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Calculations of the ionic part of the electric field gradient at the nuclei of certain metals are combined
with available experimental data to obtain information about the electronic structures of the metals, or
estimates of nuclear quadrupole moments. The metals considered are Be, Sc, Re, La, Mg, Co, Zn, and Cd,
which have the hexagonal close-packed structure, and indium, which has a centered tetragonal structure.
Some comparison is made with other information about the shapes of the Fermi surfaces and a pertinent

experiment on Zn is suggested.

I. INTRODUCTION

N an earlier paper,! the field gradient at Be? nuclei

in metallic beryllium was calculated to derive the
Be® nuclear quadrupole moment from the measured
value of the quadrupole coupling constant. It was
shown that the major part of the field gradient arose
from the charges on the ions at the lattice sites, the
conduction electrons serving to enhance the field
gradient by only 87%,. This behavior of the conduction
electrons is quite different from the electrons which
take part in the bonds in covalent compounds.

In the present paper, we shall report the results of
our calculations for the lattice part of the field gradient
in other metals with hexagonal close-packed structure
about which experimental evidence is available regard-
ing the nuclear quadrupole coupling constant. In
addition, the quadrupole coupling constant in metallic
indium, which has face centered tetragonal structure,
is also available from pure quadrupole resonance
measurements. We have computed the contribution to
the field gradient in indium metal from the In®*t ions
in the lattice. To obtain the total field gradient at the
nuclei in these metals one needs the contribution from
the conduction electrons. This requires a calculation of
the wave functions of the conduction electrons, which
is rather complicated because of the presence of large
numbers of core states. Our program here is thus
simpler: we shall calculate the ionic part of the field
gradient in each of the metals and, wherever possible,
compare this to the total field gradient as derived from
known values of the coupling constant €2Q, and the
nuclear quadrupole moments Q. Knowing the ionic
contribution gives an estimate of the field gradient
produced by the conduction electrons, and thus gives
information about the departure of the electron charge
distribution from spherical symmetry. Where Q is not
known, some estimate of it can be made from a knowl-
edge of the lattice part of the field gradient and a
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rough estimate of the electronic contribution to the
field gradient. Another useful result of this work is to
emphasize the utility of the method of Nijboer and
de Wette? for calculating quadrupolar (and other)
lattice sums. Its rapid convergence and simple form
make it suitable even for desk calculation.

II. CALCULATION OF THE IONIC SUMS: THE
NIJBOER AND DeWETTE METHOD

In order to find the ionic field gradient, i.e., the sum
Quattice= D¢ (322—72)/7?, 1)

over all lattice points at distances r;= (x;,y;3;) from
the origin, in a hexagonal close-packed metal one
might be tempted only to scale the value of ¢ found
for Be according to the cube of the ratio of the lattice
spacings of Be and the other metal, ignoring any
differences in the ¢/a ratio. Earlier calculation by
Campbell et al?® of the field gradients in hcp metals
indicated, however, a strong dependence of ¢ on the
¢/a ratio. They used the Ewald-Kornfeld method* and
gave equations for the crystalline potential as a linear
function of (¢/a). The value we obtained! for the lattice
sum in Be differed by a small but appreciable amount
(about 1.5%,) from that given in reference 3, so we
have calculated ¢ for several values of ¢/a corresponding
to axial ratios observed in some metals, using the
method of Nijboer and de Wette.? We have verified
the strong linear dependence found by Campbell et al.,
but our values differ slightly from theirs (less than 2%,
in all cases). Our results appear in Fig. 1; on this scale
the difference between our results and those of Campbell
et al. is not perceptible. We deduce the following linear
relation:

Qratsice=[0.0065—4.3584 (¢c/a—1.633)]/a?,
as compared to Campbell ef al.’s relation:

Qrastice=[0.0068 —4.4288 (c/a—1.633)]/d.

