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Variational Treatrrient of Electronic and Mesonic Hydrogen Molecule Ions*
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The Schrodinger equation for three Coulombic particles is formally reduced to an internal one. Solutions
to this equation are sought via the variation principle without recourse to the Born-Oppenheimer expansion.
Some calculations for electronic and mesonic isotopic hydrogen molecule ions demonstrate that even very
simple trial functions give results comparable to those obtained from conventional Born-Oppenheimer
treatments but with considerably less labor. Values for the total energies and internuclear distances for the
ground and two lowest excited states are reported along with the separation of the centers of positive and
negative charge which exists when the two nuclei have different masses.

I. INTRODUCTION

A T the end of 1956, results of some liquid hydrogen
bubble chamber experiments were reported'

which seem to indicate that the process p+d —&He'

was catalyzed by p, mesons by formation of a mesonic
HD ion. The possible use of this process in controlled
fusion reactions was discussed by Jackson' and more
recently by Belyarev et al.' and Cohen et a/. 4 The
properties of the system (pttd)+ are here of importance
and a number of calculations and discussions of this
ion and also of the molecule have appeared in the
literature. ' ' Most of these treatments use the Born-
Oppenheimer approximation" including the necessary
correction terms which are large because the ratio of
the mesonic to the nucleonic mass is not small. It is,
however, possible to avoid this approximation com-
pletely. Kolos et al. ' did this by using a trial wave func-
tion which is a function of the relative coordinates of
the three Coulombic particles and using the real masses
of the particles in the Hamiltonian. The use of the
relative coordinates will automatically take the motion
of the center-of-mass of the system into account in a
correct way. This method is therefore exact and, as in
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all variational calculations the accuracy obtainable in
practice depends only on the choice of the trial functions
and the amount of numerical work which can be carried
out. The method we have used is formally slightly
different from the treatment of Kolos et al. ,' but it is
also exact and makes no use of the Born-Oppenheimer
approximation. We have transformed the Hamiltonian
in such a way that the operator representing the kinetic
energy of the center-of-mass of the system is isolated.
The remaining part, which is called the internal
Hamiltonian, is then used in the Ritz variational pro-
cedure with trial functions of a form which closely
resembles the physical picture one has of the H2+
system. Our approach, when applied to H2+, is com-
pletely analogous to the He problem, the only difference
being that the mass polarization operator, which has
to be included as a small correction for a He atom with
6nite nuclear mass, is of great importance for H2+. In
the coordinate system we use, the motion of the protons
is referred to the electron as origin.

The existence of a bound state for a three Coulombic
particle system requires that one particle has a charge
of diGerent sign from that of the other two. Even if one
restricts oneself to particles all having charges of equal
magnitude, as we will do, there are surprisingly many
systems of physical interest such as H, e+e+e, (pttp)+,
(pttd)+, (dttd)+, Hs+, HD+, Ds+. Of special interest are
(pttd)+ and HD+ because there is no restrictive exchange
symmetry condition for these systems and one expects
that they will have properties diferent from the systems
having two identical particles.

In Sec. II we derive the Hamiltonian and give values
for the physical parameters used in the calculation.
The symmetry properties are discussed briefly in Sec.
III. In Sec. IV the choice of trial function and some
details regarding the calculations are discussed. The
numerical results are given in Sec. V.

II. THE HAMILTONIAN

The nonrelativistic Hamiltonian for three particles
having masses and charges M, and Z;e (s= 1, 2, 3) and
interacting Coulombically is

3 A' ~z~g&
&o= —Z ~o+ Z

'=r 23I; »=r iq;—q;i
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where q, is the vector locating particle j in a space-fixed
coordinate system. The Hamiltonian is inconvenient
in this form because it contains implicitly a part due
to the kinetic energy of translation while it is only the
internal energy that is responsible for the physically
interesting features. One way to circumvent this

difhculty is to make use of the commutation of Ho with
the total linear momentum and to require the wave
function to be an eigenfunction of the total momentum
with eigenvalue zero:

and use of the units pe'/A' for energy and fP/Ite' for
length. It is useful to define two additional parameters:
an asymmetry parameter, f, for the particles 1 and 2,

f= (M2 —Mt)/(M21 M,),

and an "atomic character" parameter, b,

b= 1—p/M3.

