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Thermal Variation of the Pitch of Helical Spin Configurations
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When the method of Luttinger and Tisza for finding the classical ground state of a system of spins with
Heisenberg interactions is applicable, it yields a conGguration with the same periodicity as the ordered state
existing just below the transition temperature. When the method of Luttinger and Tisza fails to yield the
classical ground state then there can occur, with decreasing temperature, either additional transitions or a
gradual change in the periodicity of the stable conGguration. An example of the latter is the thermal change
in pitch of a helical conGguration. Such a situation can be described in the internal Geld approximation
when the consistency equations admit as solutions helical states with a continuous range of pitches. The
free energy of the stable state with a temperature-dependent pitch can then be obtained as the envelope of
the free-energy curves belonging to the family of helical solutions. A one-dimensional diatomic chain whose

ground state can be found by a generalization of the method of Luttinger and Tisza illustrates this
possibility. It is also pointed out that anisotropic exchange interaction between nearest neighbors can give
rise to helically ordered conGgurations.

I. INTRODUCTION

'HE internal field approximation as originally
applied by Weel' to materials in which there

occurred antiferromagnetic exchange integrals involved
the rr priori decomposition of the system into snblattices,
the magnetization of each sublattice being assumed to
be uniform. With the use of a more Qexible sublattice
decomposition' it was found possible to have states in
which the sublattice magnetizations are not collinear.
Recent studies' of the classical ground states of such
systems have shown that it is possible to have a helical
arrangement of the spins, the pitch of the helix being,
in general, incommensurate with the lattice spacing so
that it is an ordered state not describable in terms of
uniformly magnetized sublattices. The systems studied
all involved Heisenberg interactions between ions more
distant than nearest neighbors. Villain4 has applied to
such systems a more general form of the internal field

approximation and has shown that in Bravais lattices
the stable state at absolute zero remains stable at all
temperatures up to the temperature of the transition
to the disordered state. In other words, there can
occur no other transition and no change in pitch of
the helix.

Bertaut' has considered the classical ground state
of lattices having more than one ion per primitive cell
under the assumption that associated with each ion in
the cell is a helix, all of the helices having the same
pitch. Kaplan, ' treating the spinel, has examined states
deviating only slightly from the Neel configuration.

In the works cited, except for that of Villain on the
Bravais lattice, attention was restricted either to the
ground state or to the first ordered state to appear
with decreasing temperature. In general, however,
when a stable helical configuration occurs, its pitch

r L. Noel, Ann. Phys. 3, 137 (1948).
s Y. Yafet and C. Kittel, Phys. Rev. 87, 290 (1952).
s A. Yoshimori, J. Phys. Soc. (Japan) 14, 807 (1959).
4 J. Villain, J. Phys. Chem. Solids 11, 303 (1959).
s T. A. Kaplan, Phys. Rev. 116, 888 (1959);119, 1460 (1960).
6 F. Bertaut, Compt. rend. 250, 85 (1960).
r B.R. Cooper, Phys. Rev. 118, 135 (1960).

will be a function of temperature. The variation with
temperature of the pitch of the helical order is de-
scribable within the framework of the classical internal
field approximation. The occurrence of such a phenom-
enon will be illustrated here for a one-dimensional
diatomic lattice containing nearest and next nearest
neighbor interactions.

In Sec. II the transition from the disordered state is
considered on the basis of a general formulation of the
internal field approximation. In Sec. III the method
of Luttinger and Tisza for finding the ground state of
a spin configuration is generalized to the case of a
lattice containing nonequivalent ions. In Sec. IV the
first ordered state and the ground states of the linear
diatomic chain are discussed in detail. It is found that
for a wide range of parameters a gradual change in the
pitch of the helical order can occur with changing
temperature. For a specific choice of parameters the
free energy is calculated and the actual occurrence of
this phenomenon demonstrated.

II. TRANSITION FROW: THE DISORDERED STATE

A general formulation of the internal field approxi-
mation is given in the Appendix. For the sake of
completeness, and the better to contrast this problem
with that of finding the ground state, we present here
the derivation of the conditions determining the
periodicity of the first ordered state that occurs when
the temperature decreases. We shall, in the following,
restrict attention to isotropic exchange interaction
reserving to the end of the section some comments on
anisotropic exchange.

We consider a lattice containing f ions per primitive
cell, the exchange interaction between ion i in the
primitive cell at R and ion j in the cell at R' being

J'. ,RR's, R. s R'
(&)

The f ions in the cell may have different spins,

R] =S;,
8 J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
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but in a classical treatment these spin magnitudes may
be absorbed into the interaction constants, the J's, by
the replacement of J;j""' by J;, 'S;Sj. With this
understanding, the expression (1) still holds with SR
having unit magnitude for all i, R. The translational
symmetry of the problem is expressed by

7 . .RR' 7 . .R—R",R'—R" (2)

where R" is any lattice vector. We shall, in addition,
assume periodic boundary conditions for a crystal
containing Ã cells.