2 B. R. A. Nijboer and F. W. de Wette, Physica 24, 1105 (1958)
and references therein.

3L. L. Campell, J. M. Keller, and E. Koenigsberg, Phys. Rev.
84, 1256 (1951).

i H, Kornfeld, Z. Physik 22, 27 (1924).
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We shall now make some remarks on the details of
the application of the Nijboer and de Wette method to
the calculation of electric field gradients. The reader
who is more interested in the results than in the method
may skip to Sec. ITI without loss of continuity.

In reference 4, p. 1110, the following expressions
appear in Eq. (15):

2N X g im(0r05) = 81/ (0]0,3),

where 7y;=7\+7j, 7\ is the distance from the origin to
another unit cell designated by A, 7; is the distance from
the origin of the unit cell to the jth atom in the basis,
which has charge ¢;. 6; and ¢»; are likewise the polar
angles of the radius to the lattice points at 7); with
respect to some axes. For /=2, m=0 this sum has the
form of one half the field gradient produced by all the
point charges in the lattice, excluding the unit cell at
the origin (as indicated by the prime on the summation
over the cell index A).

To improve the convergence of this slowly convergent
sum (1), Nijboer and de Wette manipulated it into the
form of a rapidly converging sum and a slowly con-
verging sum. The slowly convergent sum is Fourier
transformed and appears as a rapidly converging sum
in reciprocal space. The form they finally obtained is

S0/ (0]03) = [§ Sq (43, )

PI+HLY
XY im(00is003) /123" = qudro— 2" gy (143, 77 7)
flpl—3 .
XY (05,65 + 2 G(In) "2

Vg 7

XeXp(—thz) Ylm (oh)\yqsh)\)], (2)

where G(k)=3_; ¢; exp(2wih-r;) is the structure factor,
I'(n,x) is the incomplete gamma, function, defined by

F(ﬂ,x):f e—tin—ldt,
v (n,2) =T () =T (m,0) = f el
0

h,, are the reciprocal lattice vectors defined by

hy=A1b1+Asbe+Nshs,  (\; integral),
bi= a,'Xak/ai- [anak]= a; X ak/va,
and
n=>Aa;+\as+Asza;.

The field gradient includes the contribution from the
lattice points within the unit cell at the origin, excluding
the point at the origin; these must be added to 8,
to obtain the field gradient:

Qrateice= 282" (0]0,3)+22, 2¢;V20(059,)/7.  (3)
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F16. 1. Lattice contribution to the electric field gradient in
hexagonal close-packed metals vs axial ratio. (The field gradient
is expressed here in the dimensionless form giatticea3.)

The second summation in the brackets for 85 in (2)
can be written

077 Gmr )V 20(05,05)
3

}l 7
AT @) —TGmr?) 1V 20(05,95)
_.2 :’q .

3
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7 7

Combining all the terms in ¢, the second sum in 83’ is
eliminated completely, part of it being canceled by the
second sum in Eq. (3), the rest being combined with
the first sum on the right-hand side of (2). This sum,
instead of excluding all points within the unit cell
containing the origin, is now taken over all points in
the lattice except the one point at the origin:

4T G Voo (0rj,825)

— vy
qlat—l_‘(%)l_ x5

r)\ﬁ

- Z)\: G(Iy) exp(—mh2) Y2o(0hp¢hx)]~ (5)

Va

Equation (5) was the form employed in our calculations.
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The values of the incomplete I' function were from the
tables by Pearson,’ in which values are given of

uV (p+1)
I(u,p)= f s / T(p+1),
0

from which we want to obtain I'((+3%, x) = /2%e 441,
For the case of /=2 the relation of these is

)
\/2.5’1)_' '

One may inquire about the relative ease and con-
veniences of computation by the Ewald-Kornfeld and
Nijboer and de Wette methods. In fact it can be shown
that the Ewald method is identical in principle to the
Nijboer-de Wette method, the difference being that
in the former Gaussian functions are used as conver-
gence factors, but in the latter the incomplete I’
function is employed. The final expressions obtained
by the two methods differ in form, and it seems that
the Nijboer-de Wette method is somewhat simpler to
use.

