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A new method is described for computing the effect of corre-
lation, inhomogeneity, and exchange on the Thomas-Fermi model
of the atom. The method makes use of the many-body point of
view, rather than an independent-particle point of view, by con-
sidering the hierarchy equation linking the n-particle Greens
functions. The hierarchy is truncated by a prescription equivalent
to the Gell-Mann and Brueckner theory of the high-density
electron gas, resulting in a description of the atom in which the
exchange interaction is replaced by the effective interaction. The
physical signi6cance of this replacement is noted.

The Green's function for this model is then expanded as a
series in powers of k. The lowest order term is found to describe
the Thomas-Fermi model of the atom. The equation for the next

higher term contributing to this expansion is manipulated so as
to yield an ordinary differential equation for the corresponding
correction to the potential. This equation contains a term which
expresses the effect of inhomogeneity and another which arises
from the correlation of the electrons and from exchange. The
inhomogeneity term is one which has been found previously.
Study of the correlation term shows that it depends on the sepa-
ration energy of an electron from an in6nite electron gas, which
suggests a generalization by which the method might be made
applicable to those outer regions of the atom for which the electron
density is below that to which the Gell-Mann and Brueckner
theory would apply.

I. INTRODUCTION

"N a previous paper, ' we presented a systematic
- method for deriving the Thomas-Fermi equation

and quantum corrections (exchange and inhomo-

geneity) from the many-body equations of motion of
an atomic system. This method was based on the
Green's function formulation of the many-body
problem, ' and, in particular, made use of the Hartree-
Fock approximation within that formalism. We showed
that the single-particle Green's function in the Hartree-
Fock approximation could be expanded as a series in
powers of A, and that the lowest order term in this
series described the Thomas-Fermi distribution. The
next nonvanishing higher order term was found to be
the same as the quantum correction found by
Kompaneets and Pavlovskii, ' who had based their
work on the Hartree-Fock approximation in the density
matrix formalism, and independently by Kirzhnits,
who had used a method involving successive com-
mutators, also within the Hartree-Fock scheme.

The effect, however, of including all the higher order
terms of our infinite series can be to recover only the
Hartree-Fock solution, and consequently neglects
dynamic particle correlation. In this paper, we shall
use the technique developed in I to include some of
the correlation effects which are discarded ab initio in
a Hartree-Fock approach. We shall do this by using
the Gell-Mann —Brueckner theory of the high-density

~ The research reported in this paper has been sponsored in
part by the Geophysics Research Directorate of the Air Force
Cambridge Research Laboratories, Air Force Research Division,
the Ofhce of Ordnance Research, and the Ofhce of Naval Research.

t National Science Foundation Predoctoral Fellow. Now at
Bell Telephone Laboratories, Murray Hill, New Jersey.' G. Baraff and S. Borowitz, Phys. Rev. 121, 1704 (1961),
hereafter denoted as I.

2 V. M. Galitskii and A. B.Migdal, Soviet Phys. —JETP 34, 96
(1958); P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342
(1959).

'A. S. Kompaneets and E. S. Pavlovskii, Soviet Phys. —JETP
31, 328 (1957).

4 D. A. Kirzhnits, Soviet Phys. —JETP 32, 64 (1957).

electron gas' as the basic approximation instead of the
Hartree-Pock approximation. It will still be possible
to express the single-particle Green's function as a
series in powers of A, and just as before, the lowest
order term will describe the Thomas-Fermi distribution.
This time, however, the higher order terms which may
be regarded as corrections to the Thomas-Fermi model
introduce not only the quantum corrections but also
those correlation effects with which Gell-Mann and
Brueckner were concerned.

The logical approach to this problem is divided into
four parts, each of which is the subject of one of the
following sections of this paper. In Sec. II, we formulate
the many-body problem in the mixed position-
momentum representation of the Green's function.
The description of the interaction between particles
is contained formally in the irreducible self-energy
operator. ' We choose an approximate form for this
operator which describes the important interactions
of the G.B. theory and find that the only difference
between this approximation and that which corre-
sponds to the Hartree-Fock method is the appearance
of a time-dependent effective interaction instead of
the instantaneous Coulomb potential in the exchange
term. The direct-interaction term is unaltered. This
result has physical significance which will guide our
later steps.

In Sec. III, we expand the quantities of interest as
series in powers of A, employing the techniques pre-
sented in I. By series in powers of A, we mean as A is
considered to be made smaller, the lowest order terms
dominate higher order terms to greater and greater
extent. Some care is required in expanding the effective
interaction in order to avoid recovering a series similar
to the one summed by G.B. We can obtain a useful
expansion of the effective interaction if we recognize
why the straightforward expansion fails to work and

~ M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957),
. hereafter referred to as G.B.' A. Klein and R. Prange, Phys. Rev. 112, 994 (1958).
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proceed accordingly. The expansion which results is
completely in accord with the physical significance of
the result we noted in the preceding section.

In Sec. IV, we obtain equations for the lowest order
terms in the expansion. We find that the zeroth order
term describes the Thomas-Fermi distribution and that
the first-order correction term vanishes, just as in I.
The equation for the second-order term is quite similar
to that found in I, the sole difference being in that term
which in I arose from exchange and here arises from the
effective interaction. We study this term in detail in
Sec. V and find that it represents the nonkinetic part
of the separation energy in both cases. This suggests
a way to correct our work for an approximation made
earlier and, also, for the approximation made in using
the G.B. correlation corrections, which are valid only
in the high-density limit.

Section VI contains a summary and a discussion of
the similarities and differences between this work and
an earlier paper by Lewis' on essentially the same
problem. Our result in this work, then, is an equation
which determines the lowest correction to the Thomas-
Fermi model for the effect of correlation, exchange, and
inhomogeneity. Solutions to this equation for various
atoms are not presented.

+i~~d(2)v(1 —2)G2(1,2; 1',2+) =AS(1—1'), (2.1a)

Hp(1') = (—A /2m) V' —Ze'/~ r ~,

i (1—2) =~(t1 t2)e'/~ ri —r2~.

(2.1b)

(2.1c)

This notation is the same as in I: Each numerical
argument 1, 1', etc. specifies a spatial coordinate, a
time, and a spin index. Integration over a numerical
argument implies summation over the associated spin
index; the delta function of numerical indices signifies
the product of a Dirac delta function for each of the
space and time coordinates with a Kronecker delta
function of the spin index. The symbol + as a super-
script to a numerical index indicates that the time
associated with that index is to be made later by an
infinitesimal amount.

The one- and two-particle Green's functions Gi and
G2 are those defined in I Lsee I, (5.7)7. They are of use
in computing the ground state expectation value of

7 H. W. Lewis, Phys. Rev. Ill, 1554 (1958).

IL FORMULATION OF THE PROBLEM

We again consider an atom or an ion to consist of a
nucleus with charge Ze and infinite mass located at the
origin, surrounded by E electrons, each of mass m. We
neglect spin-dependent forces and all relativistic effects
in our system. For such a system, the equation relating
the one-particle and two-particle Green's function is

LiA(8/Bti) —Ho(ri) jGi(1; 1')

any one-particle or two-particle operator. For example,
the density of particles at spatial point r~ having spin
index O.i is given by e(1)= —iGi(1; 1+). The ground-
state energy E is also easily determined Lsee I, (2.3)$.