Equations (A.7) and (A.S) give us

~,R— I d~,R.S,R exp( PS.R. Q J, .RR'o.R'}
j,R'

t'd„.R

yexp( —PS, P J,P 'o.P'}, (all i,R). (3)

where
X= —3/P= —3kTi, .

The index p, denotes the components of o;". Equation
(5) is satisfied by the x, y, and s components of the o,R
separately, this being a consequence of the assumed
isotropy of the interaction.

Equation (5) is an eigenvalue problem in a space of
Nf dimensions, the eigenvalues yielding the possible
branching temperatures, the eigenvectors yielding the
limiting ratios of the components of the e," for a
given solution as T approaches the branching temper-

As noted in the Appendix, (3) can be expressed in
terms of the Langevin function. A quantum mechanical
formulation of the internal field approximation leads
to the same general equations with the Brillouin
function replacing the Langevin function. This would
complicate the calculation of the magnetization and
the free energy without changing the situation quali-
tatively. At all temperatures, (3) possesses the solution

o,R=0 (all i, R)

representing the disordered state. At high temperatures
this will be the only solution whereas at sufficiently
low temperatures (3) may possess many solutions,
each of which approaches (4) as the temperature
increases. (The temperature at which a given solution
vanishes will be denoted by T& and will be referred to
as the branching temperature for that solution, in the
language of reference 12, since that is the temperature
at which the free energy of the solution branches off
from the free energy of the disordered state. ) In the
neighborhood of the branching temperature the
exponentials in (3) can be expanded in powers of the
oj". In the limit of vanishingly small oj", one may
retain only the first nonvanishing term and so obtain

P J ""'o""' =ho. (alii, R; @=1,2,3), (5)
j,R'

o, ,
R~ ——o, ,"Sin(k. R+ p,),

~. R 0

(10)

which is a combination of real solutions of Eq. (5)
belonging to X(k).

In the case of a Bravais lattice, Eq. (8) yields a
single band of branching temperatures given by

—3kTi, ——X(k) = 2 PR J'R' cos(k R'),

which is Villain's result, aside from a constant factor
arising from his use of the Brillouin function in place of
the I angevin function.

The point to be noted here is that all real solutions
of Eq. (5) are acceptable, the e,R being subject to no
further conditions. Only the ratios of the o," have
significance. The situation will be quite different when
we consider the ground state.

We note here, though the point will not be pursued,
that when the exchange interaction is anisotropic and
is given by Eq. (A.S), then in place of Eq. (5) one
gets for the condition determining the branching
temperatures

J, ,RR'. ~ R' yo, ,R

j,R'

One still has translational symmetry so that there

ature, T&, for that solution. The translational symmetry
of the matrix of J,ERR', Eq. (2), implies that Eq. (5)
has a complete set of solutions of the form

(7)

the possible propagation vectors k being chosen in
accord with the periodic boundary conditions. Sub-
stitution of Eq. (7) into Eq. (5) yields, with the use
of Eq. (2),

P, (PR J, "'e'"'"')o;, „=X(k)o,'

which is again an eigenvalue problem for the f-rowed
matrix having as its i, j element

(k) Q, J 0R'elk R'

For each k there will be, in general, f eigenvalues so that
there are, altogether, three bands of eigenvalues to
which there correspond, at least for negative X(k),
three bands of branching temperatures.

The lowest lying eigenvalue gives the temperature
of the transition from the disordered state to an ordered
state. If the k yielding this minimum eigenvalue has
components 0 or x, then the lattice associated with
each ion in the primitive cell is ferromagnetically or
antiferromagnetically ordered in the state existing
just below the transition temperature. If one or more
of the components of k is different from 0 or vr, then
the spins of each sublattice are helically ordered and
would be given, for example, by

o, ,
",=o-,

,
', cos(k R+p,),
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exists a complete set of solutions of the form

~.R —~.o~ik R

Substitution of (13) into Eq. (12) yields

Q (P J, ,OR'eik ~ R') .ir.0—) (k)~0
j R'

(13)

(14)

Whereas in a Bravais lattice with isotropic exchange
helical ordering cannot arise unless interactions are
included between neighbors more widely separated
than nearest neighbors, Eq. (14) can yield a helically
ordered state in a Bravais lattice. Consider, for example,
a one-dimensional lattice with the interaction between
nearest neighbors given by

the second term being of the form discussed by
Moriya. ' One can easily show that the ordered state
of this system is helical, the angle between successive
spins being tan '(D/J).