The Hamiltonian may then be written

Ptotalc (2) &=To+bfTt+ (0 1)T2—+ V, (12)

An equivalent procedure which will be employed here
is to introduce new independent variables which permit
separation of the Hamiltonian into a translational part
and a purely internal part. The new variables are
chosen to be the coordinates of the center of mass,

R= (Mt+M2+M3) ' Q M,q;,

where

TO 2 (ATJ+AT2) t

Tg= —
2 (Dr2 —Art),

Tg=V'rl V'r2,

ZQZ2 Z2Z3 Z F3+ +
1'y —I'2 f2

(14)

(16)

and the coordinates of two of the particles relative to
the third,

I'y= gy —
Q3 (4)

where H& is the kinetic energy due to translation,

Hr = ——',h'(Mg+M2+M3) 'Dg,

and H is the internal energy,

A'p 1 1 q i't'pi 1 qa=—
~

+ ~~„—
~

+
2 (Mt M3) 2 (M2 M3~

(7)

A2

Vt V2+~ (8)
M3

The cross derivative term, called the "mass polari-
zation, " is a consequence of the nonorthogonality of
the new coordinates. It could be avoided by using an
orthogonal transformation to eGect the separation"
but only at the expense of complication of the potential
energy expressions and loss of a simple physical picture
of the variables.

The. internal Hamiltonian is put in reduced form by
definition of a reduced mass, p, ,

p 2M'

1

2&2 M3

"J.O. Hirschfelder and J. S. Dahler, Proc. Natl. Acad. Sci.
U. S. 42, 363 (1956).

I'2= Q2
—Q3.

Particle number three is the one with charge of odd
sign. Substitution of this transformation into (1) leads
to the separated form

+0 IIT+Jf

The entire operator H is to be treated according to
the Rayleigh-Ritz variation technique for the solution
of the Schrodinger equation, H%=E+, so that the
Born-Oppenheimer or similar approximations are not
necessary. For all systems we have considered

~
Z;~ = 1,

so the Hamiltonians in their reduced form will only
diGer in the values of b and f. Some of the values of
these parameters are displayed in Table I.

p;=Z~ D,aqa, (17)

such that pp= R and y~, - y~ ~ are the vectors locating
(Ã—1) of the particles relative to the center-of-mass.
The corresponding transformation on the gradients is
the inverse of D,

Vp, ——Qp V~, (D ')p. (18)

Thus Jo is unchanged in form by the transformation

Jo= —ih Q; q;XVq;= i7i Qg yI,XVpI„—
but the erst term, —NRXVz, is clearly the angular
momentum of the center of mass in the space-fixed

III. SYMMETRY PROPERTIES

Hp has the usual invariance under all translations and
rotations. The translational symmetry is already ac-
counted for by removal of that degree of freedom from
the problem. The rotational symmetry is less trivially
disposed of since not all the angular momentum resides
in the variable R. It is possible, however, to separate
the total angular momentum, Jo, into a part due to the
motion of the center of mass and a part due to the
relative motion of the system about the center of mass.
To demonstrate this we consider a nonsingular trans-
formation D defining new variables y; from the old
ones q~.
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TABLE I. Values oi parameters' in the Hamiltonian (12).

System

H (Ms ——~)
H
(~s«)
(I I P)
(e e e+)
(PI P)+
(PR)"
(~ed)
H2+
HD+ b

D2+
H,+(Mg ——Ms= ~)

1
0.9994 5567
0.9467o

0.89886
0.5
0.10114
0.07784'
0.053302
0.0005 4433
0.0004 0841
0.0002 7245
0

0
0
0
0
0
0—0.33299
0
0—0.33299
0
0

p/m, =energy
in

atomic units

1
0.9994 5567

195.588
185.706

0.5
185.706
190.5is
195.58s

0.9994 5567
0.9995 9159
0.9997 2755

Length in
units of

CH

1
1.0005 4462
0.0051 128
0.0053 849
2
0.0053 849
0.0052 488
0.0051 128
1.0005 4462
1.0004 0857
1.0002 7252
1

Based on the following values taken from the American Institute of Physics Handbook (McGraw-Hill Book Company, Inc. , New York, 1957). m&fm&
=1836.13, m&fma ——206.6, m&/mal =0.500 3849, 1 atomic unit {a.u.) =m, e4fi 2 =219 474.62 cm ' =27.2097 ev, 1aH =Ii'e 'm& 1 ——0.529 172 A.

b Particle Qo. 1 is D.

coordinate system and the remainder,

must be the angular momentum relative to the center
of mass. J is unchanged by a new nonsingular trans-
formation on the internal coordinates and it commutes
both with H and II&. Thus, the rotation symmetry
can also be reduced to a purely internal problem and
can be accounted for by choosing internal trial functions
to be eigenfunctions of J' and J,.