Klein and Prange' have introduced the irreducible
self-energy operator M by giving an equation defining
its effect:

We shall use this definition to define a kernel E'(1,2),

E(1,2) = LiA(B/Ri) —Ho(ri)$8(1 —2) —M(1,2) (2.3)

such that Eq. (2.1) takes the form

d(2)E'(1,2)Gi(2; 1') =AS(1—1').
aJ

(2.4)

For a system such as ours in which spin-dependent
forces are neglected, a particle propagates without
change of spin. That is, the single-particle Green's
function vanishes unless its two spin indices are equal,
but it is otherwise independent of the spin. Hence, we
need consider Eq. (2.4) only for the case Oi=02=0i .
Let us transform this equation to the mixed position-
momentum representation by taking the Fourier
transform with respect to r~ —r~' and t~—ti', holding
R=-', (r,+r, ') fixed, denoting the transform variables
by p and ~.

d(ri —ri')d(ti —ti')d(2)E(1, 2)Gi(2; 1')

Xexp{ imp (r—,—r, ') —~(ti —t,')$/A) =A.

This transformation was used extensively in I, where it
was shown that the left side of the preceding equation
could be expressed in terms of the transforms of E and
G by means of a differential operator of infinite order,
0, as

0LE(R,p~), G(R,p~)3.

The transforms X and G are defined by

Xexp{—iLp (ri r'2) cu(ti t—2)]/A—), (—2.5)

G(R,p )= ~d( — )d(t —t )G (1; 2)

Xexp{—imp (ri —r2) —~(ti —t2) j/A). (2.6)

(The operator 8 is defined fully and its effect given
explicitly in I. Its first few terms are given in Appendix

i) d(2)n(1 —2)Gg(1)2i 1',2+)

t d(2)M(1,2)G(2; 1'). (2.2)
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8 of this paper. ) In terms of this notation, the trans-
form of Eq. (2.4) is

g)g(R, pco), G(R,poi) j= A. (2.7)

From the definition of E, Eq. (2.3), we find that

E(R,po&) = to —p'/2m+Ze'/
~

R
~

—M(R, poi), (2.8)

where M is the transform of M(1,2) with o.i ——o.s.
The equation defining M, Eq. (2.2), indicates that

M can be found if both Gi and G2 are known. But
knowledge of the exact G& and G2 usually means that
the entire many-body problem has been solved exactly.
This is rarely feasible, and so it is at this point, speci-
fication of the form of the operator M, that various
approximations are introduced. For example, the
Hartree-Fock approximation which we used in I results
from the choice

M(1,2) = —ili(1 —2) ~d(3)u(1 —3)Gi(3; 3+)

+iu(1 —2)G, (1;2+).

In this paper, we shall choose an M which embodies
the approximation used by Gell-Mann and Brueckner
in their study of the correlation energy of the high-
density electron gas. The physical content of their
theory may be stated as a prescription for the con-
struction of the two-particle Green's function. The
results of the original G.B.paper can be obtained from
a two-particle Green's function of the form'

Gs(1,2; 1 2 ) =Gp(1 ' 1 )Gp(2; 2 )

Gp(1 ' 2 )Gs(2 ' 1 )

+ (i/k) d (3)d (4)Gp (1 ' 3)Gp (3; 1 )

Xu(3,4)Gp(2; 4)Go(4; 2')

infinite electron gas, is independent of density. In a
nonuniform electron gas, this energy might possibly
be a function of density gradient and higher derivatives
of the density. ' The approximation procedure we shall
be using, however, treats gradient dependence as a
higher order effect than density dependence and in the
low-order approximation, with which we shall be con-
cerned, only the density dependence of e&(2& would

appear. We suspect, then, that in some way this last
term will contribute a constant term to energies we

may encounter. Let us suppress this term for the time
being; it will become apparent (in Sec. V) how to allow
for its effect.

It will be possible for us to work with the Green's
function G~ rather than the "unperturbed" Green's
function Go. This replacement does not follow strictly
from the equations presented so far, but constitutes a
simple extension of the Gell-Mann —Brueckner scheme.

We note that v is symmetric with respect to inter-
change of its arguments, as can be seen most readily
from examination of the Neumann series solution of
(2.10). In Eq. (2.9) we replace Go by G, , interchange
the arguments of v, and, for reasons explained above,
suppress the last term to obtain

Gs(1,2; 1',2') =Gi(1; 1')Gi(2; 2')

—Gi(1; 2')Gi(2 i 1')

+(i/A) d(3)d(4)Gi(1; 3)Gi(3; 1')

Xu(4,3)Gi(2; 4)Gi(4; 2').

This expression may be substituted into the left side
of Eq. (2.2) and the result, after relabeling the variables
of integration, is

d(2)u(1 —2)Gs(1,2; 1',2+) = d(2) 5(1—2)

(i/&) ti(3)if(4)Go(1' 3)Go(3' 2') X I d(3)u(1 —3)Gi(3; 3+)—u(1 —2)Gi(1; 2+)

Xu(3 —4)Gp(2; 4)Gp(4; 1'), (2.9)

where Go is the single-particle Green's function in the
absence of interaction and u(1,2) is the effective inter-
action, introduced by Hubbard, ' which satis6es the
integral equation

u(1,2) =u(1 —2) —(i/A) d(3)d(4)u(1 —3)

XGp(3; 4)Gp(4; 3)u(4, 2). (2.10)

The last term in Eq. (2.9) gives rise to the second
order exchange energy (e&&'& in G.B.) which, for the

' H. Kanezawa and M. Watabe, Progr. Theoret. Phys. (Kyoto)
23, 408 (1960).' J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957).

+(i/i') I d(3)d(4)G, (1;2)u(1 —3)

Xu(4, 2)G'i(3; 4)Gi(4; 3+) Gi(2; 1'). (2.11)

Considered as a function of the difference between its
two time coordinates, the single-particle Green's
function is continuous except at zero. It follows,
therefore, that the symbol + as a superscript of a
numerical argument of a given single-particle Green's
function has significance only if the two time variables
of this given function are so tied together that they
differ only by the infinitesimal which the symbol
denotes. Thus, in the last term of Eq. (2.11)

M We are indebted to Dr. M. Lax for this comment.
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the factor Gi(1; 2+)Gi(4; 3) could replace the factor
Gi(1; 2)Gi(4; 3+) without changing the value of the
integral. Having made this replacement, we observe
that the multiplier of —Gi(1; 2+) within the brackets
is just the right side of Eq (.2.10); i.e., it is the effective
interaction itself. Finally, comparison of this result
with Eq. (2.2), defining the self-energy operator,
reveals that we have chosen an M defined by

M(1,2)= ib(—1 2) —td(3)v(1 —3)Gi(3; 3+)

+iv(1,2)Gi(1; 2+). (2.12)

This is the self-energy operator we shall use. It embodies
the major feature of the G.B. theory in a form very
similar to its Hartree-Fock counterpart. In Hartree-
Fock theory, the exchange potential expresses the
change from the average energy brought about by a
correlation arising solely from the exclusion principle.
In the G.B. theory, the repulsion arising from the
Coulomb force induces a correlation which augments
the one due to the exclusion principle. Both effects are
included by substituting the effective interaction for
the Coulomb interaction in the exchange term. The
transform of this self-energy operator is readily evalu-
ated and, when inserted into Eq. (2.8), gives

n(r) e'
X(R,ytp) = pp

—p'/2nz+Ze'/
~
R

~

—2 ' dr
)R—r[

—z(2zrA)
—' dp'dpp' v(R, p —p', tp —pp')

XG(R,p', pp') exp(ipp0+) (2.13. a)

Gi (1,2) =P A&G;(1,2), (3.2a)

p dpi')
G;(1,2) = 6;(R,po&) expLi(p r—pet)/A7, (3.2b)

(2zr)4

r =ri —rs, t= ti—tz, R=-,' (rr+rp).