III. THE GROUND STATE

To determine the ground-state configuration we
want to minimize the energy of the system,

S,R —P A. (k)elk R (21)

the sum extending over the first Brillouin zone, where
in order that S R be real we require

A,*(k)=A, (-l ). (22)

periodicity from the first ordered state and additional
transitions may occur below the highest branching
temperature, or there may be a gradual change in the
spin configuration. In particular, there may occur a
change in the period of a helical configuration. The
latter possibility will be illustrated in Sec. IV.

The method of Luttinger and Tisza is successful
when applied to Bravais lattices since for every eigen-
value there are real normal mode solutions of the form
given by Eq. (10). The method will fail, in general, for
systems containing nonequivalent ions. For such
systems one can apply the following generalization of
the method of Luttinger and Tisza." For the weak
constraints one uses, in place of Eq. (18), the stronger,
though still not sufhcient condition

QR~ S,"['=7 (i=1, ,f) . (20)

The procedure is best described with the use of a
normal mode representation. I et

W=-'Q Q J"""'S S"'
ij RR'

(16) The normal modes obey the orthogonality relations

subject to the constraints

~
S,R~'=1 (all i, R). (17)

eik Re—ik' ~ R (23)

With the use of Eq. (2) one obtains for the energy,
expressed in terms of the normal mode amplitudes,

The one general method for solving the problem, due
to Luttinger and Tisza, ' consists of the replacement of
the conditions of Eq. (17) by a weaker constraint that
is necessary but not sufhcient, namely

E
W=—P Q g,, (k)A,*(k) A, (I), (24)

k ij

P P ~
S,R ('= flV.

where $;;(k) is given by Eq. (9). The $;,(k) obey the
(18) relations

i R
~, ,(k) = ~,;*(I)=~,,(-k). (25)

Q Q J.,RR'S.R' gS.R (19)
j R'

where P is two times the energy per ion. This is the
same problem as Eq. (5). Here, as in Sec. II, we seek
the lowest lying eigenvalue but the eigenvector belong-
ing to this eigenvalue yields the ground state con-
figuration only if it satisfies Eq. (17). If it does not,
then the method fails. Thus when the method of
Luttinger and Tisza is successful, the spin configurations
of the ground state and the first ordered state are the
same. When the method of Luttinger and Tisza fails
then the ground state may differ in its symmetry or

' T. Moriya, Phys. Rev. 120, 91 (1960).

The minimum of 8' with this weaker condition is a
lower bound on the energy of the ground state. If a
configuration satisfying Eq. (17) can be found for
which 8' attains this lower bound, then the problem
is solved. This procedure leads to the eigenvalue
problem

g, ~,,(k)a, „(I) =x,A, ,„(k), (28)

where the Xi are, except for a factor E, the Lagrange
multipliers for Eq. (27), and they are independent of k.
8' is given by

W=-,'E Q; X,. (29)

In order that a nontrivial solution of Eq. (28) exist
for some k we require the vanishing of the f-rowed
determinant

(30)
"This generalization is suggested in a footnote in reference 3.

Equations (17) and (20) become, respectively,

P A;(k) A;*(k') e'~k k'i "=1 (all R; i= 1, ~ ,f), (26)
kk'

Pk A, (k) A,*(k)= 1.

Minimization of W, as given by Eq. (24), subject to
the weak constraints, Eq. (27), yields



M. J.
where A is a diagonal matrix whose diagonal elements
are the X;. Equation (30) gives a relation between the
A, ;. The P; will be further restricted by the requirement
that the corresponding A, (k), the solutions of Eq. (28),
must sa, tisfy Eq. (27). That the sum of the F, is real
follows from Eq. (29), since W is a real quantity. To
prove that each of the X, is real, multiply Eq. (28) by
A; „(k) and sum on p and k. This yields

p, g, p,, (k)A,a(k) A, (k) =Z, p, A,*(k).A, (k)=X;,

the second result having been obtained with the use of
Eq. (27). Since complex conjugation of $;;(k) and

A;(k) is equivalent, according to Eqs. (22) and (25),
to the replacement of k by —k, and since X; is expressed
here as a sum over all k, we have

Clearly X; is the average energy of interaction of an ion
of type i with its neighbors.