H is further unchanged by an inversion through the
center-of-mass, and wave functions must be either
symmetric or antisymmetric with respect to this
operation. If two of the particles are identical, they
have exchange symmetry of a type dictated by whether
they are bosons or fermions. Since our Hamiltonian is
spin-free and no more than two particles are involved,
the wave function may be written as a product of a
space part and a spin part regardless of the values of
the spins involved. Because of this, only spatial sym-
metry need be considered, with the understanding that
the spin function symmetry will give the correct
exchange behavior for the product. Even if there are
no identical particles in the system, the exchange
symmetry may hold approximately because all the
terms in H are symmetric except for the antisymmetric
T&, which may cause only slight mixing of the two
symmetry types.

We will denote the symmetry of the functions used
Jg &' where J=S, I', D . as usual, and the subscript
and superscript refer, respectively, to inversion sym-
metry and exchange symmetry of the space function.

To decide among the various choices for trial function
symmetry, it is helpful to look at the known symmetry
properties of the ground-state functions for the limiting
cases. In He-like ions this is described by the spectro-
scopic term symbol 'S, which is equivalent to S+'. For
the H2+ molecule, one can take the results from treat-

ments based on the adiabatic Born-Oppenheimer
approximation. The symmetry of the ground electronic
state is described as Z,+, the vibrational states are
totally symmetric, and the symmetry of the rotational
states is given by (—1)~ for both inversion and ex-
change. Hence, the ground rotational state in each of
the vibrational states for the ground electronic state
has the same symmetry, S+'.

The obvious choice for calculation of ground-state
properties would seem to be functions all of the type
S+' when exchange symmetry is present, with some
terms of the type S ' when the system is unsymmetric.
This choice, when applied to H2+-like systems, will
have the feature that the higher roots of the secular
equation will be upper bounds for the excited vibrational
levels.

S= r1 r2

u= r1—r2 .
(21)

Three angular coordinates are needed in addition to

'2E. A. Hylleraas, Z. Physik 54, 347 (1929). See also E. A.
Hylleraas, Norske Videnskaps-Akad. Oslo, Skrifter, Mat. -naturv.
Kl. No. 6 (1932).

IV. CHOICE OF TRIAL WAVE FUNCTIONS AND
CALCULATION OF MATRIX ELEMENTS

This investigation was intended more to serve as a
preliminary test of the practicality of doing calculations
on simple molecular systems without using the Born-
Oppenheimer approximation than to give extremely
accurate results for the whole series of three Coulombic
particle systems. Hence, it was desirable to use func-
tions which were very simple but chosen in such a way
that relatively few of them could give good descriptions
of the molecular ions, electronic and mesonic. It is
possible to choose such functions on physical grounds.

To reduce the labor in calculation of matrix elements,
the functions were expressed in terms of the Hylleraas
coordinates, "
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these for complete specification of the configuration,
but 5' functions are independent of them and they may
be omitted from the beginning.

The general function in the expansion was then taken
of the form

ping
——u"t' exp[ ——',s——',y-'(u —Ip)'7, (22)

'3 See, e.g. , P. O. Lowdin, J. Mol. Spectroscopy 3, 46 (1959).
' See L. Pauling and E. B. Wilson, Introduction to Quantum

M echanics (McGraw-Hill Book Company, New York, 1935),
p. 333.

'ST. L. Bailey and J. L. Kinsey, preprint No. 45 from the
Quantum Chemistry Group, Uppsala University, Uppsala,
Sweden. July 1, 1960 (unpublished).

with the usual kind of scale parameter, g."
The exp[——,'y '(u —es)'7 dependence was used in

order to describe the vibration of the two nuclei. This
would be the correct ground-state eigenfunction, in
fact, if the coordinate (u —us) really corresponded to a
harmonic vibration. The higher u~ terms associated
with excited vibrational states contribute, roughly
speaking, anharmonicity corrections. Values of the
nonlinear parameters y and uo were estimated from the
experimental equilibrium distance and force constant
for the electronic molecules. They were determined by
approximate trial-and-error minimization of the energy
obtained with a two-term function (goo+@os) ««he
mesonic systems.