(3.3a)

E=Q A&E;.
j=o

(3.3b)

These expansions may be inserted into Eq. (2.7) and
the powers of 5 separated in such a manner that the
zeroth order approximation is nonvanishing. The
resulting set of equations will be

&pg&p, Gp7=A ',

j+I%;+m=n
8;$Kp, G„7=0, n) 0. (3.4b)

The terms Oj are given explicitly in the Appendix of I.
The codFicients Xj may be found by assuming the
possibility of expanding v as a series in powers of A,

Ke shall have no further use for the symbol Go to
denote the single-particle Green's function without
interaction or for the symbol G2 to denote the two-
particle Green's function. To avoid confusion with the
G, used as expansion coeScients, we shall delete the
subscript I from the single-particle Green's function
with interaction, and shall denote this latter by G(1,2)
or sometimes, simply by G.

Ke found in I that the operator 8 and the kernel X
could also be expanded in powers of h as

8=+ AfH;,

n(r) = -iG, (r, t; r, t+). (2.13b) v(R, ptp) =P A&'v;(R, p&p), (3.5)

The factor of two in the fourth term on the right of
Eq. (2.13a) arises from the spin summation. We have
dropped the A from the exponent because the in-
finitesimal 0+ renders the sign of co, not its size, sig-
nificant in the evaluation of such integrals. The same
situation will occur with all quantities which must be
set equal to zero after an integration is performed.

inserting this series into Eq. (2.13), and separating out
the various powers of A. We find that

t np(r)e'dr
E'p (R,ptp) = pp

—p'/2m+ Ze'/
~

R
~

—2
J /R —rf

—z(2zr)
—' I dy'dip' vp(R, y —p', pp —cp')

III. EXPANSION IN POWERS OF A

We assumed in I that the transform of the single-
particle Green's function could be expanded in powers
of A as

&&Gp(R,y', tp') exp(imp'0+), (3.6a)

t. n;(r)e'dr
X — 2

R—r
I

(2zr)4

G(R ppp)=A4 g A&C (R ppp)
j=o

(3 1)
XJ Q dp'dpp' vsG„exp(i(o'0+), (3.6b)

k+m= j
and that a similar expansion for the space-time form
of the Green's function is also possible. " n, (r) = iG, (rt; rt+)—
"Neither the 54 which appears somewhat unexpectedly in (3.1)

nor its unexpected omission in (3.2b) are essential to any of the
results of I or of this paper. All that is required is that the trans-
form and the Green's function be related by (2.6) and that the
zeroth (lowest) order term of the transform corresponds to the
zeroth (lowest) order term of the Green's function. Powers of k

= —i(2zr) ' dydtpG, (R,pe~) exp(ipp0+). (3.6c)

may be distributed in any way between (3.1) and (3.2b) that
meets these requirements, and physical quantities such as the
density, etc., will remain the same.
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We should like at this point to remind the reader of
footnote 11. Having reached this point, however, a
difhculty arises if we follow the technique of simply
expanding each object in terms of 5. Subsequent
progress depends on our making a reasonable analysis
of why this difhculty arises and what may be done to
obviate it. The results, if any, one obtains, will depend
on the assumptions one makes at this point, and a
certain lack of uniqueness is introduced. Thus fore-
warned, the reader is free to label the subsequent
argument as heuristic if he so chooses.

A calculation of the coeAicients U must start with
consideration of the integral equation (2.10) defining
the effective interaction. Before starting the calculation,
however, we must point out that these expansions in
powers of 5 were motivated by the desire to include
the eRects of the uncertainty principle in a systematic
manner, as was explained in I. Although we are still
motivated by that desire, the situation here is some-
what more complicated than that in I because of the
appearance of A in a way that is not directly related to
the uncertainty principle. We refer to the explicit
appearance of A in Eqs. (2.9) and (2.10). These ap-
pearances of 5 have their origin in the perturbation
expansion and diagrammatic analysis upon which these
two equations are based. If this explicit 5 is used for
expansion purposes, the effective interaction will be
decomposed into a series of terms in which one of two
things can happen. If we expand so that positive powers
of 5 appear, that is, so that the series is dominated by
its first few terms as 5 is made smaller, then the lowest
order term which appears is independent of the strength
of the actual force between particles and there is no
way of recovering the exchange term in that limit in
which correlation effects are assumed small. On the
other hand, if we expand so that negative powers of
5 can appear, then the result is a series containing
arbitrarily high negative powers of 5, which looks very
much like the series of perturbation terms which G.B.
have shown how to sum. Neither of these two possi-
bilities is at all in accord with the physical interpre-
tation attached to the circumstance that the eRective
interaction replaces the Coulomb potential in the
exchange term. The interpretation of this, to which we
called attention at the end of Sec. II, suggests very
strongly that the eRective interaction should be treated
as an entity of the same sort as the exchange potential.
This we propose to do, treating the eRective interaction
here in the same way as we treated the exchange po-
tential in I. There, however, we had the advantage of
knowing the exchange potential explicitly. Here, on
the other hand, we have only a recipe, the integral
equation, for calculating the effective interaction. This
recipe calls for that A inherited from perturbation
theory as one of the ingredients. This role of 5 should
be suppressed before performing any expansion. The
simplest method of suppressing this usage is to replace
A temporarily by the symbol A, in each appearance in

which it plays the role of the perturbation theory ex-
pansion parameter. Instead of Eq. (2.10), for example,
we shall have

u(1,2) =v(1 —2) — d(4) Q(1,4)u(4, 2), (3.7)

where

Q(1,4) = ('/l~) ) d(3)v(1 —3)G(3,4)G(4,3). (3.8)

I'= ~d(r3 —r4)d(33 34)G(3,4)G(4,3)

Xexp f —iLp (r3—r4) —co(tp —t4) j/A). (3.11)

Again, the factor of two in Eq. (3.9) arises from the
spin summation. The integral in (3.11) may be also
expressed using the transform of the Green's function as

r = (2irA)-' dp'dna' G(R,p'co') G(R, p+p', o)+a)')

or, using the expansion of the transform, as

I=A-2P An, (R,p ),
7=0

p 4p dc@

0;= P ' ASG (R,p'a)')
+ =~'& (2w)'

(3.12a)

XA'G„(R, y+p', ~+~'). (3.12b)

Lest the handling of the powers of 5 here seem arti6cial,
let us note that the form of the set of equations (3.4)
indicates that each of the coefficients 6; contains a
factor A '. The combination AC; which appears in
(3.12b) has been chosen only to remove this A de-
pendence from the terms 0;.