One can think of Eq. (30) as determining a family
of surfaces, parametrized by k, in an f-dimensional
space with coordinates ) ~,

. --, Xf. On each such
surface there will be at least one point at which the
corresponding solution for the A, (k) will satisfy Eq. (27)
and therefore Eq. (26) since if the A, (k) are non-
vanishing for only one value of k, (26) and (27) are
equivalent. These are the one-mode solutions considered

by Bertaut. In addition to these solutions of (30)
and (27), however, there will in general exist solutions
corresponding to points of intersection of the surfaces.
Such solutions can yield lower lying values of 5' than
are obtained from the one-mode solutions and if the
solution yielding the lowest values of W satisfies (26),
then the method is successful and the ground state
can be determined. Furthermore, this ground state
will not have the same symmetry as the first ordered
state.

A formally similar generalization of the method of
Luttinger and Tisza was given by Lyons and Kaplan. "
They introduce, a priori, a set of parameters, nP, and

replace the strong constraints by the single weak
constraint

p. ~s p, ~S.R~s=~

IV. ONE-DIMENSIONAL EXAMPLE

A. Discussion

W= J'g Q( S.'(Ss'+S, '—')+J, Q, S,t S,~—'

+J, Qg S,'S,'—', (31)

where the upper index, l, denotes the cell and the
subscripts a and b denote the type of ion. The matrix

disordered
state

T(K~) Tb K~) TbK2) Tb Ki) Tc

As was pointed out in the preceding section, in a
lattice of nonequivalent spins the internal field approxi-
mation yields the possibility of a helical spin con-
figuration whose pitch is a function of temperature.
The simplest situation giving rise to a variation in
pitch occurs when the consistency equations, Eq. (3),
have normal mode solutions at all temperatures below
the highest branching temperature. If the family of
free energy curves, corresponding to the solutions
characterized by different values of k, successively
intersect each other, as shown in Fig. 1, then the free
energy of the system will be the envelope of the family
and k will be a function of temperature. The remainder
of this section will be devoted to illustrating this
possibility with a simple one-dimensional example.

We shall consider a system made up of two dissimilar
ions alternating in a linear chain, as shown in Fig. 2.
Each ion interacts with its nearest and next-nearest
neighbors, the exchange energy of the system being

Their procedure leads to a set of homogeneous equa-
tions, Eq. (14) in their paper, that is the same as Eq.
(28) in this paper with lw„replaced by lb,n,2. Thus, in
effect, they examine the solutions of (28) along a
single direction in X~, Xf space with direction cosines
proportional to o.,s and seek the k that minimizes X.

Their method has the advantage that if this solution
permits the satisfaction of the strong constraints, then
it is guaranteed to be the ground state. It has the
limitation, however, of permitting the examination of
only one direction at a time in ) &,

. Xf space.

"D. H. Lyons and T. A. Kaplan, Phys. Rev. 120, 1580 (1960).

FIG. 1. Free energies of the normal mode solutions of the
consistency equations. As illustrated this family of curves
possesses an envelope giving the free energy of the system.
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$(k), given by Eq. (9), is then

2J cosk Ji(1+e '")
~(k) =

Ji(1+e'") 2Jb cosk

where k is in units of inverse lattice spacing.

B. The First Ordered State

The first ordered state according to Eq. (8) is given
by the lowest lying eigenvalue of $(k). The eigenvalues
are

X (k) = (J,+Jb) cosk
&L(Jb—J )' cos2k+2JP(1+cosk)]'. (33)

Since we are concerned only with the lowest lying
eigenvalue we need consider only the negative root of
(33). The relations between the J, describing the
regions in which the various modes yield the highest
branching temperature Lor the lowest X(k)], are most
simply expressed in terms of the parameters

P=(J+J,)/I J (, Q=(J J)/(J [)0—. (34)

The choice of Q as a positive quantity involves nothing
more than the labeling of the sublattices. One finds the
possible minima of X(k) are as follows:

Both sublattices are helically ordered, a single k
characterizing both helices. A real solution of Eq. (8)
for which all of the spins on each sublattice have the
same magnitude are

og, , ~=op coskl7 0. , '„=o sink/, 0.„',=0,
o b, ',=o b cosk(l+-'2), o b'„=, o b sink(t+-', ), eb', =, 0,

where
o b X(k)—2J, cosk

2JI cos-', k

A, (k) A,*(k)=1 (i=a,b).

From (35) it then follows that

(36)

C. The Ground State

With $(k) given by Eq. (32), the Eqs. (28) for the
determination of the ground state are

(2J cosk —X,)A, (k)+Ji(1+e b)Ab(k) = 0,
(35)

Ji(1+e'b)A, (k)+ (2Jb cosk —Xb)Ab(k) =0.
There is such a set of equations for each k. I et us first
find the solutions for which the ground state contains
a single mode, k. In this case the weak constraints,
Eq. (27) become identical with the strong constraints,
Eq. (26), namely,

P) 1/Q —Q, Q) 1/P P(II a2bd II—I i22 Fig 4).
2J cosk —A =2Jbcosk —

A, b. (37)
k=m, X= —3kTb= —2Jb.

