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30% contribution to the fission cross section from this
kind of reaction at 95 and 124 Mev. This value has to
be regarded as an upper limit due to the possible increase
of Ep wltll I.

The fission cross sections observed agree well with
calculated cross sections for compound-nucleus for-
mation based on the square-well nuclear potential with
radius parameter rp=1.5&(10 " cm. From our obser-
vations, it would appear that the calculated cross
sections would be more aptly termed the "interaction
cross section for reactions leading to deposition of
excitation energies of more than 5 Mev. "

It is evident that only charged-particle-fission-
fragment-coincidence experiments can give a clearer

picture of the reactions occurring prior to the fission

pl ocess.
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Cross sections for (d,p) and (d, t) reactions in units of the single-particle cross sections (the spectroscopic
factors) are calculated for spherical nuclei. It is assumed that the protons fill a closed shell and that only
neutrons in an unfilled shell interact with each other through the pairing and quadrupole-quadrupole
interactions. First the pairing interactions problem is solved by introducing quasi-particles according to
Belyaev. Next the quadrupole-quadrupole interaction is diagonalized, taking into accout two quasi-particle
states for the first excited state of even-even nuclei. Using these wave functions the spectroscopic factors
are obtained in simple form, and are evaluated numerically for the case of the Sn isotopes. Comparison is
made with experiments for the transitions to the ground states of even-even and even-odd isotopes as
well as to the vibrational states of even-even isotopes. Agreement in both cases is fairly good.

l. INTRODUCTION

l 'HE importance of deuteron stripping and pickup
reactions as a tool of nuclear spectroscopy has

been emphasized by many authors. These reactions
provide rather direct information on the wave functions
of low-lying nuclear states. Macfarlane and French'
gave the most elaborate and complete reviews of these
reactions, mainly based on the shell model, while
Satchler' summarized studies of the stripping reactions
based on the collective model. For deformed nuclei with
rotational spectra Satchler gave a straightforward
prescription for analysis of experimental data and work
has been published along this line. ' However for the
vibrational spectra further detailed calculations like
the intermediate coupling theory may be necessary to
analyze experimental data.

*This work was supported by the Once of Naval Research.
t' On leave of absence from Institute for Nuclear Study, Uni-

versity of Tokyo, Tokyo, Japan.' M. H, Macfarlane and J. B. French, Revs. Modern Phys. 32,
567 (1960).

2 G. R. Satchler, Ann. Phys. 3, 275 (1958).
3A. E. Litherland, H. McManus, E. B. Paul, D. A. Bromley,

and H. E, Gove, Can. J. Phys. 36, 378 (1958).

Recently another aspect of nuclear structure was
revealed by the Copenhagen group' in analogy with
superconductivity in solid state physics. The pairing
force is responsible for this new aspect of structure and
the existence of an energy gap in the intrinsic spectra
of deformed even-even nuclei was the first experimental
support for it. The powerful mathematical method of
superconductivity' was applied in the nuclear case by
Belyaev' and further detailed comparisons with experi-
ments have been carried out successfully by Kisslinger
and Sorensen. ' The latter authors treated single closed-
shell nuclei and calculated the energy spectra, electro-
magnetic moments, and transition rates. To study the

4A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 11Q,
936 (1958).' J. Bardeen, L. N. Cooper, and J. R. Schrie8er, Phys. Rev.
108, 1175 (1957). N. N. Bogoliubov, Nuovo cimento 7, 794
(1958). J. G. Valatin, ibid. 7, 843 (1958). N. N. Bogoliubov,
V. V. Tolmachev, and D. V. Shirko, A gem Method in the Theory
of Superconductivity (Consultants Bureau, New York, 1959).

'S. T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 31, No. 11 (1959).

L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 32, No. 9 (1960).
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where
s~=Zj &kist, (1.3)

In the last equation, A is the mass number of the
parent nucleus and 0'g~ is its wave function, J and M
being its spin and the Z component. 4 J st(j,Jo) is given
by

C'JM( j,Jo) = P (j ~Jo~o
~
J~)g; +~o»o, (1.5)

where (jmJ~o
~
J3f) is the Clebsch-Gordan coefficient,

is the spin-angle part of the captured or stripped

s D. R. Inglis, Phys. Rev. 96, 1059 {1954);97, 701 {1955).' M. Baranger, Phys. Rev. 120, 957 (1960). For similar works
see references in Baranger's paper.

'0A. B. Migdal, J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 249
{1959);Ltranslation Soviet Phys. —JETP 10, 176 {1960)j. J. J.
Gri%n and M. Rich, Phys. Rev. 118, 850 (1960)."B.L. Cohen and R. E. Price, Phys. Rev. 118, 1582 (1960).

vibrational states they assumed the cranking model. '
These states also have been studied by Baranger and
other people9 using more refined methods.