The 6exp( ——',s) expansion was chosen because of
the excellent result for the electronic energy of H2+

obtained by James" using a two-term function of the

type (1+et'u ') exp( —ksu '). The difference between
his variables 1/I, s/e and our t and s is somewhat offset

by the effect of the Gaussian exp[—» '(n —es)'7 in

keeping I effectively near a constant value.
Powers of s were not included in the expansion in

this pilot calculation, though it would be almost trivially
simple to do so. They would certainly permit a lowering
of the energy. In terms of the Born-Oppenheimer
approximation, this lowering will be a result of a more
accurate treatment of the electronic energy as a func-
tion of the internuclear distance. In more elaborate
treatments this s dependence should not be omitted,
but it was not expected to be particularly instructive
at the present.

One disadvantage of the set (22) is that it is non-

orthogonal and the question of approximate linear
dependence arises. Unfortunately, this set develops a
near singularity in the overlap matrix at a rather early
stage. The ratio of the greatest and least eigenvalues
of the overlap matrix has been used" as an indication
of the severity of its near singularity. When the non-
linear parameters have the values used for the electronic
systems, the ratio is 4.56)&10 with six functions, and
6.41)(10' for eight functions. The corresponding values
for the functions used for the mesonic systems are
1.02&104 and 3.65&10', respectively. This indicates
that expansions of more than six terms are somewhat

unreliable for the former set. The latter could probably
be extended to a few more terms, but not to really long
expansions. One may get some understanding of this
complication by looking at the analytical form of the
set (22). When approaching the molecular limit, that
is b —+1, the nuclei become localized around a Axed
internuclear distance, uo. This implies that y —+ 0 and
the Gaussian gets very peaked, tending to a 6 function.
The wavefunction is then essentially different from
zero only for u values close to n(). In this small range the
different powers of I will be approximately linear
dependent and as a consequence the overlap matrix
will be almost singular. This limitation is one that
is almost certain to turn up in sets chosen, as these
are on the basis of their simplicity and physical
appropriateness.

All the matrix elements were computed using a desk
calculator, with the aid of tables of the functions A to
be defined below. The eigenvalues of IIc=EAc were
determined by two-dimensional Jacobi rotations using
the electronic computer at the Quantum Chemistry
Laboratory. The matrix elements were calculated with
the scale factor g=1. In the computer the matrices for
the different operators in H are multiplied by the
appropriate power of a chosen g and then the B matrix
is formed. If the chosen g value gives BE/Brf=0 for the
state of interest, the calculations are stopped; otherwise
a new g value is used and the process repeated. The
other expectation values reported were computed using
a desk calculator.

For simplicity each function of the type (22) was
multipled by a factor of (-,'~'e 'y ') '*, where
8= —ue+~y', since this caused a common factor to
drop out of all the integrals. Each matrix element can
then be expressed as a sum of integrals of the type:

2y-'s —le—' I@exp[—y '(I—Ns)' —ujdg
aJ g

=2m **y@ (x+s)o exp( —x')dx=h. (Q; ~; y), (23)

with K= gpss
The integrals A satisfy the recursion relationship

~A(Q; ~; y) =y 'A (Q+1; a, y) ——',
QyA (Q—1;c; y). (24)

The values of h. (0; K; y) = 1+2'. :Js" exp( —x')dx and
A(1; s; y) =y[yA(0; ~; y)+s. ' exp( —s')7 were taken
from the U. S. National Bureau of Standards table of
the error function and its derivatives. The other A

integrals were obtained on the electronic computer by
use of the recursion relation. The maximum number of
A integrals needed for the matrix elements is 7, and for
most of them 2 or 3 A integrals are sufficient. Each
matrix element was calculated with 9 correct decimal
figures.
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A. two functions:

B. four functions:

C. six functions:

D. eight functions:

K. four functions:

F. eight functions:

G. twelve functions:

k=0'
k=0 1

k=0, 1, 2;

3=0, 2.

1=0, 2.

