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The Fourier equation of heat conduction predicts the paradoxical result that the effect of a thermal
impulse in an infinite medium will be felt instantaneously in all parts of the medium. In other words, a
thermal impulse is propagated at infinite velocity. The result is paradoxical because it is incompatible
with a dynamic interpretation of the mechanism of heat transfer in solids. In order to avoid this apparent
paradox, Vernotte has proposed a modification of the Fourier hypothesis. This modification results in the
transformation of the equation of heat conduction from a parabolic to a hyperbolic differential equation
predicting finite velocity of propagation of thermal impulses. Vernotte's proposal is shown here to have
an exact electric analogy. The proposal is equivalent to postulating the existence of a heat transfer quantity
which is analogous to the electric quantity inductance. The transformed equation of heat transfer is therefore
analogous to the differential equation of telegraphy.

INTRODUCTION paradox is due to Vernotte. ' He argues that the Fourier
hypothesis incorrectly predicts that the establishment of
a temperature gradient occurs instantaneously. He con-
cludes that the gradient should depend on the rate of
change of heat Aux and assumes a linear relationship
between the two. The resulting differential equation of
heat conduction predicts finite velocity of propagation
of thermal impulses.

This revision of Fourier's hypothesis has completed
the analogy between electricity and heat transfer.
Previously no heat transfer quantity had been proposed
which wouM be similar to the electrical quantity in™
ductance. But Vernotte's hypothesis completes the
analogy by introducing a new quantity which makes the
differential equation of heat conduction of exactly the
same form as the differential equation of telegraphy.
To describe this in mathematical terms, it will erst be
shown that when inductance is neglected the equations
of telegraphy are of exactly the same form as the Fourier
equations of heat conduction.

Considering a noninductive transmission line along
which no leakage occurs, Ohm's hypothesis can be
written

''T it well known that the Fourier equation of heat
~ - conduction predicts in6nite velocity of propagation
of thermal impulses. This has usually been reconciled by
reference to the statistical nature of the solutions. This
paper shows that a recent revision of the Fourier hy-
pothesis which eliminates this apparent paradox com-
pletes the analogy between electricity and heat transfer.

DISCUSSION

The general partial differential equation of second
order,

~'p.*+2&'V.i+C'V «=D',

where the subscripts indicate partial derivatives, has
physical characteristics whose differential equation is

dt/de= $8'+ (8"—2'C') ij/2', (2)

where A', 8', C', and D' are, in general, functions of
p„q &, x, and t. When one of the independent variables
represents distance (x) and the other time (t), Eq. (2)
has the units of a reciprocal velocity. The velocity in
question can be shown to be the velocity of propagation
of an impulse along the characteristics. Designating
this velocity as vo, it is found for the Fourier equation
of heat conduction in one dimension,

BV/Bx= Ei, —
in terms of properties per unit length of the conductor.
(R is the uniformly distributed electrical resistance, V
is the electrical potential and i the electric current. )
This is an exactly analogous form to the Fourier
hypothesis. The expression of conservation of charge
for the line is

k 8T BT
)

pc Bx~
8i BV——=C-8$8t

where C is the uniformly distributed electrical capaci-
tance. This is exactly analogous to the expression of
conservation of heat energy. Eliminating i between these
two equations, the resulting differential equation of
telegraphy is

1 8' t/ 8 t/'

RC Bx' Bt
(6)

' P. Vernotte, Compt. rend. 246, 3154 (1958).

that vp is infinite. (Here T= temperature, k= thermal
conductivity, p =density, and c= specific heat. ) In
other words, the effect of a thermal impulse in an infinite
medium is felt instantaneously in all parts of the
medium.

This result is well known and has usually been ex-
plained by attributing a statistical nature to the propa-
gation of thermal impulses. But a physical interpreta-
tion requires the mechanism of heat transfer to be of a
dynamical nature, thus excluding an infinite velocity.

The most recent attempt to eliminate this apparent
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is the angular frequency of temperature variation, andThis is an exactly analogous form to the Fourier equa-
tion of heat conduction. The equation predicts infinite
velocity of propagation of electrical impulses. Since this
prediction is obviously in error the discrepancy must lie
in Ohm's hypothesis where the inductance of the line
has been neglected. If its effect is included, Eq. (4) is
modified as follows:
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(7) Equation (12) represents a temperature wave moving

into the slab with the velocity

where I is the uniformly distributed electrical induc-
tance. Since sources and sinks have been excluded,
Eq. (5) remains unchanged and elimination of i between
Eqs. (5) and (7) results in the correct differential equa-
tion of telegraphy;

O'V O'U—I.C
BV—EC — =0.
Bt

(8)

BT . BQ
=Q+r8$8t (9)

This is the revised form of the Fourier hypothesis pre-
sented by Vernotte. When Q is eliminated between Eq.
(9) and the expression of conservation of heat energy
analogous to Eq. (5), a new differential equation of heat
conduction arises;

Equation (7) is exactly analogous to Vernotte's
hypothesis. Considering, as usual, T, Q (heat flux),
1/k, and pc to be analogous to V, i, R, and C, respec-
tively, and introducing a new constant r, analogous to
L/R and having the units of time, the heat transfer
equation analogous to Eq. (7) would be

1 (pc) ~ 1—+/ —
f
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(15)

k O'T BT
V'T= r +— Q"' r- —

pc Bt2
(16)

where Q'" is the internal heat generation per unit
volume. When heat losses (or gains) are proportional
to the temperature such that Q'" can be written

Since all the properties of the material have been as-
sumed to be independent of temperature, then for a slab
of given material, n is a function of co only. It therefore
assumes its minimum value (v=0) when &p=0, which
corresponds to no temperature change at the surface,
and its maximum value (v=np) when p~= ~, which
corresponds to an impulse.

The equations presented so far are applicable only to
one-dimensional heat conduction without internal heat
generation. However, they are easily extended to the
three-dimensional case and to include heat sources and
sinks. When this is done, the general differential equa-
tion of heat conduction becomes

k O'T O'T BT
=0.

pc Bx' Bt' Bt
then Eq. (16) becomes

pcr B~T pc r 1 BT n
V'T= + + & ' +

k BP k k)N k
This is exactly analogous to Eq. (8). It is easily shown

that i, as well as U, satisfies Eq. (8) and, analogously,
that Q satisfies Eq. (10). Substituting the values of
A', 8', and C' in Eq. (2), it is found that

(18)

which is an exactly analogous form to the general dif-
ferential equation of telegraphy with n analogous to the
leakage conductance.

Although Vernotte's proposed revision of Fourier's
hypothesis adequately circumvents the paradox of in-
finite velocity, no apparent physical justification can be
overed for the addition of the second term on the right
side of Eq. (9). Each of the heat transfer quantities
k and pc can be shown to have physical justification by
arguments similar to those which justify the existence
of the electrical quantities E and C. But no argument
which justifies the existence of L can be used as a basis
in explaining the existence of the quantity r. Whether
or not r actually exists and is of appreciable magnitude
can be determined only by future experiment and further
research into the mechanism of heat transfer in solids.
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where 0=T T, (T„being a ref—erence temperature),
e —T —T, (T being the maximum temperature), a&

and the velocity of propagation of thermal impulses for
this case is therefore finite. That this velocity is themaxi-
mum velocity of propagation is most easily shown by
the following example. When the surface temperature
of a semi-infinite slab is allowed to vary sinusoidally,
a solution of Eq. (10) for the temperature distribution
in the slab is


