The Appendix compares the Gupta-
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Bleuler and Dirac-Schwinger formulations of quantum
electrodynamics.

2. THE TWO-LEVEL SYSTEM

I et us consider a quantum mechanical system with
only two states labeled 1 and 2; the state vector is a
2-component vector and the Hamiltonian operator must
now be a 2X 2 matrix which would be pseudo-Hermitian
if the metric is indefinite. No generality is lost by
choosing the metric operator to be diagonal and to
have unit square. Then an arbitrary time-dependent
Hamiltonian process is expressible in terms of a pseudo-
unitary 5-matrix transforming initial state vectors into
final state vectors. That such a matrix, and more
generally a pseudo-unitary matrix connecting the state
vectors at two finite times, exists can be deduced easily
from the existence of the pseudo-unitary matrices
relating infinitesimal time differences; and the latter
follows from the existence of the Schrodinger equation
with a pseudo-Hermitian matrix. To make the analogy
with a real scattering process closer, we may assume
that the Hamiltonian matrix B consists of a constant
multiple of the unit matrix plus an interaction term
which vanishes at both initial and final times. Under
these restrictions there exists a pseudo-unitary 5 matrix
which may be expressed in the form:

S=exp(2'),

where the phase shift matrix 8 is a pseudo-Hermitian
matrix. It is easier to parametrize this matrix and
(choosing the basis so that the metric il is identical with
the Pauli matrix 0.3) the general form may be written

(i) The important question. is not the unitarity of
the 5-matrix but the unitarity of the eigenvalues. In.
this case the supplementary condition can always be
imposed and the "physical" states' so obtained can be
chosen to have norm +1.

(ii) The interaction Hamiltonian cannot be chosen
arbitrarily if one works within the framework of the
2-level amplitude, but must be such as to ensure the
unitarity of the eigenvalues of the 5 matrix.

These considerations which are explicitly demon-
strated here for the two-level system can be immediately
generalized. ' In the n-level case we work again with
the pseudo-Hermitian phase shift matrix 6. If the eigen-
value A, of 5 is complex, the corresponding eigenvector
is a null vector (i.e., has zero norm) since the pseudo-
Hermiticity requires that

l (0,0) = (0,b0) = (84)=l*(4A),
or

It can also be shown that if the eigenvalue X is real the
corresponding eigenvector can be chosen to have norm

at least if the characteristic equation has no
multiple roots. Consequently the supplementary condi-
tions annihilating all negative norm states can be
imposed with consequent assurance that all "physical"
probabilities are nonnegative,

I.et us now consider the related case of a particular
system with an infinite set of states called the Yukawa
oscillator; this system is defined by a "pseudo-oscillator"
coupled to a static source:

(2a)
(a+b ic+d ~

Eic—d a b)'—where

H =Ho+Hi = —cuata+gp (at+ a),

at =pa*a and (a,at7= —1.

where u, b, c, d are all real parameters. The eigenvalues
of 8 are given by

8= aa $b' (c'-+d') 7', — (2b)

and are real as long as c'+d'&b' in spite of the fact
that the matrix 6 was not Hermitian. We may also
verify that as long as these roots are real the eigen-
vectors have nonvanishing norm, but as soon as the
eigenvalues become complex (i.e. , c'+d'& b') the vectors
become null vectors.

Consequently, as long as the eigenvalues of 8 are real
and distinct (and consequently those of S unitary),
there exists an eigenstate of the system with a non-
vanishing norm and which can be normalized to have
Q,f)=+1. Hence in this case physical probabilities
are positive definite provided one imposes the supple-
mentary condition that

AQ=O, A= p(p*q

where y is the state with negative norm. Two points
are to be noted in this connection:

The states P„are defined as usual by the eigenvalues
of vs~a and have the scalar product

Q„,f )= (—1) 8„„;. a"aP„= nf„. —

For Hermiticity of the Hamiltonian it is necessary that
if the source strength p is real, the coupling constant g
is real. The Hamiltonian is pseudo-Hermitian but it
can be diagonalized by the introduction of new oscillator
variables:

b= a (g/~) p,
—

EE= cobweb+ (g'/~) p-''——
Then

the energy eigenvalue is consequently increased by the
amount (g'/co)p' and the eigenstates are eigenfunctions
of btb which have the norm exp(Arb"b). Here again the
"physical" probabilities can be chosen to be nonnegative

' It may be necessary to strengthen the supplementary condition
by further selecting a subset from among the eigenstates of the
S matrix with positive norm; compare reference 7.

2 See, for example, I.. K. Pandit, Suppl. Nuovo cimento ll,
i57 (1959).
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by the appropriate supplementary condition

[1+exp (im.btb) jP= 0

3. NEUTRAL SCALAR THEORY AND POTENTIALS

The Vukawa oscillator discussed in the last section
could be thought of alternatively as a (one-dimensional)
particle obeying the pseudo-canonical commutation
relation

I P,q)=+i
(note the opposite sign to the usual case) with a suitable
restoring force. We can formally extend this to introduce
now a field theory with indefinite metric. Let P(r) and

vr(r) be the operators for a neutral scalar field and its
canonically conjugate momentum density satisfying
the commutation relations:

Lm (r),y(r') j=+ib(r r'). —

A theory of this neutral scalar field interacting with a
source density p(r) is obtained by choosing the Hamil-
tonian density:

~(r) =~'+~'4'+ (~4)'+gW (&)

The commutation relations have the sign opposite the
usual scalar field commutation relations and can be
seen to correspond to a theory with indefinite metric.
Introducing destruction and creation operators a(k),
at(k) for each momentum vector k, one finds that