We may insert the expansion of 0 and of I' into Eq.
(3.10) with the result that

Q(R,Ii~)=Z A'Q (R,u ), (3.13a)

Q;= (4me'i/X) P 8 L(1/p'), Q„(R,po&)j. (3.13b)
m+ft, =j

Finally, we may insert the expansions of U, 8, and Q
into Eq. (3.9) and separate the various powers of A.

If we now transform these equations to the mixed
representation, the transform of the integrals may be
expressed in terms of the transforms of the factors of
the integrand using the operator 0 once again. The
result is

(3.9)

(3.10)
where
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The coefhcient of 5" then satisfies the equation

v-+2 Z 01[Qp v-) = (4~e'/p')&-, p (3 14)
j+k+m=n

Now let us consider each of the equations of this set
in turn. The m=0 equation is

vo+28p[Qp vp] =0.

The operator 00 acts on a pair of transforms to produce
the product of these transforms. Hence, the above
equation indicates that uo is zero. Every term in Eq.
(3.14) which contains vp may be deleted for this reason.
Consider now the m=1 equation of this set. Only two
terms survive the deletion, and they are related by the
equation

vi+28p[Qp, vi)= 0.

Hence u& also vanishes, and all terms containing u& may
be deleted from the set (3.14). In the m=2 equation,
the terms surviving may be rearranged to yield

Fxo. 1. Path of integration in the complex cv plane
for recovering G1 from GI.

Gp(R, yo ) =5-'(co—E)-' (4.3a)

E=E(R p) =p'/2m+go(R), (4.3b)

vanished. It is convenient to express (4.1a) and (4.2a)
in the following form:

4n-e'/p'
vp(R, y(o) =

1+2Qp(R, y(u)
(3.15)

ge2
t

mp(r)dr
+2e' (4.3c)

u2=
p'+ Sm e'iQo/&

(3.16)

IV. EQUATION FOR THE CORRELATION
CORRECTION

Having just found that u™0 and u& vanish, we may
examine Eq. (3.6) for Xo and X&.

p' Ze'
I ep(r)=r

Ep ——a) — + —2e'
2nz

( R/ ~ [R—r/
(4.1a)

Xi———2e' ni(r)dr/~ R—r ~. (4.1b)

The zeroth- and first-order equations of the set (3.4)
may be rewritten as

The higher order coefhcients u, may be expressed in
terms of vp and the other Q„(e(j) and certain dif-
ferentiations of these which are prescribed by the other
e„operators. We shall not need these higher order
coeKcients here, however. This completes as much of
the expansion as we shall be using in this paper. X is to
be replaced by its value of fi, and Qp may be evaluated
using (3.13b). The result, inserted in (3.15), gives

4me'

llflp is then the usual Thomas-Fermi potential for the
atom.

The integrations which yield the space time form
Gp, and the density ep, as indicated by Eqs. (3.2b) and
(3.6c), are to be carried out as if ar were a complex
variable, with a path of integration in the complex ~
plane which is displaced from the real ~ axis by an
infinitesimal amount. The path, shown in Fig. 1, lies
slightly below the real axis for —~ &~(p, crosses the
real axis at ~=@,, and lies slightly above the real axis
for p(~(+ ~. This choice of path is an expression of
the fact that the system is in the ground state, as
explained in I.The constant p is the chemical potential,
approximately the energy required to add another
electron to the system.

The identity of these equations with those in I means
that in this case too, the zeroth-order result is the
Thomas-Fermi distribution and that corrections due to
inhomogeneity effects, exchange, and correlations are
not felt until the second order in S. Our main interest
is to obtain an equation for the first nonvanishing
correction. This may be done as follows: Write Eq.
(3.6b) for Xp as

(4.4a)

Go=5 P/ip,

Gi — XiGp/Ko 8i[Xp,Gp j/E'o.— —
(4.2a)

(4.2b)
(4.4b)

These equations are exactly the same as those we
encountered in I [see I, Eqs. (3.8), (3.9), and (3.10)].
We found there that 2ep(r) was the Thomas-Fermi
distribution of electrons, and that Xi and Gi both

dy t' dG7

x(R,y~) = — — i v, (R, y —y', or —co')
(2~)' " 2m.i

&&Go(R,y', a&') exp(i&o'0+). (4.4c)
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We may rearrange the v=2 equation of the set (3.4b)
so as to exhibit Gg

G,= —J;,G,/&, —0,[&„G,)/&, .

It is now possible to introduce new variables

/=or or
&

'g =or& (4 11)

By using the speci6c form for Xo and Go given by Eqs.
(4.1) and (4.3), this can also be written

into the second integral in (4.9). The zeros appearing
in the exponent are to be interpreted as if written t
and t', each of which approach zero independently
through positive values. The second integral becomes

The integral of G2 indicated by (3.6c), using the path
described above, yields the density 02(R).

f
t

dor

(—2~k)'N2(R) = dp
~ 2~i

E2(R,pu) p t
d(o

Xexp(ia&0+) + dp
[~—E(R p))» ~ d~i

Xexp(i(so+)(a) —E) '02[(co—E) (co—E) '). (4.6)

The second integral in Eq. (4.6) has been evaluated
in I [see I, Eqs. (4.8)—(4.11)).It is equal to

[4V'go+ (2m/pi, "(R))(dyo/dR)'), (4.7)
12pi;(R)

where pi (R) is the Fermi momentum, defined by the
equation

E[R,p. (R))=..
Consider now the first integral in Eq. (4.6). The

substitution of Eqs. (4.3) and (4.4) in this expression
yields

f de—@~(R) dp ' exp(i(so+)[(o —E(R,p)) '
2~i

de de
+(2s.h) ' ~dpdp'

~ 2~iZ i

(2m')-' ~dpdp' '

2~i 2~i

Xexp (i[it'(t+t') —
hatt )}it2(R, p —p', it)

X[~'-A(p))-'[~' —g-A(p'))-'. (4.»)

The q and p' integrations may be simplified by writing
the factors following v in the form

[n —A(p)+A(p')) '(b' —
n
—A(P')) '

—[n' —A(P)) '}—9—A(P)+A(P')) '

X[rt' —A (p)) '. (4.13)

The g' integration associated with the first two terms
of (4.13) may be performed by contour integration,
treating g as real. In the limit t, t' ~ 0+, the contribution
of these terms to the expression (4.12) will be

(2 l't) ' dpdp'

XU, (R, p —p', g)[g—A(p)+A(p'))-'

x[ p( o+)s(p,—p') —- (— o+)s(p.—p)),

where

S(~)=1 for x&0
=0 for g(0.