Sublattice b is antiferromagnetic, sublattice c is
paramagnetic.

The secular equation is

(2J, cosk —X,) (2Jb cosk —Xb) —2JP(1+cosk) =0, (38)

Q&1/P PP&(1+Q')/(4—+Q')'*(IV, V, VI iN Fig 4).
k=0, ) = 3kTb (Jb+—J~)—L(——Jb—J,)2+4JPil.

which, with (37), yields

&,=2J;cosk —2~ Ji~ cos-,'k,
(39)

(1+Q')/(4+Q') &P& 1/Q —
Q (I i~ F2g 4)

1
cosk= —I'

Q2

1—2Q' &

1 7
P2 Q2

Both sublattices are ferromagnetically ordered and are
parallel or antiparallel to each other as J; is less than
or greater than zero. The ratio of the magnitudes of
the spins on the two sublattices is, from Eq. (8),

O.b'/0. ~'= 1/2Ji{(Jb J~) [—(Jb —J) +24—JP)'*)

W/E =—', (X,+Lb) = (J,+Jb) cosk —2
i
Ji i

cos-', k.

The possible minima of W/1V and the corresponding
spin configurations are as follows:

k=o; W/X=J. +Jb 2(J,)—
The ordering is ferromagnetic or ferrimagnetic, re-
spectively, as J& is less than or greater than zero.

X= —3kTb —— (f(P2—Q') (1—2Q2)]'*—P).
2

cos-,'k=
2P 2(J +Jb)

~ b~
o b a

FIG. 2. The example treated in Sec. IV:
g bnear chaj.n of two Qjssjmjlar jons,

—(J.+Jb).
2(J,+Jb)

This yields a helically ordered state. Note that even
for a range of parameters yielding both a helical
ground state and a helical first ordered state, the two
helices have different pitches,
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The weak constraints then require that either

Q0$ Kc

2Jb"

Jb-.

I I I

JII -JQ -2JO

-Jb--

Qua

ol

ebb (kg) —Xb

t..(kg) —X. t (k2) —P.

(bb(kl) ~b ebb(k2) ~b

$, (kg) —X, $ (kg) —X
&1&

g„(k,)—Z,

(43)

(44)

Ao& ', '~a"b ~i
I
l

l
I f
I 1 I
1 I
l I
I

lI
I
I
I

FIG. 3. Curves on which the secular determinant of Eq. (35)
h . C AB C is the locus of points yielding one-mode

n ieldsolutions. Only intersections within region 3CD can yie
two-mode solutions.

Thus far we have considered those solutions cor-
responding to the occurrence of a single mode. The
secular Eq. (38), if plotted in a X„Xb space, yields a
family of hyperbolas parametrized by cosk. There are
intersections between these hyperbolas and so there
remains the possibility that the solution with the
lowest value of W/1V is a linear combination of two

modes. (Except for the case where one of the second-

neighbor interactions vanishes, one cannot have more

than two hyperbolas intersecting. ) Not every inter-

section, however, allows the weak constraints to be
satisfied. Suppose the lower sheets of the hyperbo as

associated with k~ and k2 intersect. (We need consider

only the lower sheets since every point on the lower

sheet, and in particular that point yielding a one-mode

solution, has a lower value of X,+Xb than any point
on the upper sheet. ) We then have

[( (k) —X,][/ (k) —X ]= f(. (k) f', (k=k, k,). (40)

Then the solutions of Eq. (28) are

Thus the region of intersections that allow the weak
constraints to be satisfied is bounded in part by the
curve

(k) —X

(bb(k) —Xb

which is just the locus of points that yield one-mode

so utions. e sl . The situation is illustrated in Fig. 3 w ic
J &0. Thehas been drawn for the case 2Jb)

f J~f, ,( . e

curves for the various values of k have been drawn

with solid lines where $.,(k) —X,)ebb(k) —Xb, and wit
dashed lines where $,(k) —X,()bb(k) —Xb. The only
relevant intersections are those betwee n a dashed line

and a solid line, the intersections in the region SCD in

the figure. Curve ABC is the locus of one-mode so u-

tions. Point D has the coordinates

J 2

X~—2J~
p

$b — 2Jb
2Jb

while the coordinates of point C are

X =2J.—2f J f, X.b=2Jb —
f
Jxf.