The following expression, given by Kornfeld,* can be
compared to the above expression for ¢:

0 =1 ()| 1-1((u-

HORDY Z'[G(é Irai])/P (2/mh)e exp(—en)/n?

— (8-12)![3G(e| ;| ) /r+-6e exp(— éni/min gt
446 exp(— e 2)/mins2]
2% 3

Vo 3

where e is chosen to give rapid convergence, G(x)
= (2/\/7) S5 exp(—a?)de, and s is a unit vector in
the direction in which the field gradient is found.

It can be seen that there six sums to be computed in
Eq. (6), compared to two in Eq. (5). There is the
further problem of the choice of €, which requires some
experience. In using Eq. (5) we found that it was
necessary to carry the summation at the most to the
fifth nearest neighbors in order to get better than 19,
convergence. It may be that with a proper choice of e
the Ewald-Kornfeld method can be made to converge
more rapidly.

III. RESULTS

We shall now consider in order of increasing ¢/a those
metals about whose quadrupole coupling something is
known. The results and references are summarized in
Table I

Be%: ¢/a=1.5671. (See Table I, reference a.) The
first order splitting of the Be® nuclear magnetic reso-

5 K. Pearson, Tables of the Incomplete I'-Function (Cambridge
University Press, New York, 1921) (reissued 1954).
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nance (NMR) spectrum in Be metal powder has been
observed by Knight (see Table I, reference c), who
found eqQ/h=48 kc/sec. A lattice of singly charged
points produces a field gradient guastice=0.2937/a%
(This differs slightly from a previously reported value,!
which was erroneous.) From these data, the value of
the antishielding factor vy, = —0.185 for Bet* (reference
b in Table I) and the contribution of the conduction
electrons calculated earlier,! we derive a value for the
nuclear quadrupole moment of Be?®:

Q(Be?)=0.032 barn.

Sc#: ¢/a=1.5884. The only information about the
quadrupole coupling in Sc is that no quadrupole effects
were observed in the NMR of the metal. (See Table I,
reference f.) If there are no first-order quadrupole
effects,® then

3629Q/14h < Av,

where Ay is the observed NMR linewidth, which is
0.0165 Mc/sec in the case of Sc.

The value of Q(Sc*) is unknown, but an estimate of
it can be made if it is assumed that the major contri-
bution to the field gradient comes from ions in the
lattice, i.e.,

Qion=Zq1attice(1+'Yoo)y

where Z=the normal valence=3. We then find

(0<0.017 barn,

from the absence of first-order effects.

It is possible that the first-order effects are appreci-
able, but unobserved. Then a less stringent requirement
is set by the absence of second-order broadening of the
3 <> —% transition. The condition,® for /=1, is

(125/48) (e2qQ/14h)*(1/vL) <Av,
where vy, is the NMR (Larmor) frequency. We find
(©0<0.63 barn,

from the absence of second order broadening, using
v, =17 Mc/sec (see Table I, reference f).

Tl: ¢/a=1.598. Wertheim and Pound (Table I, refer-
ence g) have measured the attenuation of the angular
correlation of successive v rays emitted from excited
states of Pb® in the TI lattice. (The second v ray is
emitted from a state for which I=4, lifetime {y=0.27
usec, but whose quadrupole moment is unknown.) The
measured value of the quadrupole coupling constant is

€2qQ/h~12 Mc/sec.

The interpretation of quadrupole couplings measured
in excited nuclear states involves a number of uncer-
tainties, which are discussed by Heer and Novey in a
survey article (Table I, reference s). These are (1) The

6§ M. H. Cohen and F. Reif, Solid-State Physics, edited by F.
Seitz and D. Turnbull (Academic Press, Inc., New York, 1957),
Vol. 5, p. 339.
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Tastk I. Results based on the lattice contribution to the electric field gradients (f.g.) in hcp metals and indium.