I=O, 2.

k=0, 1, 2, 3; l=0, 2.

k=0'
k=0 1

k=0, 1, 2;

123
123

3=0,

Oy

l —0, 1, 2, 3.

The sets E, F, and G are important only for the asym-
metric system, HD+ and (ptsd)+, because the functions
containing odd powers of t are connected to those
containing even powers of t only by the term bfTi in
the Hamiltonian (12). The values of the nonlinear
parameters used in the calculations are for the electronic
systems y =0.415 and ~=Ng '—-,'y =6.33 and for the
mesonic systems &=1.7 and ~=1.00. The energies were
not fully minimized with respect to these parameters.

V. RESULTS AND DISCUSSION

In this section the numerical results of the calcu-
lations are presented. Unless other units are specifically
stated, all quantities are expressed in atomic units
(a.u.) with the appropriate reduced mass put equal to 1.
Experimental values are given for comparison when

they are known. Otherwise, the best theoretical values
available in the literature are quoted.

The diGerent basic sets used, all having typical
members of the form (22), will be identified by the
following code:

Results for the energies of the electronic systems are
contained in Table II and those for the mesonic systems
in Table III. Since the zero of potential energy was
taken at infinite separation of all three particles, the
energies computed are relative to that completely
dissociated state. These energies are not the true
binding energies because the three-body system dis-
sociates at a lower energy into one free particle and a
hydrogen atom-like two-particle system. The energy of
this state is ——,'for the symmetric system. The asym-
metric ones have two possibilities for this kind of
dissociation, the one of lower energy being the one in
which the free particle is the lighter of the two having
like charge. The energy for this state is —1/L2(1+bf)].

Even though the sets used were quite small, it is seen
that the ground-state energies are fairly accurate,
especially for the electronic systems. The excited vibra-
tional states are somewhat less well described, but the
energies are still remarkably close to the actual values.
The vibrational frequencies, being small differences
between large numbers are especially sensitive to errors
in the location of the energy levels. For H2+, using the
six-term wave function (C) giving the lowest ground-
state energy, our calculations yield the values 2456 cm '
and 3123 cm ' for the first and second vibrational
frequencies. The separation theorem" tells us that the
roots to our secular equation are upper bounds to the
exact eigenvalues, and using the three upper bounds
we obtain for H2+ the first and second vibrational
frequencies 2437 cm ' and 2834 cm ', respectively.
The experimental" values are 2173 cm ' and 2049 cm '.

TABLE II. Energies for the electronic systems. ' Nonlinear parameters: y=0.415, I(:=6.33, in atomic units.

System

Hs+(~)

D2+

HD+

H2+

type

A
8
C

Basis
order

"Exact"
A 2
8 4
C 6

A 2
8
C 6
8 2X2
p 2X4
p 2X4
A 2
8
C 6
C 6
C 6

Cohen et al. '
Experimental~

Scale factor

1.352
1.3583
1.3583

1.349
1.3523
1.3523

1.347
1.3499
1.3499
1.34656
1.3497
1.3223

1.345
1.3475
1.3475
1.330
1.283

0.599 517
0.599 616
0.600 803
0 602 64b

0.598 078
0.598 136
0.598 332

0.59/ 364
0.597 410
0.597 446
0.597 364
0.597 410
0.597 204

0.596 651
0.596 688
0.596 689
0.596 605
0.595 535
0.597 249
0.597 405

0.593 358
0.594 745

0.589041
0.590 091

0.586 886
0.587 777

0.586 890
0.587 130

0.584 743
0.585 494
0.585 580
0.584 941
0.587 266
(0.587 499)

0.584 057

0.578 083

0.5/4 762

0.571 256
0.571 964
0.57Z 659
0.577 863

(0.578 158)

a Where more than one scale-factor is listed for any set, the eigenvalue for which the scale-factor is optimized is italicized.
b E. A. Hylleraas, Z. Physik 71, 739 (1931).
& See reference 9.
& See reference 17. Kolos et al. ~ gives Bo = —0.59715 a.u.

'6 See e.g., P. 0. Lowdin, Advances in Chemical Physics (Interscience Publishers, Inc. , New York, 1959), Vol. 2, p. 266."G. Herzberg, SPectra of Dtatomic Molecrsles (D. Van Nostrand Company, Inc. , Princeton, New Jersey, 1950).
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TABLE III. Energies for the mesonic systems. ' Nonlinear parameters: y= 1.7, a= 1.00, in atomic units.