Thus in this case, 2Jb) J~ and J &0, the lowest value

of W/E is given by the linear combination of the k=x
mode and the k=0 mode. This is, in fact, the only
case in which the two-mode solution lies below the

Jb -So g
)JI)

P+Q= I

i.5--

l.o~ i

r..(k) —~.
Ab(k) = — —A. (k), (k=kg, k2)

r. (k)

and therefore

(4&)
0.5--

g, (k)-X. '
fA, (k) f'= —

f A. (k) f

~"(k)

—
f A. (k) f'. (k= k„k,). (42)

t„(k)-X,

l.5
I I

1.0 Jb+ JII

FIG. 4. Re ions in parameter space in which diferent spin
configurations occur as 6rst ordered states a g

zG. . egions
e and round states, as

described in Table I. The solid lines separate the domains for t e
first ordered state; the dashed lines separate the domains for the
ground state.
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lowest one-mode solution. A similar analysis shows
that for all other ranges of the parameters the ground
state is a single mode. In both cases the strong con-
straints can be satisfied. We give below the possible
ground state energies and the corresponding solutions
for the $; (except for the degeneracy associated with
the uniform rotation of all the spins).

F)Q, F& -', (I, II, UI in Fig. 4)

cosy k =
2(J.+Jb)

A. = —Jb —2J,
(J.+Jb)'

Pb= —J —2Jb,
(J +Jb)'

W/X= —— —(J +J,),
2 J,+Jb

$,'= (coskl, sinkl, p),

J]
$5' = (—cosk (l+-,'), —sink (l+-', ),0).

The system is helically ordered, the two sublattice
helices have the same pitch, the relative phases of the
helices being dependent on the sign of J~.

8&1—Q, F&-,' (Uin Fig. 4)

k=0, &.= —2lJil+2J. , Xb= —2IJil+2J»
w/iv= 2l J,l+J—.+J„

$.'= (1,0,0),

Jg
$5'= (—1P P)

The spin orientations are collinear. The ordering is
ferromagnetic if Ji &0, and ferrimagnetic if J~&0.

S'=

1 Ji'
Jb+J„—

2 Jb

(1,0,0),

Jg
$,'=

l
—,( 1)&L1 JP—/4Jb'j :,—0-

2Jb

This is the triangular arrangement of Yafet and Kittel.

F&Q, F&1—
Q (III and IUin Fig 4).

In this case the ground state is a linear combination of
the k=0 and k=x modes,

J 2

+2J„Xb=—2Jb,
Jb

TABLE I. Types of ordered states occurring in the
numbered regions of Fig. 4.

Region First ordered state Ground state

IV
V
VI

Helix
Antiferromagnetic b lattice,

disordered a lattice.
Antiferromagnetic 5 lattice,

disordered a lattice.
Collinear configuration
Collinear configuration
Collinear configuration

Helix
Helix

Triangular configuration

Triangular configuration
Collinear configuration

Helix

Lyons and Kaplan" treat a linear chain with a less
general set of interactions than is used here. The
parameter ib as de6ned in Eq. (1.8) of their paper is
equal to 1/2F in our notation. It may be seen that for
the range of parameters they consider, their criterion
for the stability of helical and antiferromagnetic
configurations is the same as that given here.

The results of this section are summarized in Fig. 4.
Table I gives a comparison of the first ordered states
and the ground states for the various areas in the figure.

One point that should be noticed is that in region I
where both the first ordered state and the ground state
are helical the helices do not have the same pitch. A
further point of interest is that in region VI the first
ordered state has a net magnetic moment whereas the
ground state does not. In region III, on the other
hand, the ground state has a net moment while the
first ordered state does not.

D. Free Energies of the
One-Mode Solutions

An examination of Fig. 4 and Table I indicates that
it is conceivable that a variation of pitch occurs in
several regions, namely in regions I, II, and VI, In
order to show that a variation of pitch does in fact
occur, it is necessary to calculate the free energies of
the various ordered states. We shall first show that the
normal modes discussed in the preceding sections
provide solutions of Eq. (3) at all temperatures. This
being so, the free energies of the various modes can
be calculated and the occurrence of a variation of pitch
demonstrated. The point for which the numerical
calculations were carried out is in region II for which
the first ordered state is the k= m. mode and the ground
state is helical. Only the free energies of the one-mode
solutions were calculated since it appeared unlikely
that any of the two-mode solutions, e.g. , the triangular
solution (a combination of k=p and k=ir) or a conical
solution (a combination of k =0 or k = ir with a
kNO or ir), would intervene as a stable state between
the first ordered and the ground states.