The pairing forces cause a strong configuration
mixing among the nucleon states in the unfilled shell,
which is difficult to treat by usual shell model calcu-
lations. This configuration mixing gives rise to the
energy gap, and to secondary eGects, like the deviation
of the moment of inertia from the rigid-body value. "
However its effects may be seen directly by studying
the stripping and pickup process. In fact Cohen and
Price" have made experiments with (d,p) and (d, t)
reactions in a wide range of atomic numbers, and found
many facts which seem difhcult to explain by the simple
shell model. This paper was inspired by their work and
will give theoretical considerations of the (d,p) and
(d, t) reactions based on the superconductive nature of
nuclei. For the vibrational state the Tamm-Dancoff
method wiH be applied and rather simple and explicit
formulas for the reduced width will be presented.

The (d, p) and (d, t) cross sections may be expressed as'

dos, ,/dQ=Rs, .p)S(gs, .(l,Q,e), x=P, t (1.1)

where E&, is the statistical factor and is given by

Rs,y= (2Jy+ 1)/(2J;+ 1), Rd, (= 1. (1.2)

J, and Jy are the spin of the target and residual nucleus
respectively. The second factor in Eq. (1.1), S&, is
called the spectroscopic factor, which gives the proba-
bility of the appearance of the single particle state in
the parent nuclear wave function. The last factor is
the single-particle cross section and is considered as a
function of orbital angular momentum / of the stripped
or captured neutron, the Q value, and the angle of the
outgoing particle 0.

The spectroscopic factor S~ may be expressed as a
sum of overlap integrals between the parent nucleus
and a free state composed of the da,ughter nucleus and
a captured or stripped neutron with angular momentum
j.That is,

neutron, and +JOM{) is the wave function of the daughter
nucleus with spin Jo and Z component Mo. This
spectroscopic factor corresponds also to the reduced
width in units of the single-particle reduced width.

As for the single-particle cross section @(l,Q,H), the
dependences on l, Q, and 0 are known empirically. "
Therefore the knowledge of the spectroscopic factor is
sufficient to discuss the cross section. The spectroscopic
factor may be calculated easily once the wave functions
are given. In Sec. 2 the necessary formulas for the
nuclear wave function based on the pairing interaction
model will be summarized. Then the spectroscopic
factor will be calculated in Sec. 3 for the ground states
or single-particle states. Section 4 will be devoted to
the construction of the wave function of the vibrational
states and in the following section (Sec. 5), these wave
functions will be applied to the calculation of the
spectroscopic factor for vibrational states. These results
will be compared with experiments in Sec. 6 and
discussions will be presented.

2. PAIRING INTERACTION

In this section the nuclear model based on the pairing
interaction will be summarized in order to give necessary
wave functions for the calculation of the spectroscopic
factor. AVe follow the work of Belyaev' but use the
Condon and Shortley" phase for the wave function.
It is also assumed that only one kind of nucleons
(neutrons) are active while the other kind of nucleons
(protons) form a closed shell and will not be taken into
account in the calculation. The vacuum state ~0) will

be understood to stand for the state where all states in
filled shells are occupied and none of the unfilled shell
is occupied. The Hamiltonian for the pairing interaction
then is given by

where the first term of the right-hand side represents
the sum of the single-particle energies (of the shell
model states) while the second term represents the
pairing interactions among nucleons in the unfilled
shell. a, ~ and a; are the creation and annihilation
operators of the shell model state with spin j and Z
component m. Also e; is the single-particle energy of
the shell model state j, and G is the strength of the
pairing interaction. To specify a shell model state,
quantum numbers other than j and m will be necessary,
but they will be suppressed unless they are needed.

Following the procedure of Bogoliubov and Valatin'
the operators a, ~ and c, now will be transformed
into new operators by a canonical transformation. As
this transformation mixes states with different mass

'~ E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectrc (Cambridge University Press, New York, 1951).
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number, it is necessary to introduce the auxiliary
Hamiltonian

particle and the wave function is given by

O'JM +0. (2.13)
Hp' ——Hp —X Q aj„ta;, (2 2)

The number of nucleons is obtained as

where ) is the chemical potential, serving as a Lagrange
multiplier to take into account the constraint that for
the solution 0' the average occupation number equals
the number e of nucleons in the unfilled shell;

(+I+ aj„taj„I+)=N. The Bogoliubov and Valatin'
transformation is given by

jJ~-= Uj~j-+ V~( )'=~~=—",

where U, and Vj satisfy

UjP+VjP=1.