Z&q1uQ (1+v) €’q0
— — Zeq1atQ (1+vw)

Ele- a Q h h — .
ments (A) c/a A4ve) I (barn) (calc, Mc/sec) (exp, Mc/sec) €2¢Q (exp) Derived quantity
Be? 2.2866* 1.5671» 0.815> 3 0.048° Q(Be®) =0.032 barnd

Scts 3.302  1.5884 ~8e % <0.0776 (1st order)f 0<1.7X1072 barn
<2.9 (2nd order) (0<0.633 barn
Ph2o4m
in Tl  3.4498 1.5983 ~100¢(Pb) 4 122 Q(Pb24m) 0.2 barn
Relss 2.757 1.613at ~100° £ 29 87 274k 329, Lattice contrib.
1°K ~}% total f.g.
Rel®? 2757  1.613at ~100° 527 87 274 32% Lattice contrib.
1°K ~1 total f.g.
Lal® 3.75 1.616 ~110° Z 0.1+£0.1i 1.1 <0.037 (no 1st order)f Electronic contribu-
<1.54 (no 2nd order) tion to f.g.Slat-
tice contribution
Mg?s 3.203  1.622 4.2i 2 0.14k 0.067 0.23! 29% Lattilce contribution
~1% total f.g.
Co® 2.514  1.633 ~8e I 0.404m 0.136 2 100
< 3.5 (1st order)
<112 (2nd order)
Zn® 2.619  1.835 10e £ 0.17° 5.7 <74r >8% Lattice contribution
>89, of total f.g
Cdl]lm
inCd 2973 1.886 164 % 5.4-9.3¢ Q(Cdmm) ~0.15
barn
Cdlllm
in In 16 H 14s
Ints 4.588 1.0763
(fct) 12a 3 1161 5.6 30 (at 300°K)t =~20%, Lattice contribution
3.244 1.522 =209, of total
(bct)

a D. R. Schwarzenberger, Phil. Mag. 4, 1242 (1959).
b T, P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956).
¢W. D. Knight, Phys. Rev. 92, 539 (1953).

d Includes a +87%, contribution to ¢ by the conduction electrons [see reference 1]. The value of giat in the latter reference is slightly erroneous and

corrected here.

.
®

e Approximated from E. G. Wikner and T. P. Das, Phys. Rev. 109, 360 (1958).
fW. E. Blumberg, J. Eisinger, V. Jaccarino, and B. T. Matthias, Phys. Rev. Letters 5, 52 (1960).

g G. K. Wertheim and R. V. Pound, Phys. Rev. 102, 185 (1956).

b P, H. Keesom and C. A. Bryant, Phys. Rev. Letters 2, 260 (1959).
i K. Murakawa and T, Kamei, Phys. Rev. 105, 671 (1957).
i G. Burns, J. Chem. Phys. 31, 1254 (1959).

k A, Lurio, Bull. Am. Phys. Soc. 4, 419 (1959).

1T, J. Rowland (private communication to W. D. Knight).
m

D. V. Ehrenstein, H. Kopfermann, and S. Penselin, Z. Physik 159, 230 (1960).
o W. A. Hardy, Proceedings of the Conference on Magnetism and Magnetic Materials, New York, New York, 1960 [Suppl. J. Appl. Phys. 32, 122S (1961) 7.
R. Street, D. S. Rodbell, and W. L. Roth, Phys. Rev. 121, 84 (1961). Y. Kbi, A. Tsujimura, and T. Kushida, J. Phys. Soc. Japan 15, 2100 (1960).

o A, Lurio, Bull. Am. Phys. Soc. 4, 429 (1959).