Let us assume a solution of Eq. (3) of the form

e;,'=o.,;X(cos(kl+p, ), sin(kl+q. ;), 0), (i=a,b). (46)
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We are free to choose
y =0, (47)

TABLE II. Branching temperatures and calculated values of
(1/T) (F/N)+2T In4s of three modes of the linear chain.

this being nothing more than a determination of the
phase of the helix. The effective field acting on the spin
of type a in cell l,

cosk

—1—0.96—0.92

T=0.2 0.4 0.6 1.0

1.333 —2.061 —0.835 —0.103
1.289 —7.285 —2.108 —0.795 —0.082
1.245 —7.313 —2.077 —0.752 —0.063

H. '= —Zi Zr J.i"ai", (48)

+a
H~i= —(2J,a, cosk+2Jiab cossik)—. (51)

Similarly one finds
CFb

Hb'= —(2Jio., cos ,'k+2J—bob cosk)—.
Ob

The consistency equations, (3), then reduce to the two
coupled equations

a~=L(P[ 2J,a,—cosk —2Jiab cossk]),
(53)

o-b ——L(P[—2Jio. cos-,'k 2Jbab coskf). —

The free energy per cell for this solution of the con-
sistency equations is

F 1 t'sinhL '(o-,))
la'L '(a') —»

IE p ~~, b ( L-'(o.;) )

——2 ln4ir. (54)

To facilitate the numerical solution of Eqs. (53) we
set Boltzmann's constant equal to one and define

2
u= L (a~) = ——(J~a~ cosk+ Jiab cossk),

T
(55)

2
'v= L (ab) = ——(Jiag, cosa k+ Jbab cosk).

T
Then

T —Jbu cosk+ Jio cossk
a,=L(u) =—

2 J~Jb cos k —Ji cos (ik)

We can write the first of Eqs. (55) in the form

(56)

u= —(2/T) J, coskL(u) —(2/T) Ji cos-,'kL(v). (57)

has the components

H, ',= —2J 0. cosk coskl
—2Jio.b cos-', k cos(8——,'k+ gb),

H '„=—2J,O-, cosk sinkl
—2Jio.b cos-', k sin(kt —-', k+ pb), (49)

H '=0.
Equation (3) requires that this field be parallel to rr '

which can be true for all / only of

gb=k/2. (50)

This is consistent with the form found for the ground-
state helix in Sec. IV. Thus

f' Jbcosk 2 J,Jb cos'kI——Jj cos~k—
EJ& cos-,'k T J~ cos-,'k )L(u) i.

(58)

For specific values of Ji, J„Jb, T, and k, Eq. (48) can
be solved straightforwardly, though tediously, by
N ewton's method.

The free energy was calculated for three modes at
several temperatures for the following point in
region II:

Jg=1, J,=0.5, Jb ——2.0, P=2.5, Q= 1.5. (59)

The first; ordered state for this point is the mode k=m
having a branching temperature of 1.333. The ground
state is the k=cos '(—0.92) mode having a branching
temperature of 1.245. The third mode selected for the
calculation has a branching temperature that is
approximately midway between these two, namely
Th=1.289. This is the mode k=cos '(—0.96). Table II
gives the results of the calculation. It can be seen that
at T=0.6 the free energy of the first ordered state still
lies below that of the other two modes, at T=0.4 the
mode with cosk= —0.96 lies lowest and at T=0.2 the
ground-state mode has the lowest free energy of the
three. Thus the free energy curves for these modes
successively cross each other as illustrated in Fig. 1.
We shall next show that the variation of pitch continues
down to T=O, and is initiated at finite temperature
interval below T,.

E. Near T=O

For the point specified by (59) and for k values near
that of the ground state the solutions of the consistency
equations, (55), have ob approaching minus one as T
approaches zero and cr, approaching plus one. To
examine the free energies of these modes near zero
temperature we put

Og= 1—6g) Ob= 1—6b) (60)

and use the approximations

L '(a.)= 1/", L '(ab) = I/eb, —

F/X+2T ln4ir= T P t ———lne, +ln2 ——,
'

(61)

By solving (56) for n in terms of u and substituting the
result into (57), one obtains

2 2
u= ——J, coskL(u) ——J i cossik&&

T T
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The solution of Eq. (55) is then

T 4J,J» cos'k —8J,Ji cosk cos-', k+4Jis cos'(-', k)
T2+. . .

—2J cosk+2Ji cos-,'k (—2J, cosk+2Ji cos-', k)'( —2J» cosk+2Ji cos-', k)
(62)

with a similar expression for eb except that Jb replaces gives us, to first order in Tb(7r «) T-, —
J,. This yields, to terms of order T',

=5 19 y
ob' ——-LT»(a.—«) —T)~ 1+—«'

~,
4 & 36)F/E+ 2T in'

= (J,+Jb) cosk —2Jicossk+Tln(2Jicossk —J,cosk)

+T ln(2Ji cossk Jb co—sk) —2T lnT+2T ln2. (63)
(70)

5
o '=—«'LT»(a. —«) —Tj,

36

45t
+»n4~= ——

I
1+—"ILT»(~—«) —T3' (71)

XT 64~ 1g )

The first term in (63) is W/X which, for the point
(59) has a minimum at cosk= —0.92. By setting the and from Eq. (65) we then get for the free energy
derivative of (63) with respect to k equal to zero, one
obtains the envelope of the free-energy curves, which
is found to exist and, to lowest order in T, is given by

cosk = —0.92—0.49T.