(2.3)

(2 4)

The coefficients U, and Vj are chosen so that the
new Hamiltonian in terms of nj and 0., will not
contain terms like o,~n~ and no. . Therefore the following
equations are obtained

where

2j+116
~ [('—x)py~']-:

6=-',G Q(2j+1)U, v, ,

(2 3)

(2.6)

and

U 2
2 1

[(p,—x)'+a']-'*
(2.7)

V,'=-,' 1—
[(.,—z)'+~']-:

(2.8)

E = [(p —X)'+LB]-'* (2.10)

In this new representation the nuclear state is specified

by the various occupation numbers of the new particle
states which are called the quasi-particle states. The
last term of (2.9) will be neglected. The quasi-particle
states are the elementary excitations with respect to a
new vacuum, which is the ground state of an even-even
nucleus. In terms of the old representation, the wave
function of the new vacuum is expressed as

+p= II (U,+v, (—)' "~,-"~,--') I0). (211)
j,myo

It is easily shown that

~jm% 0=0. (2.12)

The odd nucleus then is the state with one quasi-

The transformed Hamiltonian takes the form

Hp =const+ + EjQ'jm~R jm

+terms containing four n's, (2.9)

where the second term represents the transformed
single-particle energy, and

2j+1 ej—X
m=P ——1—

[(.,—z)p+~']-:

(2.14)
i=1 [(p g)2++2]~-

where the first term represents the contribution from
the new vacuum and the second term is the contribution
from the quasi-particles.

Equations (2.5) and (2.14) are the basic equations,
and 6 and X will be obtained if ej, G, and e are given,
6 is the lowest energy of the quasi-particle as seen from
(2.10). After 6 and X are derived U, and V; may be
calculated from (2.7) and (2.8) and accordingly the
energy and the wave function will be obtained. Numer-
ical values of 6 and X are tabulated by Kisslinger and
Sorensen' for the single closed shell nuclei.

It is noted that the values of U; and Vj differ from
one nucleus to another and change smoothly with
increasing mass number. In the next section it will
become necessary to treat the even-even nucleus with
nucleon number e and the even-odd nucleus with
nucleon number v~1 in calculating the overlap integral.
If the former wave function is denoted by 40, in which
U, and Vj are adjusted to give the average nucleon
number e,' then the latter wave function given by
Eq. (2.13) n~pjt% p will no longer correspond to the state
with a nucleon number m~1. Instead for this nucleus
Eq. (2.14) once again gives the average nucleon number
e, because the contribution from the one quasi-particle
JM is very small if the odd nucleus is in the ground or
low excited state, where eJ=X. In order to get the
odd-nuclear wave function with nucleon number m~1,
it is necessary to use slightly diferent U, ' and V, '

from those used in the even-even nucleus. Let that
vacuum state be denoted by 4'0' which gives the
average nucleon number m~1, and those quasi-particle
operators by o, 't and nj ' which are obtained by
replacing Uj and V, by U, ' and V . Then the vacuum
state with prime may be expressed in terms of the
original vacuum state and its operators as

~,'= & «,V,'+U, U, ')[1—(U, V,
' —U, V,)

j,m&0

x (v, v, '+ U, U, ')-'( —)™n,„&n,„&]e,. (2.16)

Neglecting the higher order terms, the last equation is
expressed approximately

AUj
+p' 1+-,' P (—)~"nj tn, „t ep, (2.17)

;,m
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number of nucleons occupying the orbit j, that is
(2Jo+1)Vzo' Lsee (2.14)].It is noted that the spectro-
scopic factor is described by U and V of the even-even
nucleus irrespective of which nucleus actually is the
parent. In our treatment the state of the odd nucleus
has been described as being the ground state, but in
fact it may be any state of that nucleus. For any single
quasi-particle state the formulas (3.4) and (3.5) should
be valid. These two facts make it possible to obtain all
the values of Uj and Vj for the even-even nucleus from
the set of experimental cross section of (d,p) and (d, t)
reaction for single quasi-particle states. "

Here we have to remember that the number of
nucleons has not been taken into account exactly, due
to the introduction of the Bogoliubov and Valatin'
transformation. It is expected that the error in the
nucleon number e may be proportional to gm, and our
results also may contain some errors. To test this it is
convenient to compare our results with the shell model
results in a simple case. I.et us assume that the con-
figuration is pure j", then the equations (2.5)—(2.8) and
(2.14) become very simple and the following solution
may be obtained easily

where
SUj= U, '—Uj. (2.18)

For the one quasi-particle state it is easy to prove that

(2.19)1$ l~ t0'jm +0—0'jm +0 ~

where higher order terms are neglected.

3. GROUND-STATE SPECTROSCOPIC FACTOR

The spectroscopic factor is expressed in the second
quantization form as

s, =(e~~ I@'~~(j,Jo))' (3.1)

where +J~ is the wave function of the parent nucleus
with spin J and Z component M, while

C'J~(j,Jo)= P (jteJo~oi J~)Gj t+~o~o (3 2)
m, Mp

In the last equation O'J'pMp is the wave function of the
daughter nucleus with spin Jp and Z component Mp,
and j and m are the spin and Z component of the
captured or stripped nucleon.