P G. Seidel and P. H. Keesom, Phys. Rev. Letters 2, 261 (1959); W. H. Lien and N. E. Phillips, Phys. Rev. 118, 958 (1960); and private communication

with G. Seidel.
a G. Burns and E. G. Wikner, Phys. Rev. 121, 155 (1961).
r J. J. Kraushaar and R. V. Pound, Phys. Rev. 92, 522 (1953).

s K. Heer and T. B. Novey, Solid-State Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955), Vol. 9, p. 217 ff.

t R. R. Hewitt and W. D. Knight, Phys. Rev. Letters 3, 18 (1959).

excited nucleus results from nuclear changes and thus
may be a different element, i.e., an impurity, in the
original lattice. (2) Although the nucleus may have
changed to that of another element, the electronic
structure may not have changed to the electronic state
appropriate to that element in the host lattice, repre-
senting an impurity in an excited electronic state. This
is expected to have a larger effect in nonmetals than in
metals, in which electronic transfer may occur within
a relaxation time shorter than 1072 sec, or shorter than
the lifetime of the states being measured. (3) In the
processes of bombardment and decay the nuclei may
be displaced from lattice positions, so that they are not
subjected to the field gradients present at the normal
nuclear sites. In v emission the recoil energy is
533(E?/A) ev, where A is the atomic weight of the

nucleus and E is the energy of the vy ray in Mev. For
typical values (Table I, reference s) of E=0.5 Mev and
A=100, the recoil energy is 1.33 ev, which is probably
insufficient to dislocate the nucleus.

If it is assumed that none of the above objections
apply to vy emission in metals,” and further that the
entire field gradient at the Pb** nucleus arises from
the TI** ions in the lattice, i.e.,

q=Z(TH[ 147 (Pb) Jq1atsice (TL),

we can estimate the nuclear quadrupole moment of the
excited nuclear state

Q(Pb*m)~0.3 barn.

7B. G. Petterson, J. R. Gerholm, J. Thun, and K. Siegbahn,
Phys. Rev. Letters 6, 14 (1961).



2074 T. P.

Because the Pb atom has a 6s26p® ground-state
electronic configuration there may well be a considerable
electronic contribution to the field gradient in the
metal, so that the value of 0.3 barn may be considered
an upper limit.

Re!®% and Re'¥: ¢/a=1.61. A coupling constant
¢2qQ/h=274 Mc/sec has been derived from low-
temperature specific heat data (Table I, reference h).
Using the known values of Q=2.8 barn for each
isotope, Z=2, and v.,=~100 (Table I, reference ¢), we
find an ‘““onic” contribution

622qlattice(1+7oc)Q/h= 87 MC/SEC,

which is about 309, of the observed coupling.

La'¥: ¢/a=1.616. The analysis for La is similar to
that of Sc; the data are derived from the absence of
first order satellites or second order broadening of the
NMR. In contrast to Sc, some strain and annealing
effects were observed in La indicating the presence of
quadrupole effects in strained samples. Using the value
0=0.3 barn, Z=3, v,=110 (Table I, references i and
e), we find an ionic contribution to the field gradient,

EZ qrattice(1+70)Q/h=5.3 Mc/sec.?
In order for first-order effects to be unobservable,®
(3/14)e2qQ/h<Av, 1.13 Mc/sec<Av.

The observed linewidth was 0.0078 Mc/sec, hence it
appears that first order splittings are large and only the
central line corresponding to the 3 «» —2 transition is
seen. The absence of second order broadening requires
that

Av> (125/v) (e2qQ/144)?=0.004 Mc/sec.

This condition is satisfied for v,=4 Mc/sec, the lowest
frequency used in the experiment. The ionic field
gradient thus seems large enough to give first order
splitting, but not quite enough to give second-order
broadening, neither of which is observed. This implies
further that the electronic contribution is either less
than or of the opposite sign to the lattice contribution
since the total field gradient cannot be much greater
than the ionic contribution.

Mg?: ¢/a=1.622. Second-order quadrupole broad-
ening of the %<« —3 transition of Mg? in Mg metal
was observed and interpreted by Rowland (Table I,
reference 1), who obtained

¢2qQ/h(exp)=0.23 Mc/sec.

From the known values of Z=2, v,=4.2, 0=0.14
barn (Table I, references j and k), we find

€2Z Qrattice (14+7,)Q/h=0.067 Mc/sec.