La (k),at (k') i= —6 (k—k'),

so that the metric operator is

peximtd'k a-" (k) a(k)

and the Hamiltonia, n is

H = — d'k (p'+ k') 'a" (k)a(k) +Lg/(16m') lj

y d'k(y'+k', ) leap(k)(i" (k)+p*(k)a(k)]

Hy the substitution

b (k) = a (k) —(16'')—
~g (p'+ k') —:

p (k)

bi(k) = at(k) —(16m') '-g(p'+k') *p*(k),

one obtains the diagonalized Hamiltonian:

H= —)I d'k(y'+k') lbt(k)b(k)

exp( —~lr —r'I)
+(et~) J a

Thus the net effect of the Vukawa coupling in this
case is to introduce a repulsine interaction between the

sources; if we had used a theory with the usual commu-
tation relations and consequently a positive definite
metric, the transformed Hamiltonian would have looked
the same except that one wouM have had an attractive
Vukawa interaction between sources of the same kind.
This change in sign is accompanied by the still indefinite
metric expfimJd''k bt(k)b(k)]. Again, because of the
simple structure of the theory, one could introduce the
supplementary condition:

1+exp im d'k 0"(k)b(k) /=0.

This simple example also illustrates for us that
"local" interactions and "nonlocal" interactions are
not necessarily physically di6erent. It was also neces-
sary in the case of a repulsive potential to introduce
"local" interaction structure only by the artifice of
introducing fields with indefinite metric.

In this theory there is no interaction between the
"mesons" and the sources as seen explicitly by the
transformation. Because of the simple structure of this
theory it is possible to introduce any required potential
between static sources; one need only express the
potential as the superposition of Yukawa potentials
and use the square root of the "strength" as the
coupling constant. For attractive Yukawa components
one has fields with "normal" commutation relations,
and for repulsive components one has fields with
"abnormal" commutation relations.

A particularly interesting example is provided by the
exponential potential (either attractive or repulsive);
no contact interaction theory with positive definite
metric can give such a potential because the asymptotic
form is given by the "exchange of the quantum of
lowest mass. " With indefinite metric this can be
considered as a dipole field case; namely, the limiting
case of the sources being coupled to a normal field and
an abnormal field (possessing indefinite metric) of
nearly equal Inasses and equal strengths.

fa, atj=Lc,ctl=+1; LVtj= —1;
all other commutators=o.

(10)

The total Hamiltonian is

H= mbtb+(uctc+ g—(btac+atctb),

4. THE LEE OSCILLATOR

We now consider another dynamical system with an
infinite number of states which cannot be solved com-
pletely, but a partial diagonalization reduces it to the
special finite-dimensional case discussed in Sec. 2. For
this purpose we introduce the normal oscillator variables
uI) a) c~, c and abnormal oscillator variables bt, b which
satisfy the relations



where pseudo-Hermiticity requires that

There are two conserved quantities:

Vi ——ata. btb—) .:Vz —— btb—+etc) (12)

f~—mJ/fg/ &2+n, (14)

if I-' is to be real. As long as the inequality is satisfied,
the two eigenstates of the coupled system can be chosen
to have norms +1 and —1, respectively. On the other
hand, lf the condition is not satisfied, the roots become
complex and the eigenstates have vanishing norm. The
only admissible states are those of positive-definite
norm: and consequently we should impose the supple-

which take on nonnegative integral values; one easily
verifies that these two operators commute with the
Hamiltonian and with each other and can hence be
simultaneously diagonalized with the energy. In terms
of these operators, we can simplify the Hamiltonian
to the form

IX=mNz+az'etc+ g (btac+ atctb),

with co'=co—m. A complete basis is constituted by the
eigenstates of the number operators labeled by the
eigenvalues of the 3 number operators in the form
~zz„zzz, zz,) with the metric (—1)"z.

We now observe that there are precisely 1+min(zzi, zzz)

such states corresponding to the eigenvalues ei and n~

of the number operators: hence for every choice of n&

and m2 the eigenstate of the coupled system can only
be linear superpositions of a finite number of states and
the problem of finding the exact states of the coupled
system reduces to an eigenvalue problem for a pseudo-
Hermitian finite-dimensional matrix. The associated
finite-dimensional subspace will be called the "sector"
(zzi, zzz).

The simplest sectors are those where min(zzz, zzz) =0;
these are eigenstates of the exact Hamiltonian and
correspond to the states

~
zz„0,0) and

~
0,0,zz,). All these

states have positive norm. The next simplest corresponds
to min(zzz, zzz) =1 and the sectors are two-dimensional;
and is constituted by the states ~zz, 1, 1, 0) a—nd

~zz„0,1) and by the states ~0, 1, zz, —1) and ~1,0,zz,).
In either case the pairs of states have opposite norm.
The eigenvalue problem reduces to the quadratic
equations

( nz E, +g(zz )—
det/ [=0;

I —g(n„) '
co —E zJ

(zz,,a&+m —E
det~ —g(Zz, ) cl

The conditions for real roots are

(m+s))' 4(m(o+zzg'—) & 0,

with e=e or n=n, in the two cases. Recalling that g
is real, we have

mentary condition that only these states are allowed.
It is important to notice from the structure of the
condition for real roots that for 6xed values of the
parameters m. , &~, g (with ~g~WO), for a sufliciently
jarge value of Is, or &s,, this condi. tiori is violated.
Hence, if we consistently apply the supplementary
conditions to select out the "physical states, " only a
finite number of these "sectors" are allowed; the
specific number is dependent on the specific numerical
values of the system parameters and is not particularly
relevant.