Xexp(i(so+) exp(ice'0+)[(o —E(R,p))
—' If the variables p and p' are interchanged in the second

term of the integrand, and if the substitution of —g
X[~'—E(R,p')) '~2(R, p

—p', ~—co'). (4.9) for rt is also made in this term, the result becomes

A(p) =E(R,p) —inc(p —pp); u ~0+.
e(x) =+1 for x&0

= —1 for g(0,
e(0) =0.

(4.10)

The use of the special path for the or and or' inte-
grations becomes somewhat inconvenient. It will be
easier for us to integrate or and o~' along their real axes,
provided we compensate by adding small imaginary
parts to the or —E denominators so that the poles lie
above or below the path of integration in the correct
manner. This may be done by replacing each E(R,p)
in (4.9) by

(2mb) ')t dpdp')
27ri

Xexp(iitO+)S(p, —P') [n —A (P)+A (P')) '

X[U,(R, p —p', g) —U2(R, p' —p, —g)). (4.14)

%e shall show later that U2 is a function of the
magnitude ~p

—p'~, and is an even function of g.
Hence, the term above vanishes. The contribution of
the last term in (4.13) to the expression (4.12) may be
combined with the first term in (4.9) after the inte-
gration variable in this latter expression is changed
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from ~ to q'. AVe obtain

drj
dy p, (R)+ (2vrh) ' dp' ——exp( —ig0+)

J 2.;
Xfg —A(p)+A(p')] —

'Ug(R, Iy —y'I, g)

X exp(ig'0+) I
O' —A (P)]-'. (4.15)

2~i

Again, the p' integration may be performed by
contour integration, completing the path along the
real axis by the infinite semicircle in the upper half
of the q' plane. For p either greater than or less than

pi, this integral vanishes. For p=pp, the singularity
lies astride the contour and the integral becomes
infinite. This suggests a delta-function, which leads us
to evaluate the integral so as to exhibit it as follows:

This equation determines the first nonvanishing cor-
rection to the Thomas-Fermi potential, in terms of
the Thomas-Fermi potential go(R), the Fermi mo-
mentum pp(R), and the function J(R), which arises
from the exchange and correlation effects. In contrast
to the situation in which only exchange is considered,
it will no longer be possible to express the dependence
of J on pp in any simple manner. Still, the dependence
of J on pp can be exhibited much more explicitly than
we have done in (4.17b) and, in its more explicit form,
numerical calculation can be performed. Accordingly,
the study of J(R) is the subject of the next section.

v. sTUDY oF J(Rl

The definition of J(R) by means of Eq. (4.17b) and
that of u2 by means of (3.16) leads us to Eq. (3.12b)
for the definition of Qp.

exp(i''0+) I
g' —A (p))-'

2mi

md
I

de'
exp (ig'0+) Lg' —A (p)]—'+0 (n)

p dp~ 2~i

m d
=——s(p.—p)+o( )

pd

= ——~(p —P)+o( ) (4.16)

The term of order n arises from the imaginary addition
we made so that the real axis could be used for a path
of integration. It should be discarded. We choose
spherical polar coordinates for y and p', taking the
polar axis for y in the direction of p'. The integrand of
(4.15) is then independent of all angles except 8, the
angle between y and p'. Hence, expression (4.15) with
co replacing g, becomes

47rmpp(R)y2(R)+I mph(R)/vrh3]J(R), (4.17a)

t' d(dJ=
I p'dp d cose exp( —icu0+)

~ 2~i

X I (o—A (Pp)+A (P)]—'U, (R, I p~ —y I, (u). (4.17b)

We return to Eq. (4.6) in which expressions (4.17)
and (4.7) may now replace the 6rst and second terms
on the right-hand side. It is possible to eliminate e~(R)
from this equation using Eq. (4.4b) in the form

Qp(R, pa)) = (2s) h J~dp d(o Gp(R, p co )

XGO(R, y+ y', I+~'). (5.1)

The Green's function Go which we shall need in order
to evaluate the expression above is only partially
defined by Eq. (4.3a). The missing part of the definition
is the statement that the path of integration in the
complex co plane must be the one described in the
paragraph immediately following Eq. (4.3a). This fact
leads to manipulations which become quite cumbersome
when two or more Green's functions are present, as in
the expressions above. We may again avoid these
manipulations by replacing the E(R,P) of Eq. (4.3b)
by the A(P) of Eq. (4.10) and using the. real 2 axis
for the path of integration. In this manner, we obtain

f de)
(2m)'imp ———t dy' '

~ )1m~ 0 ~ 2WZ

XL~'—~(R P')+i«(p' —P~)] '

xL~+~' —&(R, I
p+y'I)+i«(l y+y'I —p~)] '.

The co' integration may be performed by contour
integration, with the result that

(2 )'ino= It dp'L —(P'+2p y')/2m —2i ] '
~a~

12m.h'p p(R)

2m dPo
4V q.+

pp-' &Rd i

V'y2 (R) = 8e'es, (R—)

The resulting equation for &2(R) is

4nSe2 588
V'y2(R)- pp(R)&2(R)= pp(R)J(R)

3-h8

(4»)

—jt dp'I o)—(p'+2P. p')/2m+2in] —', (5.2)
R2

where the regions R& and R2 are defined by

Ip'I &P~ »d Ip+p'I &P~;
ly'I &P~ »d ly+P'l&p~

The variable of integration in the first term of (5.2)
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may be changed from p' to q= —(p+p') so that

(2')'iOo ——

" lal &P~; le+el &P~
dq{L~+(p'+2p q)/

-X(X+2)

2m 2—inj-' [—co—(p'+2p q)/2es+2in] '). (5.3)

The position dependence of Qo comes about solely
because the Fermi momentum is position dependent.
There will be a marked similarity between many of
the expressions we shall use and analogous expressions
which appear in the study of the uniform electron gas.
The expression (5.3) appears in the work of DuBois, "
for example, where it is called Qo, the propagator for
density fluctuations in the bare-pair approximation.
A quantity proportional to it is denoted 'U*(k,co) in
Hubbard's' work. The mathematical formalism we
shall be using follows closest to that introduced by
DuBois.

If we use dimensionless variables x, y, and u, defined

by x=p/pr, y=co/(pr'/2m) and u= q/pr, then

sE

2Q

-2a
X (X+2)

FIG. 2. Branch cuts of f(x,y) in complex y plane.

Thus
x'= 1+s'—2s cosg. (5.6)

integration may be transformed from p, cosa, and ro

to x, y, s, where s= l pl/pr so that

(2 )x'iQ =o2~mp&(R) f(x,y),

1
f= dU

'il ~ [u[ (1; iu+xi )1 y+xs+2x u —2in

5.4a p il+zl
p dy

J=4se'pp sds xdx exp( —iy0+)
~ l&, l

~ 2xi

)&[y—1+s'—inc(s —1)]—'[x'+c f (x,y))—'. (5.7)

x= lpga
—pl/pF, (5.5c)

y=~/(pr'/2~) (5.5d)

Those assertions about U2 which we made to justify
setting (4.14) equal to zero are now seen to follow
directly from some of those properties of f(x,y) which
we have just noted.

