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Integrated Cross Section for a Velocity-Dependent Potential*
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For a possible distinction between a velocity-dependent two-nucleon potential, and a static potential with
an infinite repulsive core, we study their contributions to the integrated cross section (o;,t) for the deuteron
photoeGect. Both potentials considered are central, with square shapes, and have Serber mixtures for the
attractive parts. (They have Wigner character for the repulsive core, and for the velocity-dependent term,
respectively. }These potentials are adjusted to give (1) the observed binding energy of the deuteron, (2) the
same effective range p (—e, —e) = 1.76 fermis; and (3) the same value (260 Mev) at which the '5 phase shift
changes sign. Using sum-rule calculations, in the electric-dipole approximation, we find that 0; t for the static
case is 37.7 Mev-mb, while for the velocity-dependent case it is very nearly the same: namely, 38.8 Mev-mb.

INTRODUCTION

CATTERING measurements on the proton-proton
system show that the '5 phase shift changes sign.

If the two-body potential is assumed static, it should
contain a very strong repulsion at short distance; e.g. ,
the Gammel-Thaler' infinite repulsive core. On the
other hand, a well-behaved potential wouM be easier
to deal with in solving the nuclear many-body
problem. ' This potential needs to be velocity-dependent
to reproduce the '5 phase shift curve. ' ' With a suitable
choice of parameters it can also reproduce the other
singlet-even phase shifts.

Since phase shifts alone have not served to verify
the existence of a static repulsive core, ' it is desirable
to consider properties of the neutron-proton system, '
such as electric dipole transitions in the deuteron
photoeffect. ' Here a static potential of Wigner character
gives a model-independent value for the integrated
cross section; 0; ~=30 Mev-mb. This value is increased
by our velocity-dependent potential, but it is also
increased by the Majorana exchange term in the
Gammel-Thaler static potential. This paper gives an
oversimplified calculation of 0.;„&for velocity-dependent
and static cases.

The first application of a velocity-dependent potential
to find 0-;„& for the deuteron was made by Way' for a

separable potential. Our present numerical results are
not very different from her values.

Our potentials are oversimplified in that we assume
pure central forces, and square-well shapes. Our calcu-
lations shouM. not be compared seriously with the
experiniental value of 0-; t for the deuteron photoe6ect;
it may be significant to compare the calculated values
of 0.;„&. The velocity-dependent and static potentials
are chosen to agree with each other on three other
properties of the neutron-proton system (in triplet-even
states); the binding energy, the energy at which the
calculated '5 phase shift passes through zero, and the
triplet effective range. In this example, treated below,
the two types of potentials give very nearly identical
values for 0-;„t, so that this means of confirming the
existence of the repulsive core proves to be unsuccessful.

CALCULATION

For the deuteron, the dipole oscillator strength' fp

is given by

fp„(M/4'') (——E,„—Ep) (sp„)'.

Here s is the neutron-proton distance; the subscripts
0 and e refer to ground and excited states, respectively.
The summed oscillator strength P fp„, is proportional
to the expectation value in the ground state of the
double-commutator of the Hamiltonian H with the
coordinate s:~ Supported by the National Science Foundation.
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Q „fp„—(M/8A") (L)H——hs j,sj)pp.

The integrated cross section is proportional to the
summed oscillator strength:

(Wo)dW= (47rte'rt/iVc) Q„ fp„
4p

= 120 P fp Mev-mb. (3)

To evaluate the double-commutator in Eq. (2) we
write H as the sum of kinetic energy T and potential
energy V. The double-commutator using T is model-
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TABLE I. Parameters for potentials. '

Velocity-dependent potential
Static potential, with core

Range in 5

b= 2.0
b'=1.71

Depth in Mev

Up=37. 5
U, =47.6

Wave number
inf '

k'=0.836
k"=1.046

Core, or
velocity-dependence

X= —0.25
c=0.24f

a The velocity-dependent potential is given in Eqs. (5) and (9); the static potential is given in Eq. (14). The wave number k', or A:", is given for the
ground state, for the region inside the attractive square well.

ndependent':

—(M/8A') {[[T,sj,sj)oo= s

Following Razavy, 4 we solve the Schrodinger equation
for the ground state in the inside region (r &b) and the
outside region (r) b):

We assume a velocity-dependent potential of the
form used by Razavy' ': ui"+k"ui=0; ui=A sink'r, r(b (10)

8= —VoJi(r){1—x+xl'j'i) —(X/M)p Js(r)p. (5)

That is, the static term of shape Ji(r) contains a fraction
x of the Majorana exchange operator I'~~; the velocity-
dependent term of shape Js(r) is assumed to have
Wigner character. [In Eq. (5), p is the quantum-
mechanical operator —iA grad. )

The term xVoJ, (r)I'~ o—f the static potential
contributes the following to the summed oscillator
strength:

—x(M/8A') Vs{[[Ji(r)P,s],sf) oo

=x (M Uo/6A')(r'J i(r)Pu) oo (6)

The velocity-dependent term contributes

(M/8A') {[[(/M)p Js(r)p, sj,s])«
=-0/4)(J. (r))oo (7)

Combining these results, the integrated cross section
has the value

us'(b) —(1—X)ui'(b) = (X/b) u (b). (12)

These boundary conditions give the following relation
among the three parameters A, k', and b:

(1—X)k' cotk'b+h/b = —y. (13)

The static potential, with infinite repulsive core, is
assumed to be'

QO )

v =q —Vg
0,

t'(C
c &r &b'+c
b'+c (r.

ui" y' —ui 0;——us ——C exp( —yr), r) b

k"=M(Vo —e)/As(1 —X) and y'=Me/A'. (1l)

The wave functions ui(r) and u, (r) are continuous at
r = b; but their first derivatives [i.e., left-hand derivative
ui'(b) and right-hand derivative us'(b)$ are not equal:

(4~scsA/Mc) {i+ (xM V,/6A2)(rs J,(r)Pell)

—( /4)(Js(r))oo) (8)

Vfe obtain the usual transcendental relation

k" cotk"b'= —7. (15)
We see that 0-;„~ is increased for negative values of A. .