Similar conclusions result from a study of the next
set of sectors defined by min(zzi, zzz) =2. These sectors
are three-dimensional and consist of the states

zz, —1, 2, 0), n„1,1), I +1, 0, 2) and the states
0, 2, zz, 1), —1,1,zz,), 2, 0, zz,+1). The eigenvalue

equations for the two cases are cubic equations:
'

2m —E +g(2n, )''0
det —g(2zz. )i m+(o —E +g(n, ,+1)' =0,

0 —g(zz, +1)'* 2(u I"—
(zz, '1)~+—2m —E +g(2zz, )

* 0
det —g(2zz, )' zz~+m —E +g(n, +1)l =0.

0 —g(n, +1)' (n,+1)(u—E.
The condition of reality for both these equations can
be seen to be the same and is equivalent to requiring
that the cubic equation

x' —L(P—(3zz+ 1)g'3x—(zz —1)co'g'= 0,

must have 3 real roots; namely

4L(m —a&)' —(3zz+1)g'jz~& 21(zz 1) (zzz —a&)'g'. (1—6)

Again we notice that the sectors contain states of both
norms; and the condition for three real roots is again
dependent on e although one root is always real. For
suitably large values of n the condition is always
violated; and since physical states correspond to
eigenstates of the coupled Hamiltonian with norm +1,
these are only a finite fraction of such states. One can
proceed in a similar fashion to construct the physical
states for the various sectors; by virtue of the oscillator
commutation relations it follows that the off-diagonal
matrix elements will increase with n and for every
nonzero value of g, there are only a certain number of
states in the various sectors yielding real eigenvalues
for the energy.

As long as the restriction to "physical" states is
imposed by the supplementary conditions all physical
energy eigenvalues are real, and correspondingly an
arbitrary physical state will have its time dependence
completely in accordance with the real phase changes
corresponding to real energies; and all transition prob-
abilities will be positive and no inconsistencies will
arise. If we so desire we may reformulate the theory in
terms of a "reduced" Hamiltonian operating on the
physical states only; and one can entirely dispense
with the indefinite metric and pseudo-unitary transition
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matrices. But this reduction is achieved at a price:
IVe can no longer express the dynaznics of eke systezn in
terms of a siznpie set of coupled oscilLators. Note that
we cannot talk about arbitrary operators constructed
out of the original oscillator variables as if they were
observables; observables are those operators which have
no matrix elements connecting the physical states with
the unphysical states. In general, in the original oscilla-
tor representation these are also represented by pseudo-
Hermitian operators.

S. PAIS-UHLENBECK OSCILLATORS

In connection with the study of a certain class of
field theories, Pais and Uhlenbeck' were led to consider
a system defined by the variational principle

where F(x) is a real polynomial of degree lV in the
variable x with F (0)= 1. Since the equation of motion

F(8'/Bt') q= 0

is a linear differential equation in q with constant
coefficients, it can be solved explicitly. This system
can be cast into a Hamiltonian form by introducing,
following Pais and Uhlenbeck, the variables:

q, =P'j 1+co;-'—Iq,
Bpj

where the constants co; are related to the decomposition
of F(x) in the form

F (x) =g.(1+a;-'x).

One can then show that this dynamical system corre-
sponds to the Hamiltonian

with
p' = (I ~-/2 I) 'p~ f ~' (I ~--~/2 I)'-q

The quantization corresponds to the indefinite metric

zz=== exp[izrp (j+1)a;~aJ (21)

Kith these commutation rules and the definitions of
these oscillator variables in terms of the basic variable

q the equation of motion is satisfied. Since the various
degrees of freedom are completely independent, the
eigenvalue problem is trivial. However, the supple-
mentary condition that eigenstates of negative norms
do not enter the set of physical states has to be imposed.

If we impose these conditions, it follows that neither

q nor the full set of functions of all p, and q, are ob-
servables. Since p;, q; have matrix elements connecting
states with opposite norm if j is even, those operators
which correspond to odd functions of the p;, q, for
even j are not observables. It is to be particularly
noticed that neither q nor any of its time derivatives
is an observable; the imposition of the supplementary
condition thus makes it impossible to consider the
basic variable q as an observable. If we so wish, we
may rewrite the theory in terms of onl.y the physical
states and the indefinite metric then no longer enters
the theory. However, this "reduced" Hamiltonian
becomes extremely complicated; if one attempts to
write down an operator equation of motion in terms of

q in this "reduced" form, this equation is no longer a
di6erential equation, but an integro-differential equa-
tion. Of course the formal simplicity of the primitive
theory using the indefinite metric is somewhat mis-
leading because the physical interpretation requires
that one goes to the "reduced" form. Here again we
see that the indefinite metric leads to formal simplifi-
cation of the theory and that the "reduced" theory,
while it employs only a positive-de6nite metric, is
formally more complicated.

&=K((p'/«)+(~ ~'q')}=2 &,,

~ =L~ 'F'( —~ ')?'.
If F(x) is a polynomial function it follows that the
quantities o,; alternate in sign. XVe call a quantum-
mechanical system of this type (assumed to correspond
to E real distinct values cu; for convenience) a Pais-
Uhlenbeck oscillator.