This expression for v2 is tn be inserted into the ex-
pression (4.17b) defining J(R). The variables of

'2 D. F. DuBois, Ann. Phys. 7, 174 (1959).This reference and
the next contain references to work in this area.

(5.4b)
y+x'—+2x u 2in—

The form of f(x,y) gives us some valuable informa, tion
even before the integration is performed. We note that
f behaves as 1/y' as y ~ oo, that it is an even function
of y, and that it is analytic except along two separate
lines in the complex y plane which are composed of
those points for which one or the other of the de-
nominators vanishes for some u within the domain of
integration. These lines are depicted in Fig. 2. The
function f depends on the magnitude of x, rather than
on its direction.

We may now reconsider the expression for v™2 given
by Eq. (3.16). Using the definition (5.4), we have

vs(R, pg —p, oo) =4ire'p~ '(R)/[x'+c(R) f(x,y)$, (5.5a)

where
c(R)= 2me'/(wkp~) (5.5b)

The order of integration over x and s may be inter-
changed, and the s integration, whose limits become
1+x and

l
1—x l, may be performed. The result of this

s integration will depend on whether or not the point
s=1 lies within the range of integration.

I dy
J=2vre'pp ~ xdx exp( —iy0+)g(x, y)

~0 ~ 2m'
X[x'+cf(x,y)]-r, (5.8a)

y+in y in+x(—2+x)
g= ln +ln

y+in —x(2—x) y —in

y in+x(x+—2)
g= ln

y —in+x(x —2)

x (2, (5.8b)

x)2. (5.8c)

The integral over y can be considered to be a contour
integral over a path enclosing the entire lower half of
the complex y plane. Each singularity of the integrand
will yield a contribution to J(R) and so these singu-
larities are of interest. They are depicted in Fig. 3.
Figure 3 indicates the- so-called plasmon poles" "
contributed by the last factor of the integrand, located
at those points y= &yo for which

x'+cf(x,yo) =0. (5.9)

A study of this equation indicates that for values of
x and c for which the solution lies on the principal
branch of f, that solution is in the second and fourth
quadrant of the complex y plane. We go into this

"J,J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).
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x&2

across the cut is —2m.i, and thus, the term is

~2 dg ~x(2—z)

J&'l = 2'—e'p p ' —~ dy= —4n.e'pz. (5.11)'J, , &,

—x(x+2)

-x(x+2) -x(x-2)

2a

I

x(2- x) x(2+x)

x)2

x -2x

In the second term, the exponential serves to inform
us that the singularities in the lower half plane con-
tribute to the y integration —i.e., that the integral
over the infinite semicircle on the lower half of the y
plane vanishes. However, since f(x,y) behaves as 1/y'
for large y (see 5.4b), this exponential is not needed,
and can be set equal to unity. The path of integration
may now be rotated from the real axis to the imaginary
axis without crossing any singularities. " Rotation of
the path of integration away from the real axis gives

y such a large imaginary part that the small imaginary
additions in which appear in (5.8) and (5.4b) will have
no effect. When n is set equal to zero in Eq. (5.4b)
defining f(x,y), the two terms of the integral cancel
over that region for which the restriction

~
u+x~ &1

is violated. Hence, this restriction may be dropped
and the integration performed, yielding

FIG. 3. Singularities of the integrand of Eq. (5.8l
in complex y plane.

matter somewhat more carefully in Appendix A of
this paper.

Instead of pursuing the steps which lead to the
conversion of the y integral to integrations over the
finite-length branch cuts in the lower half plane, we

shall follow a course which will show the connection
between this integral and the nonkinetic part of the
separation energy, the energy required to remove a
particle of momentum pp. In this way, we shall be
able to avoid the necessity of a numerical evaluation
of that integral which results when the former course
is followed, by taking advantage of numerical results
others have obtained. '»""We rewrite (5.8a) as

f'" dx
t

dy
J=2~e'p& ' — exp( —iy0+)g(x, y)

~p x ~ 2gz

dx dy—2rre'p r — exp (—iy0+) g (x,y)
p S 2' Z

cf(x,y)

x'+cf(x,y) .
(5.10)

The first integral on the right may be evaluated by
contour integration. The only singularity of the inte-
grand in the lower half of the y plane is the cut which
extends from the axis to x(2 —x), and this, only for
x(2. (See Fig. 3.) The discontinuity of the integrand

1 1 f y) ' x(x+2)+y
f(x,y)=1+—1——

~
x+—

~
In

2x 4 ( x) x(x—2)+y

1 1 ( y) ' x(x+2) —y+—1——
I
*——

I
ln (5.12)

2x 4 ( x) x(x—2) —y

This form is closely related to Lindhard's dynamic
dielectric constant e(k,ce),"a function of wave number
k and frequency te. In fact,

e(k, t0) = 1+ Pc (E)/x'] f(x y) (5.13)

t."dx 1" 1
J&'&= —e'pp ' — dyg(x, iy) —1 . (5.14)

0 x —g) e(k)see)

We note that Eq. (5.12) indicates that f(x,y*)= f*(x,y),
and that f(x, —y) = f(x,y) This establish. es the reality
of f, and consequently of e, along the imaginary axis.

'4 This is the so-called Wentzel transformation. See K. Sawada,
K. A. Brueckner, N. Pukuda, and R. Brout, Phys. Rev. 108, 507
(1957).Another way of stating the legitimacy of this step in which
the exponential is ignored and the path of integration is rotated
in the complex y plane is the following: The path along the imagi-
nary axis augmented by the infinite semicircle over the right half
plane encloses the same singularities as does the path along the
real axis augmented by the infinite semicircle over the lower half
plane. In neither case does the integral over the infinite semicircle
contribute."J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 28, No. 8 (1954).

We may now insert (5.13) into the second term of
(5.10) and, on setting the exponential there equal to
unity and rotating the path of integration from the
real to the imaginary axis, obtain
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We also note that setting n=0 gives (5.8) a form

y+x(x+2)
g(x,y) = ln

y+x(x —2)
(5.15)

with the property that g(x,y*)=g*(x,y). Hence inte-
gration of the product of g(x,y) with an even function
of y along the imaginary y axis will not contain the
contribution of the imaginary part of g(x,y), and we
may replace g by its real part:

y'+x'(x+2)'
Reg(x, iy) = —,

' ln
y'+x'(x —2)'

~l p —x/2
dp . (5.16)

(~—-'x)'+ (y/»)'

This expression may be inserted into (5.14). Introducing
v=y/2x, s=x/2, we have

(1
J&'&= —4e'pp ~ dv dsI —1

I

0 &e

y I dp . (5.17)
(p —s)'+v'

We have achieved the desired connection between
our quantity J and a quantity of physical significance
which appears in the study of the infinite electron gas.
Quinn and Ferrell" compute the correlation energy of
an infinite electron gas by studying the self energy of
an electron near the top of the Fermi sea. Comparison
with their work reveals that J'" is 4m'5 times the ex-
change energy of an electron at the Fermi surface,
and that J('& is 4x'5 times the correlation energy of an
electron at the Fermi surface. "

In a uniform system, the separation energy is com-
posed of kinetic energy, potential energy, exchange
energy, and correlation energy —that is, designating
the separation energy by —E&,

Ee=p p'/2m+E, „(pp). +E„„(pp).