Ke first consider the case of the odd parent nucleus.
If the ground state of the even-even nucleus is denoted
by 4, and the parent even-odd nucleus by nJ~' 4p',
then the spectroscopic factor is expressed as

o—X=G(2j+1—2e)/4, B,=Gtn(2j+1 —n)$'*/2, (3.6)

(&zM t+o i&, t+o) ~

where e is the single particle energy of the orbit j.
From (2.7) and (2.8) we obtain

3.3

By using (2.17), (2.19), and (2.3), the last equation
gives the result

e
g2

2j+1
Ã

V.2—
2j+1

(3.7)

S,=bJ)UJ', (3.4)

where U J' is the probability of the orbit with spin J in
the even-even nucleus being empty. The correction
factor given by (2.17) plays no role in this expression,
in which Uj and Vj apply to the daughter nucleus, but
would if the Uj and V, of the parent nucleus were
used. If we use the Uj and Vj for the parent nucleus,
then we have

S,=(e,~iso
~

a;„&eo ) S„(V,+ZV,), —

which agrees with (3.4) because of the correction term
AU+. Equation (3.4) may be given the interpretation
that one nucleon is captured by the even-even nucleus
into the orbit j and that the probability is proportional
to the probability of the orbit j being empty.

Next let us consider the case of an even-even parent
nucleus. If the wave function of the parent nucleus is
denoted by +p and that of the odd nucleus by Q.zp~p't+p',
then the spectroscopic factor is obtained

If these are put into (3.4) and (3.5), then

Sj=bjJ 1———— for odd parent nucleus,
2j+1. (3.8)

=SjJps for even-even parent nucleus,

where e is the number of nucleons j in the even-even
nuclei. These results agree exactly with those obtained
from the usual shell model calculation. ' From this we
may expect that our results should be very accurate
despite the inaccurate treatment of nucleon number.

4. VIBRATIONAL STATE

In considering the vibrational state of even-even
nuclei, the quadrupole-quadrupole interaction, '4

II@ o —-', x p (———)&(ji'm, 'i V,„iij,nz, )
P jl jl j2 j2

5,=8zog(2Jo+1) Vzo', (3 5) )(,(jo Bio
i

Vo &'vjioPEo)Gji'mi' Gjo'tno' Gjomocjim]& (4.1)

where VJ-p' is again the probability of the orbit with
spin Jp in the even-even nucleus being occupied. The
interpretation is similar to the previous case; one
nucleon at the level j is stripped from the even-even
nucleus and the probability is proportional to the

is taken into account in addition to the pairing inter-
action. In the last equation, x is the coupling constant

"B.L. Cohen and R. E. Price, Phys. Rev. 121, 1441 (1961).
'4 J. P. Elliott, Proc. Roy. Soc. (London), A245, 128, 562

(1958).
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Lthis corresponds to (/2/m4oo)2X in the Kisslinger and
Sorensen paper') and F2„are the second order spherical
harmonics. Harmonic oscillator single-particle wave
functions are assumed in order to make the calculation
easy. The dimensionless oscillator potential v is given by

V = (2224OO/5) r', (4.2)

where r is the radial coordinate of the single particle,
m is the mass of the nucleon, and cop is the angular
frequency of the harmonic oscillator.

After applying the Bogoliubov and Valatin transfor-
mation' (2.3), the Q

—
Q interaction is expressed in a

normal form:

a, ,= —(*/10) 2 U, 'll I 2vll j2) U,

'llew'»ll

j,)
2121 22 j2

Xl 424j2 j224jl jl Q ( )"»(—j2'j 22 /4)»—(jlj 12/4)

+24j2~j2~j 1 jl Q( ) A (j2 $22 /4)A (Jl $12/4)

+224j2'j22/jl'jl Q A 1(j2 j22/4)A (jl' j12/4)

+vj 2'j22/jr'jl g A'(j2j 22/4)A (jl' j12/4)

+4gj2 ~j224jl J 1 g (—)"A (j2' j22/4)A (jl' j12—
/4)

—&(—)" j"vj2 j2vjl jl /( —)"lit'(j2'j2jl'jl, »)

A(jlj2)1/)= 2 (j12221j22222l&/)~j2m2&jlml,

(jlj2)1/4) = P (—)"+"'(j12221j22222
l
)L/4)

(4.4)

X (41jlml 4rj2 —m2 —28jlj25ml, —m2).1

The first two lines of (4.4) represent a pair of quasi-
particle creation and annihilation operators, respec-
tively, and the last line represents the quadrupole
transition operator (for )1=2). Also Njlj2 and vjU2 are
the following combinations of U; and V;:

24Jlj2 +jll j2+ I jlU j2) vjl j2 U jr&j2—I 21/ i2 (4 &)

In Eq. (4.3), (j'll Y2vll j) is the reduced matrix element
of the nondimensional quadrupole transition operator
and is given by

P '/'j'llI'»llew j)=,(—)" jCS(2j'+&)j'*
(42r) *'

1+( ) 1+1'

x (j'220l j2) —(x'l'l v
l lv/), (4.6)

XA (jl' j2'vA)A (jl j2vK)), (4.3)
where

A Ulj2~/4) = 2 (jl222lj22222l)1/4)4rjlml 4rj2m2,

TABLE I. The radial integrals (NT
~

v
~
N/)

i7
X&2
X&2
E

X+2

l
l

l~2
l&2
l~2

(N'/'
~

v
~
N/)

%+-,'
——2'L(N+t+2+1) (N —/+1%1)g'

-,'L (N+t+1a2) (N+t+3a 2)g4
—

L (N+/+2&1) (N —/+1+1)g&
-'2L (N —/W2) (N —/+2W2)g&

where S is the principal quantum number of the
harmonic oscillator wave function, such that the energy
is ficoo(%+2). The radial integrals (1VVlvlE/) are given
in Table I.

The transformed Q—Q interaction has terms like rrt41",

4ru, and rrt42 which were not included in Eq. (4.3).
However, these terms need not be carried because they
should have been eliminated together with correspond-
ing terms in the pairing interaction by choosing an
appropriate transformation (2.3), or should have been
included in the single quasi-particle energy given in
(2.9). Constant terms were also neglected, because we
have no interest in them.

The problem of the pairing plus the Q
—Q interaction

may be solved in various approximations and is known
to give rise to the vibrational spectra in some circum-
stances. Kisslinger and Sorensen' used the cranking
model' under the adiabatic assumption, but their wave
function is not convenient for our purpose. Baranger'
used the method of the linearized equation of motion,
which is believed to be the most refined treatment so
far obtained, but with this method it is difhcult to give
the explicit form of the wave function. The Tamm-
Dancoff approximation, which is a further approxi-
mation to the latter method, ' gives the explicit wave
function. We will use this approximation. The wave
function for the excited state with spin 2 of the even-
even nucleus is assumed to be a superposition of two
quasi-particle states with resultant angular momentum
2, whose coefficients are chosen so that the Hamiltonian
is diagonalized. The first excited state wave function
is written as

where
+2M Q222 +Op

Q2,lent ——Q fjlj2At(jlj22M).
9122

(4 7)

(4.8)

X24j2'j4'» Oj4 Z A 1(j 2j'4'2/ )A (jOj 42/ )'

X p fj 1j2A &(jlj22M)]%'O (4.9)
Jl 22

Then the Schrodinger equation is expressed as

0= (H Aal)@224 LQ fjrj—2 (Ejl+Ej——2—A4O)A 1(jlg22M)
3122

—(*/20) g (j,

'llew',

ill j,') U, ill'»ll j4)
iai4i3 i4
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where Ace is the excitation energy of the state. The
term in (4.3) with the Racah coeflicient was neglected
as it is unimportant and makes the calculation complex. '
Using the following relation:

follows. The second excited state may be described as

4 JM&" =—p (2p'2p
I JM)Q2„'tg2„Ão, (4.19)

V2 is'

~ (ji' j2'&'~')~'( jij2liP)+0 ~k'X~ p(41 il'k2 J2

+( )... ,, „,
& & )+ (4 10)

both because this wave function satisfies the following
approximate Schrodinger equation

which is easily verified, the equation becomes
(4.20)

f~»2(Eii+Eio ~) (&/10) Uill I'2oll j2)»»2 which is easily verified by using (4.18), and because it
)& g f,i;2 (ji'll I'2@IIj2')»i &2

——0. (4 11) satisfies the normalization equation
21 32

The solution is easily obtained as

(jill 1'2~Ii j2)»»2

Ej i+Ego AM

(4.12)

(jill I'22'll j2)'2ii»2'
1= (x/10) P

Eg i+Eg 2 Aoi''—(4.13)

from which Ace may be determined. The normalization
of the wave function requires

where C is a constant to be determined later. The eigen-
value equation is

(4.21)

Therefore it is seen that the choice of the wave functions
(4.7) and (4.8) give rise in fact to the vibrational
spectra if the commutation relations (4.17) and (4.18)
are satisfied in a good approximation.