Since the contributions from the various H; alternate
in sign an indefinite metric is called for; the commuta-
tion relations for the p;, q; are

Lp;,q, ]=z(—1) b,;, Lp;,p; ]=Lq;,q;.]=0. (20)
Ke now introduce the oscillator variables:

o;= (2a);)-l(p +i(a;q ),
a;t = (2&v;)-'(—1)&'+'(p —z~,q, '),

' A. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950).

0. A MODEL OF QUANTIZED FIELD THEORY

Ke shall now construct a solvable model of an
interacting quantized field that has some resemblance
to a model constructed by I.ee.4 The model is defined
by the Hamiltonian,

I

EI= ) dzk(gz(k)zz(k)E, (k)+br(k)b(k) J'.(k)

+c'(k)c(k)co~(k) —dz(k)d(k)cv, (k) }
1 1

d'pd'k
I

EF,(k+p) j EJ,(p))
( gzcz(k) dz(k)

&«~(p+k) b'(F)
I
—,+g—

(I 2zoz(k)]' L2o)z(k)]lJ

( gzc(k) gzd(k)
+ '(Iz+k)b(F)j ,+- , I , (22)

&L2~, (k)]-'* L2~, (k)]:-j
' T. D. I.ee, Phys. Rev. 95, 1329 (1954).



8= t d'k(ut(k)a(k)+» "(k')b(k)}

Q= d2k(ut(k)c, (k)+ct(k)c(k) —d'(k)d(k) },

which both have non-negative integral eigenvalues. A
pair of such eigenvalues e~,e~ defines a "sector." The
"abnormal" commutation rules obeyed by the variables
d(k), dt(k) necessitates an indefinite metric and in the
Pock representation in terms of the eigenstates of the
number operators e, e~, e„e~, the metric is given by

As in the Lee model, here again the no-particle state
and the one-particle states corresponding to the quanta
b, c, d are stationary states. The first nontrivial state
where genuine scattering occurs is for n~=n2=1. A
detailed study of this model has been made by Schnitzer
and the present author; here we shall be merely content
to write down the T matrix for the sector (1,1) which
is obtained using known methods':

fi2 +fif2) e"&~& sinb(E)
2'(E) =

I f f- f') f' f— -—(24)

where

c"'& '=»(E—2e)/»(E+2e),

fi, =gi, 2LE' —(m' —pi, 2)'] *,

m
»(-') =~—-'+—(C'~( i,s) —a '~(~2,-)),

Sm
(25)

{(x+m+p) (x+m —p)

X (x—m+ p) (x—m —p) }-'

n(ps) = t dx———
x'-(s —x)

Ke note that, as was to be expected, the 5 matrix is
not unitary but only pseudo-unitary. However, its
eigenvalues are unimodular for all values of the energy
and the two (unrenormalized) coupling constants. The
particular structure of the T matrix also shows that

"" Compa. re KV. Heisenberg, Nuclear Phys. 4, 532 (1957}.

where the oscillator variables satisfy the commutation
relations:

I. ~(k),a'(k') 1 =-I'&(k),li'(k')3 --
I '(k),~'(k')..I

=- -Ld(k), dt(k) 1=6(k-k'), (23)

all other commutators =0, and

5 (k) = (M2+ k') ~ F (k) = (m'+ k') -' '

(u (k) = (P '+k')l id2(k) = (P '+k-')'

There are two constants of motion:

only ooze state has any scattering; and this state has
positive or negative square according as fi') f2' or
fi2& f2'. (N. ull eigenvectors will not occur except for
the case fi2= f2-', but in this case we can always rede6ne
the eigenvectors to have positive and negative norms,
respectively. ) If we now invoke our rule and project
out the eigenstates with negative norms, we will have
a consistent theory of a two-particle system with only
ore channel and an energy-dependent scattering phase
shift.

Let us consider the energy dependence in some detail;
according to Eq. (25), for suKciently high energy,
fi/f2 tends to g&/g2 monotonically. Hence it is necessary
to have g~'~&g~' if we have to have some scattering in
the "physical" channel at all energies. On the other
hand, the integral defining (2) is divergent logarithmi-
cally, except for the special choice gi2=g22. In this case
the integral is convergent and it can be shown that the
corresponding field theory is now free of aQ divergences.
The cancellation of divergences comes from the fact
that the high-energy contributions to the various
integrals are suppressed by virtue of the comparable
contributions of opposite signs from the two fields
entering the original Lagrangian.

For gp=g2', the condition fi') f2' requires that

(m2 ~ 2)2) (m2 ~ 2)2

so that they are all satisGed by a suitable choice of the
three masses m, pi, p2. This simple possibility (as well

as the simple solution) are a result of the fact that the
"reduced" matrix element (corresponding to a Feynman
diagram with all external lines amputated) is the same
for either c-Geld or d-Geld external lines; and this in
turn was made possible by the speciGc choice of the
interaction.

In a more general case, the reduced matrix element
will itself depend upon the nature of the coupled
quantum and the exact eigenstates of the transition
matrix can be found only after a complete solution of
the dynamical problem; there will in general be "scat-
tering" in both channels but the procedure for selecting
all the physical states remains unchanged. The question
of nonunitary eigenvalues for the 5 matrix cannot now
be settled without detailed investigation of the partic-
ular dynamical scheme. But as long as the eigenvalues
a,re unimodular and distinct, there exist eigenstates
with positive square which can be chosen to he physical
states.