We have found now that

J(R) =4r'5 {Es—pe'/2m}. (5.18)

This is a result we encountered before in I, although
we did not recognize it there. The equation in I, (Eq.
4.15), can be written in the form of Eq. (4.18) of this
paper so that a quantity in I can be defined which
corresponds to the J of this paper. This quantity turns
out to be equal to —4s.e'pp, which is 4s-'5 times the
nonkinetic part of the separation energy for an infinite
electron gas in the Hartree-Pock approximation.

This fact suggests the way to include the effect of

"Their Eq. (5.4) has apparently omitted a minus sign. These
authors work with k=1.

the term which we deleted from Eq. (2.9). Let us recall
that when one calculates the nonkinetic part of the
separation energy of an infinite electron gas using the
theory of G.B., the result is a sum of terms, each term
arising from one of the members of the right-hand side
of Eq. (2.9). It seems likely that the contribution to J
of the deleted term may be included along with the
others merely by using an expression for Ez in which
the contribution of this term appears. Such an expres-
sion can be derived from G.B.'s formula for the corre-
lation energy per particle. "It also seems likely that the
way to go past the Gell-Mann and Brueckner theory
is to use an expression for the separation energy which
has validity beyond the high-density limit. Therefore,
we shall use the general equation, (5.18), for J(R)
without specifying in detail how the separation energy
is to be calculated. Inserting this in Eq. (4.18) gives the
equation for the first correlation and quantum cor-
rection to the Thomas-Fermi model:

(4me') 4me'p p p J'
Ip~y2=

& &i e 2m

me' 2m (dpo~ '+, «'~.+,I I (5»)
12'-A'p p pg' (dR )

VI. SUMMARY AND DISCUSSION

An equation has been derived which determines the
first correction to the Thomas-Fermi potential in terms
of the Fermi momentum of the ordinary Thomas-Fermi
model and the separation energy of an infinite electron
gas. This correction describes the change from the
Thomas-Fermi potential due to exchange, inhomo-
geneity, and correlation effects, and is the first term of
a series whose higher members can, in principle, be
found using the techniques described in this paper.

A recent paper by Lewis' describes a method of
including correlation and exchange effects in the
Thomas-Fermi model. His approach is based on the
assumption that the electron cloud surrounding that
atom behaves locally like an infinite electron gas, and
therefore that a local separation energy can be ascribed
to each point in the atom. This separation energy, he
reasons, must be independent of position if the electron
distribution is to be in equilibrium. By including suc-
cessively the contributions of the potential, exchange,
and correlation energies in his expression for the
separation energy, he obtains successively the Thomas-
Fermi, the Thomas-Fermi-Dirac, and the Thomas-
Fermi-Dirac-correlation model of the atom.

Independently, Tomishima" proposed the same

"It is possible to relate the correlation energy for an electron
at the top of the Fermi sea to the average energy per particle for
the system, using a theorem due to Seitz. See F. Seitz, Modern
Theory of Solids (McGraw-Hill Book Company, Inc, , New York,
1940) p. 343. This technique is used by Quinn and Ferrell in
reference 13."Y.Tomishima, Progr. Theoret, Phys. (Kyoto) 22, 1 (1959).
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sequence of models using a slightly different approach.
This time, the assumption is that the energy of the
atom is given by the volume integral of an energy
density which depends only on the local density of
particles. This energy is then minimized with respect
to variation of particle density, subject to particle
conservation. By including successively the various
contributions to the energy density, Tomishima also
obtains the various models mentioned before. The
relationship between his work and that of Lewis, to
which it is equivalent, arises because of the way the
separation energy is related to the energy density.

Both authors utilize the G.B. expression for the
correlation energy at high densities. Both recognize
that the expression needs modification at low densities
and propose changes of the G.B. expression which have
more or less reasonable low-density limits. Some such
prescription would have to be used in the application
of our work. Tomishima's paper gives numerical results
which show that the equation he and Lewis propose
gives an electron distribution rather close to that
predicted by the Thomas-Fermi-Dirac equation. In
particular, the difFiculty" of the discontinuity in density
at the edge of the atom persists, even though corre-
lation effects are included. A virtue of the technique
we have proposed is that it does not yield, in the no-
correlation case, the discontinuity at the edge of the
atom. "Calculations are now in progress to determine
if the distribution will behave sensibly at the edge of
the atom for the present theory, in which the effect of
correlations is included.

One may ask how our technique differs from that of
Lewis and Tomishima for those more or less extended
systems in which inhomogeneity would not be expected
to play a major role. All inhomogeneity effects can be
suppressed in our theory merely by discarding the 0,
operators for j)0. If we do this, we can sum the
expansion and obtain equations almost identical to
those which describe an infinite medium, the sole
difference being that the Fermi momentum now depends
on position. Such a procedure applied to the technique
in I does, in fact, lead to the Thomas-Fermi-Dirac
equation. So far, however, we have not been able to

~ recover the starting point of the Lewis and Tomishima
technique by ignoring the inhomogeneities and summing
the expansion. The difhculty seems to be connected
with the fact that when correlation effects are intro-
duced, the electrons no longer occupy a Fermi distri-
bution in momentum space. It may be possible in some
other manner to derive the starting point of the Lewis
and Tomishima theory from ours by ignoring inhomo-
geneities. We suspect, however, that there may be a
real difference in content which makes it impossible to
do so.

' N. H. March, Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1957), Vol. 6, p. 7.

0 The numerical solution to the equation for the 6rst correction
to the Thomas-Fermi model in I (4.15) is given in reference 3.

lim f(x,y) = A (x,y)+iZ(x, y),
tx —s0+; y real

(A.1a)

I' — du|
~ lul &1; lu+xl &1 y+x +2x ll

1
(A.1b)—y+x +2x ll

du{a(y+x'+2x u)
~ lu[ &1; iu+xi &1

+8(—y+x'+2x u)). (A.1c)

These expressions appear, in basically the same form,
in DuBois"2 paper. He credits Ferrell with the obser-
vation that the restriction

~
u+x

~
& 1 is superfluous in

the evaluation of A because the two terms of the
integrand cancel over the region

~
u+x j (1. The

evaluation of each term of Z involves calculating the
area of a plane, perpendicular to x, whose distance from
the origin depends on x and y and which cuts one,
both, or neither of the unit spheres which bound the
region of integration. These spheres are centered on
the origin and on the point —x. For

~

x
~
&2, the spheres

fail to intersect, and so the form of the result differs from
that for ~x~ &2. Upon evaluating the integrals, we
obtain the result

1 t 1 1 fy q
'- y+x(x+2)

A= —'x+—1——
i

—+x i
In

) y+x(x —2)

1 1 (y ) ' y —x(x+2)+- 1—-( ——x
~

ln (A.28)
2 4~x ) y —x(x—2)

Z(x&2; y) =0; x(x+2) &y

1(y=—1—
i
—x)

2x 4(x )
x(x—2) &y&x(x+2)

=0; 0&y(x(x—2)
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APPENDIX

A. The Plasmon Poles

The integral (5.4b) defining f(x,y) can be evaluated
for real y in the limit o. ~ 0 by splitting the integrand
into its real and imaginary parts using the relationship

1 1
lim =P +r'7-rb(s)"' s+zn s

The result is
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P(x&2, y) =0; x(2+x) &y

1jy
4&x j

(A.2b)

x(2—x) &y&x(2+x)
y

0&y&x(2 —x)
2x'

Z(x, —y) =Z(x,y).