When the second-excited vibrational state of an
even-even nucleus is considered in a stripping calcu-
lation, an improved wave function for the odd nucleus
becomes necessary. The three quasi-particle states
should be included in addition to the one quasi-particle
state. The simplest way to get the improved wave
function is to take the Q

—
Q force as a perturbation

and to make a first order calculation. The result is
shown as

(~.le..e..'l~.&=~...

from which we obtain

(4.14)
@+or——[nzort+P C, P(2p j222I JM)go„tn, t]+o, (4.22)

where
~ ~ 2 1

2122 g ~

jl 22

(4 15)

1 (jill I'2~II j2)»»2
2122

v2 Eii+Eio Aoi—

Jl 22

(ji'll 1'»ll j2')Nii'i2' '

Eii+Ei'2 Aoo—(4.16)

The operators Qi„t and Q&,„satisfy the following
approximate boson commutation relations

[Q& 'i '~Q&w j
[e'. ,Q..j=[e'.',Q..'j=0, (4.17)

The constant C in (4.12) is determined by (4.15), and
we obtain

C=- ,Ulli' I&)
[5(2J+1)g'

X p (jill &2oll j2)»„2j,»2/(Eg —E,—A~). (4.23)
$122

5. SPECTROSCOPIC FACTOR FOR
VIBRATIONAL STATES

We are now ready to calculate the spectroscopic
factor for the vibrational states using the wave functions
that were obtained in the last section. Let us begin
with the first vibrational state. First the parent nucleus
is assumed to be even-odd, for which the notations
without prime will be used. The notations with prime
will be used for the even-even daughter nucleus. Then
the spectroscopic factor (3.1) may be expressed by
using (3.2), (4.7), and (4.23) as

whose vacuum expectation values are exact, and which &f t. ~ ~ f f 'f I i

are expected to be approximately valid for the case of a
small number of quasi-particles. From the Schrodinger
equation (4.9) we obtain &&I Q ( j2&22~oo&l~)( U, n,

I
mMp

IIQ „'+~A~Q „'%„g,„tH+ 0, +V, (—)
—"n, „)Qzoiio'%o')', (5.l)

from which the approximate commutation relation,

[Hg„t) A Q„t,
where JM and JOMO are the spin and its Z component

(4.18) for the parent and daughter nucleus, respectively.
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Using the following relation:

A"V ii o2/ )+o'=A'(i -i7 o2/ )+o', (5.2)

which may be proved easily, Eq. (5.1) is simplified as

t 2Jo+1) l

I
I ~fi~' C~—U/,

& 2J+1 ) (5.3)

where U, and V, are referred to the even-odd nucleus
while f,q' is referred to the even-even nucleus. In
obtaining the first term in the absolute square of the
last equation, Eq. (2.17) was utilized, but the second
term is calculated neglecting the difference between O'Q

and 0'p .
The treatment of the case of the even-even parent

nucleus is similar to the previous case. Only the result
is presented:

/
2Jo+11 *

5' 2U f' o+I'IC V
( 2J+1)

where V; and V; are referred to the even-odd nucleus
again and j;q' is referred to the even-even nucleus.
J and Jp are spin of the parent and daughter nuclei,
respectively, just as in the previous case.

Next the second-excited state is considered. The wave
function (4.19) is used instead of (4.7) which was used in
the previous cases, and the commutationrelation (4.17) is
fully utilized to simplify the expression. The calculation
is not so much different from the previous case, so the
results only will be presented. If the parent nucleus is
even-odd, the spectroscopic factor is given by

S;=4o(2Jo+1)&/o~&C/If (2j'Joj; J2)f//'~', (55)

In the above two equations U'; and V; are referred to
the odd nucleus and f, ,' is referred to the even-even
nucleus. J and Jp are the spin of the parent and the
daughter nucleus, respectively. The correction factor
for the di6'erence between kp and 0'p is omitted. It
should be mentioned that the results (5.5) and (5.6)
are only given in crude approximation as the approxi-
mate commutation relations (4.18) were used, and the
correction term given by (2.17) is omitted. The wave
function (4.19) itself is also approximate because the
wave functions of the second-excited states with 2 and
0 may be expected to be mixed with the first-excited
state and the ground state, respectively, even if the
number of the quasi-particles is restricted to 4. It may
be very interesting to study the second- or higher-
excited states of even-even nuclei through the stripping
and pickup process by using improved wave functions.

while if the parent nucleus is even-even, then

5;=40(2Jo+1)Ui'~Q C; W(2j'J j; Jo2) fi'i ~'. (5 6)

/t/dp(l Q 8) =F„(l8)A, Po&(l Q8) =F&(l 8)A @, (6.1)

where F,(1,8) and F,(l,8) are functions of angle and
angular momentum transfer, and at a certain angle
near 30', the dependence on / was found to be

F,(1,8)/F, (1+1,8) 2. (6 2)

In Eq. (6.1), A is a constant and its value is around
1.18. Q is the Q value of the reaction, measured in Mev.