/. RELATIVISTIC QUANTUM THEORY OF
INTERACTING FIELDS

On the strength of the demonstrations in the last
section, we are led to ask if similar ideas can be used to
construct a consistent relativistic quantum theory. We
shall defer the discussion of such a theory for interacting
particles to another paper but briefly consider the
question of interacting fields. The present status of
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Lagrangian 6eld theories is that all such manifestly
covariant theories with interaction involve divergent
quantities; and while for "renormalizable" theories a
graphical calculus (involving only the physical mass
and coupling constant and no divergent quantities
explicitly) can be formulated, the connection with the
original Lagrangian is made only through meaningless
divergent expressions. Also any attempt to compute at
least some of the masses and coupling constants in
terms of other parameters of the theory seems im-
possible.

The possibility of obtaining finite expressions in such
a theory using cancellation of the high-energy contri-
butions was recognized in the so-called Feynman cuto6;
but this was considered as a formal procedure without
physical meaning because of the negative probabilities
arising out of such cutouts. ' But the program outlined
in the previous sections shows that the negative proba-
bilities and the resulting pseudo-unitarity of the 5
matrix do not prevent the selection of a suitable set of
"physical" states.

We are thus led to the following program for a
relativistic quantum 6eld theory. Construct a simple
manifestly covariant Lagrangian density involving an
arbitrary number of "normal" fields with local cou-
plings; with every "normal" scalar held associate an
"abnormal" field with all quantum numbers the same
(but corresponding to a different mass) and couple it
in the Lagrangian with the same coupling constant.
In other words, it is the sum of the normal and abnormal
6eMs which is coupled. For a theory involving only
scalar 6elds the resultant theory involves no in6nities
and can always be solved more or less using appropriate
approximation techniques. The resulting "steady states"
of the theory (both one-particle states and scattering
states) may then be classified as "physical" or "un-
physical" according as whether the square of the vector
is positive de6nite or not. Select out the physical states
and in this physical sector, the theory contains only a
positive-definite metric. Note that the relativistic
invariance is still preserved since the steady states of
a relativistically invariant theory themselves form
invariant manifolds. The one-particle states being, in
general, nondegenerate, one set of them will correspond
to physical states for every type of fieM, but this is no
longer true of the two-particle and higher states', nor
does one obtain the simple case outlined in the last
section since in general the "reduced matrix elements"
do depend upon the type of the external lines to which

'See, for example, N. N. Bogoliubov and D. V. Shirkov,
Introdnctio~z fo the Theory of Quantized I'zelds {Interscience
Publishers, Inc. , New York, 1959), p. 395.' In order that a particle interpretation may exist in the Geld
theory it seems necessary to further restrict the allowed physical
states. There are two kinds of two-particle states with positive
norm, but only one of them corresponds to a state of two physical
particles in the limit of no interaction; the other corresponds to
a state of two unphysical particles. The requirement is the
"asymptotic condition" in the present formulation and is required
only if we demand a particle interpretation of this field theory.

they are to be attached. Clearly no de6nite and general
answer can be given regarding the nature and compo-
sition. - of the scattering -states without a systematic
study of'this framework.

While the theory involves no in6nities, there are
still mass and coupling constant renormalizations to be
performed in this theory; the important difference is
that these renormalizations are now @mite and are
analytic functions of the parameters (masses and
coupling constants) entering the primitive Lagrangian.
The proof of renormalizability can be carried through
exactly as in the conventional theory and one can, in
complete analogy, s formulate a graphical calculus for
the transition amplitudes in the theory. However, the
new element entering the present theory is the intro-
duction of the abnormal fields as dynamical fields and
the selection of the "physical" states; while an exact
separation requires a knowledge of the comp1ete solution
and is thus inaccessible in a realistic theory, the sepa-
ration can be carried through to any order in the finite
perturbation theory. Thus we have an iterative process
to de6ne the physical states, the observables and the
physical transition amplitudes which can be carried
through to any desired degree of approximation.

The functional relation betw'een the primitive ma, sses
and coupling constants and the corresponding renormal-
ized quantities is considerably more complicated, and
the perturbation expansion in terms of the primitive
parameters may be much less convergent. ' But even
here, the rela, tions are analytic in the primitive pa-
rameters and consequently the physical amplitudes are
analytic in the renormalized parameters. The original
Lagrangian contains two primitive masses (rather than
the one primitive mass that is usually written down);
such additional constants usually appear already in
current calculations, but under the guise of "subtrac-
tion constants.

For a theory involving spinor 6elds, these subtrac-
tions are not sufficient and this depends essentially on
the fact that the free propagator decreases only as the
first power of the momentum. A prescription in complete
analogy to the bosons can be worked out for this morc
general case by requiring the effective propagator to
decrease as the fourth power of the momentum and
this requires that in place of every spinor 6eld one
introduces two normal 6elds and two abnormal fields.
The corresponding renormalized theory wouM contain
two distinct one-particle states with all quantum
numbers identical but with different masses'" ' the proof

' The rules of the graphical calculus have to be changed in one
respect: The relative phase of the emission and absorption factors
for abnormal field contains an additional minus sign; in particular
internal lines in a diagram have abnormal propagators with the
opposite sign. from normal propagators.

9 The author is indebted to I. Bialynicki-Birula for a discussion
of this question.

'OThe existence of the electron-iiiuon doublet is perhaps not
unconnected with this circumstance; the author wishes to thank
P. Cziffra for a discussion of this point.
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of renormalizability is more complicated in this case
and we shall not discuss it any further here.

Needless to say, this theory involving the indefinite
metric is fuHy relativistic even in the physical sector
and there must exist a reformulation of the "reduced"
theory. But such a theory would involve nonlocal
interactions and would be extremely complicated; and
as far as computations are concerned, it is inferior to
the manifestly covariant theory involving the indefinite
metric.