The ionic contribution thus appears to be about
309, of the measured field gradient in magnesium.

Co%: ¢/a=1.63. At least five NMR lines have been
observed in ferromagnetic Co (Table I, reference n).

DAS AND M. POMERANTZ

One of these is associated with the hexagonal phase,
the others with the cubic phase and various fault
structures. The hexagonal line lies 10 Mc/sec above
the cubic line and has a width of about 0.8 Mc/sec.
Its shape is not of the dispersion form shown by the
cubic line, but rather is like an absorption or mixture
of absorption and dispersion.

Street et al. (Table I, reference n) have observed a
difference in the intensities of the resonances in the
cubic and hexagonal phases, such that when x-ray
diffraction indicates that the amounts of cubic and
hexagonal materials are about equal, the resonance in
the hexagonal phase is about 209, as intense as in the
cubic phase. They have suggested that the difference
in intensity is caused by the quadrupole interaction in
the hexagonal phase that splits all except the 3 <> —1
transition from the main resonance, such that the
remaining intensity is about $ of the cubic resonance,
for which there is no quadrupole splitting. In order to
remove all the satellites out of the linewidth of the
% <> —1 transition, it is necessary that

(¢?qQ/141) 2 Av,
which gives
€2q0/h=>10.5 Mc/sec.

The contribution to e*qQ/k from the ionic field
gradient in Co is

Ze qrattice(14-7:0)Q/h=0.14 Mc/sec,

using Z=2, v,=8 (Table I, reference ¢), 0=0.4 barn
(Table I, reference m). The ionic field gradient is about
a factor of 100 smaller than the field gradient required
to split all the satellites out of the 3 «» —3 transition.

Hardy (Table I, reference n) has pointed out that
the method of excitation of the resonance in ferro-
magnets may depend on the crystalline anisotropy, and
hence on the crystal structure. This may lead to
differences in the intensities of the hexagonal and cubic
phases, which are quite independent of any quadrupole
interactions. Koi et al. (Table I, reference n) reported
experiments which correlate the intensity changes with
changes in the anisotropy of the hexagonal phase. It
seems that more study of the problem is required before
the cause of the unequal intensities can be unequivocally
established, but the explanation on the basis of quadru-
pole interactions seems unlikely.

Zn%: ¢/a=1.83. Phillips’ data on the specific heat
of Zn in the 0.5°K range have been interpreted by
Seidel and Keesom (Table I, reference p) as showing a
quadrupole coupling e2qQ/h=74 Mc/sec. Lien and
Phillips (p, Table I) have pointed out that the difference
between the thermodynamic and magnetic temperature
scales at these temperatures can give rise to a spurious
effect of the magnitude reported in Zn, so that Seidel
now feels that the quadrupole coupling is probably a
good deal less than the earlier estimate (p, Table I).



NUCLEAR QUADRUPOLE INTERACTION IN PURE METALS

The ionic contribution is found to be
92Z(Ilattice(1+7w)Q/h= 5.7 MC/SCC,

using Z=2, v,=10, 0=0.17 barn (e and o, Table I).
This is indeed less than the upper limit set by the
specific heat measurements.

Cdiim: ¢/a=1.886. Using the attenuation of vy-ray
correlation, Kraushaar and Pound (r, Table I) have
measured a coupling constant for Cd*'” in Cd metal of

8.4 Mc/sec<e%qQ/h(exp)<14.1 Mc/sec.

The excited nuclear state of Cd was obtained by
neutron bombardment of enriched Cd'? in the metal.
This avoids the difficulties of studying an impurity in
the target material; no element other than Cd is ever
present. Kraushaar and Pound gave a value of the
nuclear lifetime of the measured state of {y=8X1078
sec. More recently (s, Table I) fy was given as ty=12.5
X108 sec. Since the data are interpreted in terms of
e’gQty = constant, the coupling constant may be better
given by

5.4 Mc/sec<e?qQ/h<9.3 Mc/sec (corrected).

If it is assumed that the field gradient arises only
from the Cd lattice, Z=2, y,=-+15 (q, Table I), we
find

Q(Cd"™ in dg+state)=~0.15 barn.