This result was obtained previously by Hubbard, '
although his A and Z diGer from ours by a factor
involving pF and x . The utility of this result is twofold.
Firstly, integrals over y involving f can be frequently
transformed to contour integrals to be evaluated by
shrinking the contour down around the singularities
of f Once .these have been identified the limit II ~ 6
may be taken. It will turn out that the integrals re-
maining will involve only A and Z, to be integrated
over finite lengths of the real y axis. Secondly, this
result determines the appropriate branch of the function
which describes f when n/0, and y is anywhere in the
complex plane. That is, the integral (5.4b) for f can
be evaluated just as it stands, with the result

1 1 1 jy —2in
f(x&2, y)= — x irry —1———

~
+x

~)
y —2icr+x (2+x)

Xln —-', (y—2irr)
.y —2in+x(2 —x)

y —2in+x(2 —x)
Xln +-,' (y+2iir)

22Q

y+ 2irr —x(2—x)—
Xln

y+2in

1 1 jy+2irr
+—1——

i
—x

f

4E x

y+2irr —x(2+x)X», (A.3a)
.y+ 2in —x(2—x)

1 2ici 1 1 jy —2in
f(x)2, y)=- x— +- 1—-I +x

i
y —2irr+x(x+2)

Xln
y
—2iu+x(x —2) .

1 1 jy+2ia —x
/

y+2in —x(x+2)
Xln (A.3b)

.y+2irr+x(x —2)

FIG. 4. The curve Imf(x, y) =0.

The phase of the logarithm of each divisor or dividend
should be restricted to —m. &P&+m, and (A.3) will
then go over into (A.2) in the limits y real and n ~ 0.

This form (A.3) is useful in locating the plasmon pole
at that yo for which

x'+cf(x,yo) =0,
Ref(x,yo) = —x'/c,

Imf(x, yo) =0.
(A.4)

(A.S)

Ke regard the position of the pole as being determined
by the intersection of the curves in the yo plane dehned
by (A.4) and (A.S). Since the curve (A.5) is independent
of c, it is convenient to study this curve, and to regard
the position of the pole along it as being determined
by (A.4). The general behavior of the curve is depicted
in Fig. 4. The relevant features of the curve are these:

For y far from the imaginary axis, the curve is
asymptotic to a straight line whose angle with the real
axis is proportional to 0..

For y closer Ko the imaginary axis, the curve ap-
proaches the end of the branch cut of f(x,y), and,
crossing the cut, continues on a diGerent sheet of the
function. The distance of this crossing from the end
of the cut is also proportional to o..

The plasmon pole on the sheet of the function which
is of interest to us always lies in the second and fourth
quadrant, if it is present at all, and thus the rotation
of the axis used in Sec. V can be performed without
crossing any singularities.

In the limit 0. ~0, the plasmon pole in the fourth
quadrant lies just below the real axis to the right of
the cut. As x'/c is varied, this pole reaches the end of
the cut. The value of x for which this occurs is deter-
mined by (A.4) by setting yo

——x(x+2). This value of
x, which depends on c, is called x„""the cutoff mo-
mentum, or the critical momentum, since for greater
values of x, the plasmon pole does not appear but seems
to be imbedded in the continuum. As x is reduced from
values greater than x, to values less than x„the plasmon
state appears at the end of the continuum represented
by the cut, and detaches itself from this continuum.
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This behavior was somewhat mysterious when the
plasmon state was regarded as one of the states arising
from the continuum. Now that we have traced its
position onto the nonphysical sheet for x)x„ this
mystery is dispelled.

B. Terms in the Operator" 0

co%',GP=I~G,

The full 0 is given by

vxvvpz vvz c)xclp c)yr)p

( c)'X f)'G c)'X O'G )+2/ +*J' (r)xr)y ap.8p„c)p,Bp„clx8y)

8'X 8'6

"The summation of xys means that xys are to replace each other
cyclically. The double summation means that xp„ is to be replaced
by each of the eight other combinations of a component of R and
a component of p.

iA (8 8 8 8
OLX,G7= lim exp —g

~R;» 2 *v. (BE c)p c)p r)E )
XZ'(R, yco) G(R', p'co)
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A 180' magnetic spectrometer has been employed to measure the energy of several neutron thresholds
and p-ray resonances, as well as the energy of the alpha particles emitted by Po ' . The primary reason for
performing these experiments was to obtain a set of energy standards with consistent experimental tech-
niques for all the measurements. The neutron thresholds studied were Li'(p, n)Be', 8"(p,l)C", C"(p,n)N",
and F"(p,l)Ne". The y-ray resonances at 872 kev in F"(p,ny)O" and at 992 kev in Al" (p,y)Si" were ob-
served. The same instrument used to make the energy measurements for these experiments was also em-
ployed to determine the energy of the alpha particles emitted by Po'".

INTRODUCTION

~CONSIDERABLE effort has been devoted in recent~ years to precise energy measurements of several
nuclear reactions frequently employed for calibration
purposes. These measurements have consisted pri-
marily of the energy determination of neutron thresh-

olds, p-ray resonances, and the measurements of the
energy of alpha particles emitted by radioactive sub-
stances. Generally speaking, the reason for the con-
tinuous effort to obtain increased accuracy in these
measurements has stemmed from the extensive use of
these reactions in calibrating analyzing magnets associ-
ated with accelerator energy determinations and with
Q-value and nuclear mass measurements. It seemed of
some importance to perform a representative set of
calibrations by employing a single instrument and a
single analysis technique. This paper describes such a
set of measurements.

* Supported in part by the U. S. Atomic Energy Commission.
t Now at Lawrence Radiation Laboratory, Livermore, Cali-

fornia.

The present work has been concerned with (1) the
neutron thresholds in the reactions Li'(p, rt)Be',
3"(p,rt)C" C"(p, rt)N", and F"(p,rt)Ne" and (2) the
p-ray resonances at 872 kev for the reaction F"(p,ny) 0"
and at 992 kev for APr(p, y)Siss. In addition, (3) the
energy of the alpha particles emitted by Po'" has been
measured with the same instrument. These particular
reactions were chosen as being those most frequently
employed in energy calibration measurements.

EXPERIMENTAL PROCEDURE

The Rice University Van de Graaff accelerator, with
associated 90 magnetic analysis, has served as the
source of monoenergetic protons for these experiments,
with a 180' magnetic spectrometer' employed to deter-
mine the proton energy. The basic procedure has been
to determine the accelerator bombarding energy as a
function of the magnetometer frequency of the Van de
Graaff analyzing magnet by measuring the energy of

' K. F. Famularo and G. C. Phillips, Phys. Rev. 91, 1195 (1953).