Having thus related the problem of finding a satis-
factory relativistic theory of interacting fields to the
construction of manifestly covariant relativistic field
theories involving both normal and abnormal fields,
the problem of a dynamical theory of elementary
particles can now be considered. "One is led to consider
a theory involving a minimum of fields required to
"support" all the conserved additive quantum numbers
and a "simple" dynamical scheme. The scheme pre-
sented above does not of course given any immediate
solution of nonlinear dynamics, but the problem can
at least be formulated in a consistent fashion.

space Kp gives a Hermitian operator 8p.

p~= p, '
Bp ——AHA =- 8A.

In view of these the reduced theory has both kinematics
and dynamics which can be eventually formulated in
the reduced space 3Cp without reference to the space X
consistent with our view of the use of the indefinite
metric as only an auxiliary Lcompare Eqs. (3), (9),
(24), (25) as well as the subsequent paper").

Sogoliubov also starts with a generalized Hilbert
space R and decomposes it into two orthogonal sub-
spaces Ki and BC2 using a projection operator I' such
that 3C~ is a true Hilbert space with positive definite
metric. If P is any vector in K, the projections of f in
X& and 3C& are given by

4i=~V' 4~= (1—&')1t

If 5 is the generalized (pseudo-unitary) scattering
matrix in the space 3C the projection P satisfies,
according to Bogoliubov's criterion, the requirement:

(30)

So=ASA.. (26)

Ke then note that Sp is unitary in the reduced space
3Cp since

Sp~Sp= SpSp~=A, (2&)

and the space Xp is a true Hilbert space with positive
de6nite norm (by construction). And the "observables"

are pseudo-Her mitian operators which commute
with the pI'ojectlon A:

A8(1 —A) =0; A~=A. (28)

For these operators the restriction to the reduced

"It is thus not surprising to find that several attempts at a
manifestly covariant dynamical theory of elementary particles
have arrived at an indefinite metric, starting with very diferent
points of view.

"N. N. Bogoliubov, 195$ Annua/ International Conference on
Iligh-Enerf;y Plzysics at CEPS' (CERN Scientific Information
Service, Geneva, 1958), p. 129.

'3 See, also, reference 5.

8. COMPARISON WITH THEORY OF BOGOLIUBOV

A somewhat similar procedure was outlined by
Bogoliubov" " some time ago; to exhibit the difference
between this procedure and the one proposed in the
present paper let us crystallize our essential compu-
tational procedure in the following form (compare
Sec. 7). Let K be the primitive generalized Hilbert
space with indefinite metric (in which the quantized
fields are linear operators) underlying the formulation.
Denote by A the projection operator to the manifold of
BC spanned by those elements of K which have positive
norm and which are eigenstates of the scattering oper-
ator. Then the "physical states" are to be made to
corresponds to the elements of the "reduced space"
Xp=AK. The physical 5 matrix is

Using the definition of the "physical part, "

1t'phys =&1t'=1t'i, (31)

we note that the Bogoliubov criterion yields

(51t') phys =Sphys1t'phys,

with

(32a,)

5 =I'(5 '+ (1—8))—'P (32b)

It is then asserted that "the norm of the physical part
of the state vector is conserved and so are the mean
values of energy, momenta, etc. , calculated (by means
of the physical part of the state vector. "

However, in contrast to the physical S matrix Sp
(defined above), the matrix S„h„, is riot urtitary; the
conservation of the norm of the physical part was true
of only specially selected vectors and in particular, is
not true for any vector in Xi. The reason is not far to
seek: one has used a "double standard" working with
two distinct definitions for the "norm, " one dered
over vectors in 3C and the second defined only for
vectors in X&. Presumably, one attaches probability
interpretation to the metric in Ki since only this is
positive definite but in that case the restricted matrix
S~h,„ is not unitary; this lack of unitarity has been
explicitly demonstrated in a special solvable case by
Glaser"; the above discussion shows that this is to be
generally expected.

One might enquire under what conditions the matrix
S~h,-, is unitary in the subspace 3C&. This is equivalent
to the requirement Lcompare Eq. (27)j;

SI hy, t SPhys=~,
'4H. J. Schnitzer and E. C. G. Sudarshan, following paper

LPhys. Rev. 123, 2193 (1961)j.
'5 V. Glaser, reference 12, p. 130.
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but from the explicit expression fol Sphy and the
requirement that the metric in BC' is positive definite
it follows that this will only be satisfied when

l~S(1—I') =0,

i.e., the projection E' commutes with the primitive 5
matrix (defined over 3C). But in that case the "un-
physical parts" vanish and Bogoliubov's criterion is
irrelevant.

In conclusion, it must be stressed that the restriction
of the primitive generalized Hilbert space to the
"physical space" should be done in such a manner
that the vectors in this spa, ce can be chosen arbitrarily
and that all conditions imposed on the scattering
matrix can be automatica, lly satisfied; this requirement,
essential for the physical relevance of the theory, is
satisfied in our theory but not in Bogoliubov's and
hence leads us to reject the latter.

9. DISCUSSION

The investigations of the previous sections dealt with
widely diferent systems which involve an indefinite
metric; most of these are admittedly simple models,
the outstanding exception being the quantized radiation
field (briefly discussed in the Appendix). There are
some common features of these theories:

(i) The "physical" states must include only eigen-
states of the true Hamiltonian which can be normalized
to +1.

(ii) Only those operators are observables which have
no matrix elements connecting physical and unphysical
states.