System

(de)+

type

A
8
C
D
D

8
C
D
E
p
gf

p
G

A
8
C
D

Basis
order

2

6
8

2

6
8

2X2
2X4
2X4
2X4
2X6

2

6
8

Scale factor

1.307
1.312
1.312
1.312
1.152

1.291
1.295
1.2947
1.295
1.2907
1.294975
1.0055
0.8884
1.2947

1.274
1.2785
1.28
1.28

0.555 696
0.555 836
0.556 531
0.557 SP6
0.551 598

0.548 681
0.548 755
0.549 639
0.551 167
0.549 770
0.549 PN
0.528 104
0.506 692
0.550 889

0.542 184
0.542 290
0.544 272
0.545 962

0.460 817
0.480 883
0.483 393
0.490 130

0.435 420
0.455 624
0.462 312

0.437 482
0.463 367
0.460 423
0.458 047

0.412 916
0.432 985
0.444 291

0.332 921
0.408 025
0.433 420

0.288 241
0.356 501

0.358 674
0.441 676
0.448 5ZO
0.391 283

0.274 324
0.311 417

& Where more than one scale-factor is listed for any set, the eigenvalue for which the scale-factor is optimized is italicized.

The total ground-state energy for H2+ is 130 887 cm—'
using our six-term function whereas the experimental"
value is 131 044 cm '. lt is of interest to note that even
the two-term function (A) gives very satisfactory
results for the electronic systems.

Our ground-state energies for the mesonic systems
are uniformly slightly inferior to those of Cohen et al. '
and Kolos et al. , an unsurprising fact in consideration
of the much greater elaborateness of their calculations.
Neither of these works gives an energy for any excited
S' states. For the (Ppd)+ system we observe that the
inclusion of the odd powers of t has considerably lowered
the ground-state energy as can be seen by comparing
the results for the two corresponding sets, A and E,
3 and F, C and G. In Table IV our results are compared
with the results obtained by Cohen et a3.4 and Kolos
et al. '

It is illuminating to consider the change in character
of three Coulombic particle systems as b goes from 1

to 0, that is from the atomic to the molecular ion. I et
us first consider the total energy Eo in reduced units
for systems with two identical particles. For b=i we

have Ep —0.52775, 's c)Ep/c)b=———0.03288 " and

TABLE IV. Total energies in ev for mesonic molecular ions. '

System

(I» f)'
(PR)+
(p'ud)'

Cohen et al. Present work

2771

2878

2986

2759
2856~
2857'
2969

Kolos et ul. '
2778

2981

a The total energy of (pp) is 2526 ev and of (dp) 2661 ev using the
constants given in Table I.

b See reference 4.
o See reference 7.
& Using function G, which contains both odd and even powers of t.
e Using function D. The function C, which is identical to the symmetric

part of G, gives 2849 ev.

"C.L. Pekeris, Phys. Rev. lj.2, 1649 (1958).

TABLE V. Expectation values (I) in atomic units
for the ground state.

Syst
nction D

H2" (~)
D+
HD+
H2+
(diw, l)+
(P.~)
(PI P)+

2.02968
2.03426
2.03729
2.04032
2.67159
2.70534
2.74259

2.07455
2.06278
2.06057
2.05977
2.69302
2.73504
2.77505

2.01308
2.04365
2.05359
2.06053
2.66229
2.76850
2.84614

2.65225
2.79022
2.89134

"A. Froman, preprint No. 34 from the Quantum Chemistry
Group, Uppsala University, Uppsala, Sweden, December 1, 1959
(unpublished).

cPEp/cjb'= —0.06&" for b= 0.5, Ep= —0.52399,' and for
b=0, Ep —0.6026——4 (reference a, Table II). Obviously
there is a maximum Eg for some b value. We conjecture
that this maximum will occur for b= —,. This is sug-
gested by the fact that b=-,'corresponds to the masses
3fj=3I2=-,'3f3, and for these masses the center-of-mass
is exactly halfway between the "nucleus" and the
center of mass of the two identical particles. The b

value might then be used as a criterion of atomic
character (b&-'s) and molecular character (b(s). From
this point of view the system (e+e+e )+ has molecular
character, and one would expect that a trial function
emphasizing this character should give good results.
It is also interesting to consider the change in the
correlated motion of the two identical particles as b

goes from I to 0. For b= I, that is H ' (M'p= ~), the
Coulomb repulsion between the electrons is responsible
for the correlation, which may be split up in two terms,
radial and angular. For H ' the radial correlation is
dominant and we do not 6nd the electrons at an
approximately constant distance apart. The mass
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TABLE VI. Values of 8 defined in Eq. (26) for the ground states.