L '(o.,)=3o,+(9/5)o,'+
p 9

+21n47r= ——Q a. +
XT 20 ~=~, &

(65)

The first ordered state for the system with the parame-
ters (59) is the k=7r mode. In order to examine the
modes near this one we put

(66)

Then the consistency equations become

(
(1—-', «')o-.—

~
«——«' ~ob

——3T(o,+-',a-.')

f—
~

«——«' ~og+(4 2«')ob 3T—(a»+so——b')
24 )

(67)

The branching temperature for the ~—~ mode is an
even function of ~, o-~ is also an even function of ~,
while 0-, is an odd function of sc. Through terms of
order a' the branching temperature is

Thus the variation of pitch persists down to absolute
zero.

F. Near T,

To examine the initiation of the variation of pitch
we consider temperatures near T, and use the
approximations

through terms in «' and $T»(a —«) —T]'. By setting
the derivative of (71) with respect to «equal to zero
one obtains

«'= (16—57T)/95,

which cannot be satisfied unless T(16/57. Hence
there must be a finite temperature interval below T, in
which the first ordered state remains stable. No good
estimate of the temperature at which the variation of
pitch begins can be deduced from the result above
since the approximations used are valid only very
close to the branching temperature.
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APPENDIX

The Internal-Field Approximation

The general formulation of the internal-Geld approxi-
mation that follows is essentially the same as that
used by James and Keenan" in their treatment of
rotational melting in methane. The equations we shall
arrive at are equivalent to Villain's Eq. (1).

Ke consider a lattice of classical spins. The orienta-
tion of spin i will be denoted by or;, representing the
polar and azimuthal angles of the spin direction, and
the energy of interaction between spins i and j will
be denoted by E;;(ai;,ai;). Suppose the orientational
distribution function for spin i is p, (&o~) where p; is
normalized over all solid angle,

T»(7r «) = (4/3) —(5/9) «'. —

Elimination of T in Eqs. (67) yields

a ———-', A: o-g ,4(rg'

(68)

J p, (a,)da;= 1. (A.1)

(69) Then the internal energy and entropy of the system

which, when substituted back into one of Eqs. (67) 's H. M. James and T. A. Keenan, J. Chem. Phys. 31, 12 (19591.
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are given by

f7= 2 z d~,) d~2 P'(~')PJ(~2)E'3(~', ~J), (A 2)

Use of the right-hand side of Eq .(A.4) for p, (cu,) in
Eq. (A.6) then yields

o,= d(o, S; exp{PS,"H,) de, exp{pS; H;), (A.7)

S= —k g l der; p;(co,) 1np, (co,).
2

(A.3) where
H, = —P;J,; e;. (A.8)

From Eq. (A. 7) it follows that e, is parallel to H;.
Thus the magnitude of o; is given by

(A.9)o;=S,L(PS,H,)r
p, ((u,)= exp{—p P da, p, (~;)E;,(a;,~;))

where I. is the Langevin function and 5, is the
magnitude of spin i.

A convenient expression for the free energy of a
solution of Eqs. (A.7) and (A.8) is obtained by sub-
stitution of (A.7)—(A.9) and the corresponding expres-
sion for p, into Eqs. (A.2) and (A.3). One then obtains

d(u; exp{—p Q, da), p;((u;)E;;((u;,(o;)), (A.4)
J

where P= 1/kT. Suppose the interaction energy is
given by

(A.5) P 'P, '
'L-i( '

~

P I 2S; LS)
E,;(co;,(u,)=S; J S;,

where, if the exchange is anisotropic, J,; is a three-
rowed square matrix. If the exchange interaction is
isotropic J,;, is a constant matrix, that is, it has the
form of a constant, J... times the unit matrix. Equation
(A.4) is most simply expressed in terms of the mean
spins

f'sinhL '(o,/S, ) )
(A. la)

L '(o;/S~)

Since the quantity in the square brackets is negative
for 0-, di6erent from zero, the ordered states, at temper-
atures where they exist, always have free energies
lying below that of the disordered state.

o;= "doo, S;p, ((u,). (A.6)

Minimization of the free energy with respect to all the
p, subject to the normalization condition, Eq. (A.l),
yields