The spectroscopic factor may be calculated using the
results of the preceding sections. The parameters e, , P,
and 6 are adopted from Kisslinger and Sorensen, 7 from
which U, and V, are calculated. For the vibrational
state, the strength of the Q

—
Q interaction x is fixed by

(4.13) inserting the experimental value of the /io~ for
the even-even nucleus. Then the coefficient C; for the
three quasi-particle state in the odd nucleus wave
function is obtained from (4.23). Then formulas (5.3)—
(5.6) give the spectroscopic factors for the vibrational
state.

The theoretical and experimentaV' cross-section
ratios for the ground state transitions are listed in
Table II. The ratio is taken of the reaction with odd
target nucleus to that with even target nucleus. The
agreement is fairly good considering the experimental
errors and the theoretical uncertainty concerning the
single particle energy spectra e;." Here it may be
instructive to present in contrast the interpretation by
the simple shell model" The transitions Sn"'(d p)Sn'"'
and Sn""(d,p)Sn"' are considered as (hii/o)'si/o ~
(hi i/o) arid (hii/o) + (hii/o) si/o respectively. The
former transition is forbidden, so the ratios of these
two rea, ctions should be zero. The case of Sn'"(d, p) is
the same. On the other hand for the (d, t) reaction,
Sn"'(d, t)Sn'" is forbidden and the ratio listed in the
table should be in6nite. But these do not agree with
experiment. In our theory the pairing interaction is taken
into account and because of the strong configuration
mixing resulting from the pairing interaction, transi-
tions like Sn"'(/E, p)Sn"' no longer are forbidden.

For the first-excited state the strength of the Q—
Q

interaction x is calculated as explained before and its
values are 0.129, 0.125, and 0.127 Mev for Sn"' Sn"'
and Sn"', respectively. The calculated results are given
in Table III together with the experimental data. "
The agreement is not bad. It is noted that the correction

0. DISCUSSIONS AND COMPARISON
WITH EXPERIMENTS

In this section the theoretical predictions for the
reactions of Sn isotopes will be compared with the
experimental results of Cohen and Price." Later the
validity of the approximations involved in the present
theory will be discussed. The cross section is given by
(1.1), in which the single-particle cross section P(l, Q,8)
is considered first. Cohen and Price'-' obtained the
following empirical rule for P(l, Q,8) from experimental
data of known reactions:
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TABLE II. The ratio of the ground-state cross sections,
(even-odd —+ even-even)/(even-even ~ even-odd).

TABLE III. The ratio of the first excited vibrational state cross
section to the ground-state cross section.

Transition Theoretical Experimental" Transition Theoretical Experimental"

Sn'" (d, p)/Sn"' (d,p)
Sn" (d p)/Sn" (d p)
Sn" (d, t)/Sn"'{d, t)
Sn119 (d t)/Sn118 (d t)

0.41
0.51
0.83
0.63

0.27
0,27
0.76
0.67

Snll7(d p)
Sn119(d p)
Sn117{d t)
Sn'" {d,t)

0.33
0.14
0.24
0.36

0.13
0.13
0.26
0.26

(jill Y»ll j~)'»» P(Eii+Ei~)'
1=—P

5 (E,i+Er2)' (Aoi)'—(6 3)

term with C, in (5.3) and (5.4) is not important and
its efkct to the spectroscopic factor is less than 10%
in the case of Sn. The orbital angular momentum t' of
the captured or stripped neutron is fixed uniquely by
the selection rule in the case of Sn isotopes because
the spin of the odd isotopes is -', . However in the general
case, many values of t are allowed and the theory may
predict each contribution.

As we used many approximations in our calculation,
it may be important to discuss their validity. The
effect of the inaccurate treatment of the nucleon
number was already considered in Sec. 3. In the
following discussion approximations concerning the
vibrational state will be examined.

First of all we used the Tamm-Dancoff method in
obtaining the wave function of the vibrational state.
However it is known that the method of linearized
equations of motion is superior to the present method. '
One reason why we did not use the better approximation
is that a similar approximation has not yet become
available for the odd nucleus and therefore the improve-
ment only of the wave function of the even-even
nucleus has little meaning. But it is interesting to
compare these two approximations with each other and
with other approximations.