(iii) A "reduced" theory involving only physical
states can be constructed which involves only a Hilbert
space (with positive definite metric) and no supple-
mentary conditions; but the Hamiltonian of such a
theory may be much more complicated than the formal
structure of primitive Hamiltonian.

These features demand that not necessarily all
heuristic notions associated with theories with indefinite
metric may be justified; in particular the nature of
asymptotic physical states cannot be decided a przori.

It has become fashionable to consider that relativistic
quantum theory of elementary particles should be
formulated in terms of "local fields, "and to assert that
Lagrangian theories are inconsistent since all attempts
a,t constructing consistent theories with simple inter-
action structures had failed. All attempts at calculations
with "local Lagrangians" (in theories with a positive
definite metric) automatically yielded infinities; while
manifestly covariant nonlocal theories were "white
elephants" with which one could do nothing (not even
obtain an in6nity). In any case it is dificult to proceed
to construct a theory unless it has a simple structure;
for simple covariant interaction schemes one could
obtain finite results in perturbation theory if one

introduced an indefinite metric, but this appeared to
make the theory contain "negative probabilities" and
doubts about its consistency are often expressed.

If it were not for preserving relativistic invariance a
consistent theory couM be constructed using suitable
form factors. The theory need then involve no inde6nite
metric and Lagrangian theories need not be ruled out.
There is still the problem of the a,ctual details of
computation of physical predictions; but more im-
portant is the fact that there is too much ambiguity in
choosing the form factors. On the other hand, in general,
such a theory will not be relativistically invariant; the
special case of the Dirac-Schwinger form of electro-
dynamics suggests that there may be other field theories
with nonlocal interactions with the form factors suitably
chosen. However such theories are forma, lly greatly
complicated and in any case there is no method of
constructing other such theories.

The appeal to "simple" interaction structures is most
useful in a theory of elementary particles which aims at
predicting at least some of the masses and coupling
constants. The study in the previous sections suggest
that the use of contact interactions along with the
inde6nite metric, involving as it does only a few
constants, is an alternative "primitive" theory involv-
ing supplementary conditions, the corresponding "re-
duced" theory being a consistent theory with a positive-
de6nite metric but involving a complicated interaction
structure. If nontrivial theories of this type exist, the
corresponding "reduced" theory also will be relativisti-
cally invariant; there is nothing that is known at
present which shows that such a possibility is unlikely.
The requirement of manifest covariance and the
requirement of restriction to positive definite metric
may thus be complementary"; and this feature may be
typical of aH relativistic field theories. This gives
additional justification for attempts to construct
theories of elementary particles with regularized propa-
gators as has been done by Heisenberg and collaborators"
and by Nambu"

Irrespective of a,ny indefinite metric, in a local
Lagrangian theory one has differential equations satis-
fied by the field operators, which (by nature ot the
Lorentz space) are hyperbolic equations and hence they
have the propagation character and characteristic cones
typical of hyperbolic equations. Hence in any such
theory "local commutation rules" may hold, though
one cannot interpret this condition to say that "physical
measurements" at two space-like points commute; in
general the field operators are rzot measzzrable (even
spread out over small regions) as was seen in the special
case of the Pais-Uhlenbeck oscillator. This also implies

"The author is indebted to J. Schwinger for several comments
on this point of view.

7 I'roceedings of tlute 1960 Annual Conference on High-Energy
P/sysics uf Eochester {Interscience Publishers, New York, 1960),
Sessiori P3.
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that the success of the covariant self-consistent method"
of treating strong interactions which makes use. of
analytic properties of transition amplitudes suggested
by local commutation rules is not inconsistent with the
existence of a Lagrangian theory of strong interactions.
In fact, some of the approximations employed in these
calculations are most easily understood within a frame-
work involving an indefinite metric. We are thus led
to suggest that the principle of simplicity can be
reinstated in a consistent relativistic field theory of
elementary particles by the formal introduction of an
indefinite metric.
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APPENDIX. INDEFINITE METRIC IN QUANTUM
ELECTRODYNAMICS

The various results found in the text have their
counterpart in the treatment of the radiation field in
interaction. The conventional treatment involves an
indefinite metric together with a supplementary condi-
tion; but the theory can be reformulated in terms of
physical states and observables with an apparent
increase in the complexity of the formal structure.

The Gupta-Bleuler formalism of the radiation field
coupled to a classical charge current density starts with
the Lagrangian density

and the commutation relations

where g&" is the (space-like) metric tensor and D(x,x')
is the odd invariant function. These commutation
relations are similar to the corresponding commutation
relations for relativistic scalar fields (of zero mass)
except that for IM=s =0 the right-hand side has the
opposite sign. One can construct an explicit representa-
tion of the equal time Geld operators by going to the
momentum space and introducing four kinds of creation
and annihilation operators (labeled by a momentum
index) associated with the four values of the index lu,

which satisfy the commutation relations

Pa„(k),a„t(k') 7=g„„b(k—k'), La„,a„7=La„&,a„F7=0.

The opposite sign of the right-hand side for p= v=0
necessitates an indefinite metric

l
ii=exp im d'k ast(k)ae(k) .

To make the theory completely equivalent to the
Maxwell equations it is necessary to impose the

"G.F. Chew, Lawrence Radiation Laboratory Report UCRI-
9289 (unpubhshed).

subsidiary condition,

a %~&+i(~)i )=0
for any physical state. By virtue of the equations of
motion, one veri6es that this supplementary condition
is consistent with the equations of motion provided
that the current j& is locally conserved. The Lorentz
invariance and consistency of this formulation has been
discussed by various authors.