System

Reference
274X10 5

18

e+e+e

170X10 5

19

(PI P)+

127X10 5

(PI ~)' (4d)'
323X10 ' 773X1o 7

This work
142X10 "

Hp+(oo)

0

polarization gives an angular correlation eGect and, as
b —+ 0, this gets more important than the radial eGect
caused by the Coulomb repulsion: the two identical
particles then tend to be on opposite sides of the
"nucleus" which for H2+ is the electron, and the distance
between them tends to a constant value. As b goes from
1 to 0 the correlation changes from essentially radial
type due to the Coulomb repulsion, to angular type,
caused by the combined eGort of the mass polarization
and the Coulomb repulsion.

In Table V, the average internuclear distance,
Rp=(u), in the ground state are tabulated. Conversion
of the values obtained with six functions (C) for the
electronic systems into Angstrom units gives:

Rp[Hs+(po))= 1 0653' Rp(HD+) = 1 0871'

Rp(Ds+) = 1.0817; Rp(Hs+) = 1.0910.

These values may be compared with the experimental
E,=1.060 A." This number is the value of R for
minimum potential energy for the nuclei and is in
general not the same as Eo, the average internuclear
distance. For Hs+(po), R, and Rp should be equal as
they approximately are in our result. Owing to the
anharmonicity Eo will generally be larger than 8, and
our results show the expected trend. For the mesonic
systems no experimental results are available. The
eight-term function (D) gives

Rp[(dpd)+j=o. ooi 176 A;

Rp[(P&d)+j=O.OO7 75O A;

Rp[(pup)+3=0 008 239 A.

The internuclear distance for the mesonic systems is
remarkably short and should be compared with the
range of the nuclear forces which is of the order 10 ' A.

For the same eight-term functions, average values
of I' were calculated for the mesonic systems in order
to get some measure of the average vibrational ampli-
tudes. Values obtained for the relative root-mean-
square displacement x,

are
xp[(dpd)+j =0.2985,

xp[(ppd)+g =0.3056,

xp[(ppp)+$ =0.3155.

P-=(P)= s(~&iu), (27)

which is easily derived from the fact that we have axial
symmetry around the "electronic" axis so we need only
the distance, p, between the projection of the "nucleus"
on this axis and the midpoint between the "electrons. "
The values obtained are given in Table VII. The value
for HD+ is to be compared to the dipole moment of the
neutral HD molecule which has been estimated by
Blinder" to be p, HD=8.89&(10 ' Debye unit. When the
proper conversion factors are used we obtain for HD+
p = j..37)&10 ' Debye unit, which supports the quali-
tative idea that p, (HD+) should be about one half
pHD. For (ppd)+ we obtain p„=2.48 10 ' Debye unit.

These large values were to be expected in view of the
rather broad Gaussian function, i.e., small "force
constants, " required for those systems. Kolos et al. '
obtained for the system e+e+e, xo ——0.5254 and for
Hs+(po) xp is, of course, zero.

A further quantity of importance for the mesonic
ions is the probability of the two nuclei being sufficiently
close for the nuclear forces to act. For our model, with
only a Coulombic potential, this is eGectively the
probability density for zero separation of the nuclei,
i.e., the expectation value for 8&'&(rts). H our function
is P= Qs cpyp, where tpp= happ is defined in (22) and all
other terms contain powers of I or $, then

3—=(3"&(r»))=4cp'tP(s&') '* exp( —s'). (26)

The values computed with the largest basis we have
used in the calculations are reported in Table VI.

For HD+ and (ppd)+ a "charge asymmetry" exists,
i.e., a separation of the centers of positive and negative
charge. The expression for this separation in terms of
the Hylleraas coordinates is

(u') —(u)' &

x=
&u)'

Function

0.0004479
0.0005373

(P~d)+

0.16281
0.18584

TAm. K VlI. Charge separation, p, in atomic units
for ground states.
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