The method of linearized equations of motion gives
the following eigenvalue equation9

trial-wave function is constructed by erst solving the
deformed single-particle potential problem,

H~= He PAoig—, v, Ygp(g, y,), (6.5)

+20 Q fi»2At(jlj220)4'0,
21 22

(6.7)

where f&»'2 is slig'htly different from that for the
Tamm-Dancoff method, namely

(jill Y»ll j~)»»~
2122

Eii+K2'
(6.8)

The excitation energy is obtained as the expectation
value of the original Hamiltonian H= FFe'+H@ @,

where Ho represents the spherical, independent quasi-
particle Hamiltonian and the last term represents the
deformed part of the independent-particle potential.
P is the deformation parameter and r;, 9,, and p, are
the polar coordinates of the ith nucleon. v, is given by
(4.2) with r replaced by r, The .solution of (6.5) is
obtained as a function of P and denoted by %(P). Then
the wave function for the vibrational state is given by

(6 6)

with spin 2 and Z component 0. E is the normalization
constant. The result is expressed as

On the other hand, Kisslinger and Sorensen7 used the
cranking model to evaluate the excitation energy of the
vibrational state. The excitation energy is given by

(ji I Y»ll j2)'»»2'
Aoi =

Ri+Ei2

(jill Y»ll j.)»»'2 '

Eji+Ej2

(jill Y»ll j2)»»2'
Aoi =

&1+&2

(jillY»ll j2)'»'»~' '

(Ki+K~)'
(jill Y»ll j~)'NingX1——E

10 iii2 Eji+Ei2
(6.9)

(jill Y»ll j2)'»»2 '*

X1—-P
5 Eii+Ei2

(6.4)

The third method we consider is the simplified generator
coordinate method used by Ferrell and Visscher. "The

"S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 29, No. 16 (1959).

'~ R. A. Ferrell and W. M. Visscher, Phys. Rev. 102, 450 (1956);
104, 475 (1956).

"V. Fano and G. Racah, Irreducible Tensorial Sets {Academic
Press, Inc., New York, 1959).

Figure 1 shows the excitation energy Ace as a function
of the strength of the Q

—Q force, calculated using various
of these methods. The calculation was carried through
for Sn"', and Kisslinger and Sorensen's U, and U;
were used again. The experimental value of Ace for Sn"'
is indicated in Fig. 1. It is noted that the cranking
model gives excellent agreement with the curve obtained
for large x by the method of linearized equations of
motion, However the Tamm-Dancoff and the simplified
generating coordinate methods are poor approximations
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for the strong-coupling case. Therefore an improvement
of the wave function by using the method of linearized
equations of motion is very desirable, especially for
the case of strong coupling. However for the case of
the Sn isotopes the results of the Tamm-Banco'
method do not seem so bad.

Next we consider the accuracy of the commutation
relations (4.18) which were used in the calculation of
the spectroscopic factor. These approximate commu-
tation relations made the calculations simple. For the
zero quasi-particle state they are correct, so they are
also expected to be a good approximation for states
with a small number of quasi-particles. To show this
the normalization integrals for the three quasi-particle
state and for the second excited state of the even-even
nucleus were calculated. They are given by

&P(2i 'j'~'l Jm)Q, „t~;„te,
y lp(2&elm)Q, „to, te,)

=1+20+ f "( )~ &'W(j'j—jJ;—22),

(p(2iil 2@2
I
J~)Q'~i'Qsg2 +0

x
I Z (2i 2~

I
J~)Q" 'Q" '+o)

(6.10)

= 1—200+fi U'sf' si 4' U'sf' si4X J2 g4 2 ) (6.11).2 2 J.
where X( ) is the Wigner 9—j symbol. If the
commutation relations (4.17) are used both these
normalization constants should be unity. Numerical
calculations were carried out for the case of Sn"' and
the following results are obtained: The three quasi-
particle normalization constants are 0.83, 0.99, and 0.99
for J=1/2, j=3/2; J=1/2, j=5/2; J= j=11/2,
respectively. For the second vibrational states the
calculation was done only for J=O, and the result is
0.70.

In treating the vibrational state the term with the
Racah coefficient in the Q—Q interaction (4.3) has not
been taken into account, and the interaction has been
assumed to take place only among nucleons in the

~ exp

0
0 Q.l

x(Mev)

0.2

FrG. 1. Excitation energy of the 6rst vibrational state for
even-even nuclei as a function of the strength of the Q—Q inter-
action. The curves are calculated by using the following various
approximations for Sn"8: (1) method of the linearized equation
of motion; (2) cranking model; (3) Tamm-Dancoff method;
i4) simplified generator coordinate method; isa) the first-order
perturbation calculation; (Sb) the second-order perturbation
calculation.

incomplete shell. To examine these two e8ects it is
convenient to use the method of the simplified gener-
ating coordinate. An actual calculation was done for
Sn"' and the contribution to the excitation energy from
the term with the Racah coeScient was found to be
5% of the principal contribution. The contribution to
the vibrational state wave function from the excitation
of two quasi-particles other than the two quasi-particles
in the unfilled shell was estimated to be 40% of the total
contribution for Sn"'. If this eGect is taken into account
in the calculation of the spectroscopic factor, then the
results may be changed. However in this case also the
wave function of the odd state should be treated on a
similar basis.
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