We now note two special features of this theory:
firstly, the supplementary condition does not eliminate
all eigenstates of the total Hamiltonian with negative
norm or zero norm. In particular, for a noninteracting
radiation field it allows states with odd "time-like"
photons provided they are accompanied by "longi-
tudinal" photons degenerate in momentum with them.
These states have vanishing expectation values for the
energy or momentum of the Geld. A closer analysis
shows that the amplitudes of such states is completely
nonmeasurable. In other words, these components of
an admissible state vector are completely irrelevant as
far as all physical predictions are concerned. It is then
desirable to choose this field to be unquantized and
absent. Secondly, the observables of the radiation 6eld
are not arbitrary functionals of the field operators, but
only such functionals as commute with the supple-
mentary condition. Thus the simple formal structure
is again misleading as not all quantities that enter are
physically measurable. We also note the related fact
that not all interactions of the quantized field with
other dynamical entities is allowed, but only those
which are "gauge invariant. "Within such a framework
this theory with inde6nite metric has the same degree
of consistency as, say, a scalar Geld with a positive-
definite metric.

The considerations of the previous sections suggest
that there should exist a "reduced" theory involving
only physical states, a definite metric, and no supple-
mentary conditions but which may look more compli-
cated. This is accomplished by the Dirac-Schwinger
formulation which starts with the Lagrangian density

There are ten equations of motion for the ten compo-
nents F„„,3„; separating out the deGning equations
and constraints, one finds the true equations of motion:

O'Ar = Er, elsE'r = —V"A',

where Ar, E~' are the transverse (i.e. , divergence-free)
vector potential A and the electric field E, respectively.
The scalar potential A' and the longitudinal part of
the vector potential A~ are not completely deGned but
are only related by the requirement that

The transverse vector fields contain only two compo-
nents (instead of three), each of which are linearly



independent. (This is seen most clearly in the momen-
tum representation where the transversality condition
becomes an algebraic constraint. ) In terms of these
the "reduced" Hamiltonian may be written in the form

satisfy the commutation relations:

ds*{-',LEr(x) cioAr(x)+Er(x) Er(x)

—A (x) 7'A (x)g+j(x) Ar(x))

Note the nonlocal interaction corresponding to the
(instantaneous, nonretarded) Coulomb interaction be-
tween the sources. The apparent noncovariance of the
theory is irrelevant and it can be shown that this theory
is relativistically invariant. The explicit representation
of the field operators can be obtained by proceeding
to the momentum representation in which the operators

It is now straightforward to introduce the creation and
destruction operators for "photons" with arbitrary
momentum it and left- or right-circular polarizations.

The theory thus formulated does not contain either
supplementary conditions or an indednite metric; all

the states entering in the formalism are physical states
and all Hermitian operators are observables. However,
this "reduced" theory is formally much more compli-
cated; it is particularly interesting to note that there
is now an instantaneous "action at a distance" which

is consistent with relativistic invariance; and the true
observables of the electromagnetic field, namely, the
transverse fteld operators (and their functionals), are
not "localizable" since transversality is a nonlocal
condition.
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Several simple models, similar to that of Lee, involving indefinite metric are studied in this paper. In
this connection, a dispersion-theoretic treatment is applied to a simple "equal-mass" model. It is shown

that, at least for these models, the scattering amplitude is analytic in the upper-half energy plane provided
time-reversal invariance holds; the rules of the dispersion-theoretic formulation in the case of an inde6nite
metric theory are given. The solution is reinterpreted as the exact solution of a slightly different model,
which can also be obtained by Hamiltonian techniques; further techniques are generalized to include recoil
in a relativistic no-pair model. Certain basic questions of interpretation are discussed in some detail in the
concluding section.

I. INTRODUCTION
" 'N the preceding paper' it. had been suggested that
- - in a truly dynamical theory of quantized fields the
principle of simplicity could be reinstated and a
consistent theory formulated by the formal introduction
of an indefinite metric. The systems discussed in that
section were very simple and the important problem
of interacting particles and the structure of the scatter-
ing amplitudes was not discussed in detail. Nor was it
shown how the interpretive postulate restricting
"physical" states to the subspace spanned by the
eigenstates of the 5 matrix with positive definite
norm could be reconciled with certain intuitive notions
regarding asymptotic bare particle amplitudes, par-

* Supported in part by the U. S. Atomic Energy Commission.
t On leave of absence from the Tata Institute of Fundamental

Research, Bombay, India.'E. C. G. Sudarshan, preceding paper fPhys. Rev. 123, 2183
(1961)j.

ticularly in view of some recent discussions in the
literature' regarding the lack of a consistent physical
interpretation for such theories. This paper attempts
to remedy these shortcomings and, in this sense, is to
be considered as a sequel to the preceding paper. Ke
choose for discussion certain models patterned after a
simple example considered by Lee.' In the course of
this analysis we formulate the rules for applying
dispersion-theoretic techniques to a theory involving
an indefinite metric. We also analyze, in the framework
of this model, the construction of physical particle
variables and physical configuration amplitudes.

In Sec. 2 we develop the dispersion-theoretic
techniques to solve for the scattering amplitude in
theories with an indefinite metric; and these are

'G. Kallen and W. Pauli, Kgl. Danske Videnskab Selskab,
Mat-fys. Medd. BO, No. 7 (1955};G. Barton, Nuovo cimento 17,
864 (1960).

s T. D. Lee, Phys. Rev. 93, 1329 (1934).