This value is not unreasonable because Cd!!! is an
even proton, odd neutron nucleus and the quadrupole
moment on the shell model is expected to be small.

Another angular correlation measurement has been
made on Cd!'"" that results from K capture by In'l.
In this case the Cd nucleus is an impurity in the
indium crystal. The coupling constant of Cd!'” in
indium was measured (s, Table I) to be

€29Q/h=14 Mc/sec.

If it is assumed that the electrons around the Cd
nucleus take up the form appropriate to a Cd impurity
in the indium lattice in a time short compared to the
nuclear lifetime (complete electronic relaxation) the
ionic coupling constant is

Eqattice(In)Z (In)[ 147, (Cd) JO(Cd) /5= 0.84 Mc/sec,

where Z(In)=3, v,(Cd)=+15 (q, Table I), grattice(In)
=0.342X102 cm™ (cf. following discussion of In),
Q(Cd) is the value derived above.

If it is assumed that there is no change in the elec-
tronic configuration around the site where the In
decayed to Cd (no electronic relaxation) the field
gradient at this site remains what it was in the pure
indium lattice, but the quadrupole moment of In is
replaced by that of Cd"'”. We find then that, using
the measured value of the quadrupole coupling in In
(t, Table I) and Q(In)=1.2 barn, the quadrupole
coupling of Cd'™'™ in In under the assumption of no
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electronic relaxation is
¢2q(In)Q(Cd"'™) /h=4 Mc/sec.

Although the coupling obtained under the assumption
of no electronic relaxation is closer to the observed value
than that obtained using only the ionic contribution
and complete relaxation, in view of the work of Petter-
son et al.” it is more likely that complete relaxation
occurs, and that most of the field gradient arises from
electrons localized about the Cd site.

In: We have calculated guatsice for the indium lattice.
Indium may be regarded as a body-centered tetragonal
lattice with a=3.244 A, ¢/a=1.522, or as face-centered
tetragonal with ¢=4.588 A, ¢/a=1.0763. ¢/a is strongly
temperature dependent and we have used only the value
corresponding to room temperature. We find giattice
=0.342X102 cm™3, which, when combined with v,
=410 (g, Table I), 0=1.2 barn, Z=3 gives an ionic
coupling constant

€2q0/h(ionic)= 5.6 Mc/sec.

Hewitt and Knight (t, Table I) have measured the
coupling constant in indium metal by pure quadrupole
resonance. At room temperature they find a coupling
constant

€2qQ/h(exp) =30 Mc/sec.

The ionic contribution to the quadrupole coupling
constant is thus about 209 of the measured value.

CONCLUSIONS

A primary objective of this work was to obtain
information about the electronic distribution in metals
from the electronic contributions to the nuclear quadru-
pole couplings. In general, one expects that the more
the conduction electrons resemble free electrons, the
smaller will be the electric field gradient produced by
them. This follows because completely free electrons
cannot produce an orientation-dependent interaction.!
The electronic contribution to the electric field gradient
is a measure of the non-spherical electronic distribution
in real space, which reflects a non-spherical momentum
distribution in reciprocal space. Recently, experimental
studies of the de Haas-van Alphen effect, cyclotron
resonance in metals, magneto-acoustic attenuation, and
magnetoresistance have often been interpreted on a
free-electron model.® We shall try here to correlate the
results for the electronic quadrupole coupling with the
Fermi surface deduced from other kinds of measure-
ments.