We shall apply Eq. (8) to the case of a well-behaved
velocity-dependent central potential, and also to a
static square well with an infinite repulsive core. For
each potential we adjust three parameters to fit the
following data on the neutron-proto' system:

(a) The binding energy e of the deuteron is 2.226
AJ. J.ev.

(h) The 'S phase shift goes through zero at 260 ll'Iev.
(This value is chosen between 200 and 300 jVfev to give
qualitative agreement with the known value for the '5
phase shift. )

(c) The effective range io( —e, —e) =1.76 fermis.

We assume the velocity-dependent potential of Eq.
(5), with square shapes of range b:

r(b
Jl(r)=Ji(r)= s,

~.'0, r&b.

Here k'"= (M/A') (V8—e).
The '5 phase shift 6 for the velocity-dependent.

potential is given by'

tan(kb+8) =k/[(1 —X)k' cotk'b+X/b j. (16)

Here k is the wave number at large distances, and k'
is the wave number for r&b [Use Eq. (.11), replacing
—~ by E, the energy available in the center-of-mass
system. ) For the static potential e„we have phase
shift 6, :

tan (kb'+kc+6, ) = (k/k") tank "b'.

Here k" is the wave-number in the region c &r(b'+c.
The eRective range p( —e, —e) for the velocity-

dependent potential is found" using the wave function
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of Eq. (10). We use C=1, and A = csck'b exp( —
q b).

=p—' —exp( —2yb) (y '+b csc'k'b

—k'-' cotk'b) (.18)

Inside the parentheses, the term unity comes from the
kinetic energy operator. It is model-independent, as
shown in Eq. (4). The term 0.210 comes from the
Serber exchange mixture (@=st) chosen for the at-
tractive static potential. The last term 0.083 comes
from the explicit velocity dependence.

The squared, normalized wave function for the static
potential is plotted as a dashed line in Fig. 1. Since the
two potentials v and v, give the same binding energy
and effective range, the wave functions are identical
outside the range of the force (b&r or b'+c&r). We
see from the figure that the squared wave functions
are similar for r=I f, though of course they disagree
inside the st.atic repulsive core. The wave function for
the static potential is used in Eq. (8), assuming a
Serber mixture for the attractive term, and putting
A. =O. We find

o;„i——30(1+0.257) =37.7 KIev-mb. (21)

DISCUSSION

Equations (20) and (21) show that our two choices
of (grossly oversimplified) potentials give very nearly
the same values for the integrated cro.os section for the

l'"or the static veil with repulsive core, the eR'ective

range p,. (—c, —e) is given by

p. (—e, —e) =y '—exp( —2yb' —2qc)

X (y '+b' csc'k"b' —k" ' cotk"b'). (19)

For the velocity-dependent potential of Eqs. (5) and
(9) we have adjusted the parameters b, Vo, and )i using
Eqs. (13), (16), and (18). For the static potential of
Eq. (14) we have adjusted the parameters b', Vs, and.
c using Eqs. (15), (17), and (19). (The values for b('S)
at 260 Mev are —0.02 and +0.03 rad for the velocity-
dependent and. static cases, respectively. ) The values
obtained for these parameters (and also for k' and. k")
are given in Table I.

The normalized wave function for the velocity-
dependent potential is found using Eq. (10), with
C'=2y/$1 —yp( —e, —e)]. The coefficient A is deter-
mined from the continuity of the wave function at
r= b. The squared normalized wave function is plotted
as a solid line in Fig. 1 and is substituted in Eq. (8)
to calculate the integrated cross section. (The arrow
shows the edge of the well, where the wave function
has a discontinuity in its derivative. ) We find

o;„,=30(1+0.210+0.083)=38.8 Kfev-mb. (20)

I'IG. 1.. The solid line gives the squared radial wave function
(Eq. 10) in f ' for the velocity-dependent potential of Eqs. (5)
and (9) verses r in f. The arrow shows the edge of the square weil,
where there is a discontinuity in the slope of the wave function.
The dashed line gives the squared wave function for the static
potential, with repulsive core, of Eq. (14).The two wave functions
are identical for r &2.0 f.

deuteron photoe8ect. We note that our present calcu-
lations of o.;„~ are, within 3 iVIev-mb, in agreement both
with earlier calcula, tions" and with an experimental
value' for the cross section integrated to the threshold
for photoproduction of mesons. These agreements may
be accidental. The conclusion which we can make from
our present preliminary study is that the integrated
cross section is insensitive to the presence of either a
velocity-dependent term or a static core in the potential.
The possible values of o-; ~ are confined to the region
30&o;„~&30/LI—qp( —e, —e))=50 Mev-mb. Any ex-
change force or velocity dependence of reasonable signs
raise the value of o-; ~ above the model-independent
value of 30 Mev-mb. The approximate upper limit of
50 Mev-mb comes from the effective-range formula
for the electric dipole deuteron photoeffect. (The
effective-range formula for electric dipole transitions
is valid at low energies, " and provides a plausible but
not rigorous upper limit for. the cross section at high
energies. ) For square-well shapes, and a Serber mixture,
a static well-behaved potential gives 36 Mev-tnb, a
static potential with infinite core gives 37.7 Mev-mb,
and a velocity-dependent well-behaved potential gives
38.8 Mev-mb. Thus, our three values all fall in -', of the
allowed region.
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