In beryllium the electronic contribution to the field
gradient seems small. We found! that the matrix
elements of the potential at certain points of high
symmetry in the Brillouin zone were small, indicating
that the admixture of orthogonal plane wave states

8 See T'he Fermi Surface, edited by W. A. Harrison and M. B.
Webb (John Wiley & Sons, Inc., New York, 1961).
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was small. McClure, seeking an explanation of the axial
ratios of hexagonal metals,® found that Herring and
Hill’s® wave functions for Be also closely resemble
plane waves, implying a nearly spherical Fermi surface.

In magnesium, a significant electronic contribution
seems to be necessary to explain the observed inter-
action. The electronic field gradient g¢e=giot—Gion
=1.07/a® There has been some success in interpreting
the de Haas-van Alphen oscillations in Mg on a
modified free electron model, but the magnetoresistance
requires a Fermi surface markedly different from the
nearly spherical (free electron) shape (cf. p. 80, reference
8). Thus it may be that the crystalline potential in
Mg perturbs the electronic states such that the free
electron approximation fails. This implies that a
considerable electronic field gradient may result,
which would be consistent with our result.

The only other case for which precise experimental
data are available is that of rhenium, the element of
the lanthanide series that possesses a (52)%(6s)? atomic
configuration. The electronic field gradient is of the
order of gea1=¢—qion=40.4/a%. The applicability of the
free electron approximation to such a metal is doubtful,
as pointed out by Cohen (cf. p. 325, reference 8) because
there may be overlap of the d-state cores and s-d
hybridization. Thus it is not surprising that we find a
sizable electronic contribution to the electric field
gradient.

An interesting experiment that would check on the
point of view we have taken would be a study of the
NMR or pure quadrupole resonance of enriched Zn®".
A modified free electron model has had considerable
success in explaining de Haas-van Alphen and cyclotron
resonance experiments. It is assumed from this success
that the main effects of the anisotropy of the zinc
crystal (which is manifested in ¢/a greatly different
from ideal and anisotropic elastic properties) is to
move the Brillouin zone faces without much alteration
of the spherical Fermi surface. It has been suggested,
however, that spin-orbit coupling splits certain states
in the hcp lattice,’? which perturbs the energy states in
zinc more than in Be or Mg. A measurement of the
quadrupole interaction in Zn will elucidate whether the

9 J. W. McClure, Phys. Rev. 98, 449 (1955).

10°C, Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).

11 C, W. Garland and J. Silverman, Phys. Rev. 119, 1218 (1960).
( 12 M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 5, 544
1960). '
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Fermi surface in this metal is indeed very anisotropic
or rather spherical.

Note added in proof. Our values for the lattice field
gradients in HCP metals and indium agree with those
recently published by F. W. de Wette [Phys. Rev. 123,
103 (1961)7], who used a similar summation method.
His paper does not emphasize the detailed interpreta-
tion of the field gradient data. W. W. Simmons and
C. P. Slichter [Phys. Rev. 121, 1580 (1961)] also
calculated the lattice field gradient in indium metal and
got a value in agreement with that reported here.

J. F. Cornwell [Proc. Roy. Soc. (London) 261, 551
(1961)7] reported an extensive calculation of the elec-
tronic energy surfaces in Be metal. Starting with
Herring and Hill’s! values of the energy levels calcu-
lated at points of high symmetry in the Brillouin zone,
he found the form of the constant energy surfaces
throughout reciprocal space, using an interpolation
method. Up to values of the electronic energy of the
order of one half the Fermi energy the surfaces are
roughly spherical. For higher energies, particularly
those near the Fermi surface, the shapes of the equi-
energy surfaces are not at all spherical. If this is indeed
the case there may be a considerable electronic contri-
bution to the electric field gradient. This effect of the
higher energy electrons is reduced somewhat because
the density of electronic states tends to decrease near
the Fermi energy.

It should also be mentioned that there is some doubt
about the quantitative accuracy of the energy levels
calculated by Herring and Hill, although they are the
best values known at present. In the years since this
calculation was performed there has been considerable
improvement in the treatment of the exchange and
correlation energies in metals. A more precise calcula-
tion of the energy levels is now possible, from which the
energy surfaces could be interpolated.
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