PHYSICAL REVIEW

VOLUME 123,

NUMBER 6 SEPTEMBER 15, 1961

Long-Wave Optical Vibrations in Simple Ionic Crystals

T. H. K. BARRON
Department of Physical and Inorganic Chemistry, The University, Bristol, England

(Received May 12, 1961)

This paper resolves some of the difficulties recently pointed out
by Rosenstock in the theory of the lattice vibrations of ionic
crystals of NaCl or CsCl structure. Long optical waves in these
crystals (but not in crystals with ounly short-range forces) are
seen to be purely longitudinal and transverse. With the electro-
static approximation, the Lyddane-Sachs-Teller equation (wi/w)?
= €/ €= holds independently of the boundary conditions for modes
in which the phase of the ionic vibrations is effectively constant
over distances which are large compared with the lattice spacing;
such modes must be either curl-free or divergence-free, with respec-
tive frequencies w; and w.. If both curl and divergence vanish, the

1. INTRODUCTION

OSENSTOCK! has recently pointed out some pop-
ular misconceptions in the theory of the long
“optical” vibrations in ionic crystals, and in doing so
has raised some interesting problems. Among his points
are the following:

I. Even in the limit as the wave vector k — 0, optical
modes as well as acoustic modes are in general neither
purely longitudinal nor transverse, except in directions
of crystal symmetry. Rosenstock demonstrates this
using a two-dimensional model with skori-range inter-
atomic forces, and concludes that since waves are
neither transverse nor longitudinal in this simple ex-
ample, they will in general be neither transverse nor
longitudinal in the complicated examples of real ionic
crystals.

II. In contrast, the Lyddane-Sachs-Teller? (L.S.T.)
equation relates longitudinal and transverse frequencies
for long optical waves in binary ionic crystals with cen-

tral symmetry:
(w1/w) = (eo/ )}, oy

where ¢, and ¢, are the dielectric constants for low and
high frequencies, respectively. Furthermore, this rela-
tion has been derived? using the cyclic boundary condi-
tion; but with this boundary condition Rosenstock
claims to show quite generally that at the limit k=0
all optical modes have the same frequency, whether or
not we allow for Coulomb retardation. This implies
that all long-wave frequencies should tend to the same
limit as k— 0, in contradiction to (1).

III. This contradiction may perhaps be due to the
cyclic boundary condition, which in this application
may be invalid for two reasons: (i) its validity has been
established not for individual normal modes but only for
statistical problems involving the normal mode dis-
tribution, and (ii) even then, only for crystals with
short-range forces. The breakdown of the cyclic bound-
ary condition may mean that the normal modes are

1H. B. Rosenstock, Phys. Rev. 121, 416 (1961).

2 R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
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frequency is indeterminate unless boundary conditions are speci-
fied, so that there is a singularity but no inconsistency as the wave
number k — 0. When Coulomb retardation is taken into account
this singularity disappears, and the frequency at k=0 is found to
be wy; the range of validity of the Lyddane-Sachs-Teller equation
is then 10~42>%12>107¢ cm.

Reasons are given for believing that the cyclic boundary con-
dition is valid for the thermodynamic properties of large ionic
crystals, though this is not proved rigorously; specific boundary
conditions may, however, be important in reflection and absorp-
tion of infrared radiation.

not simple plane waves, and in particular that modes
for which k=0 may not exist. Rosenstock accordingly
concludes that the L.S.T. relation (1), based as it is by
implication upon cyclic boundary conditions and re-
stricted to a range of k which is small but not precisely
defined, cannot be considered quantitatively established.

The present paper resolves some of these problems.
It is shown that a short-range force model is not a
reliable guide for the behavior of long wave motions in
ionic crystals, which are in fact purely longitudinal or
transverse for wavelengths which are long compared
with the lattice spacing ; and that for such waves the de-
rivation of the L.S.T. relation by the “macroscopic”
theory of Born and Huang? does not depend essentially
upon the cyclic boundary condition, but merely on the
assumption that long transverse and longitudinal waves
exist. Furthermore, allowance for Coulomb retardation
in the macroscopic theory leads to three vibrations at
k=0 of equal frequency, in agreement with Rosen-
stock’s general theorem, while in an electrostatic model
the frequencies for k=0 are indeterminate—a possibility
not considered by Rosenstock. The cyclic boundary
condition thus does not lead to any inconsistencies,
but its validity has yet to be proved.

2. POLARIZATION OF LONG OPTICAL MODES

Let us first consider how the polarization of optical
modes comes about in a crystal with only short-range
forces. We shall consider throughout cubic crystals with
two atoms in a primitive cell, such that each atom is a
center of symmetry—i.e., crystals with either NaCl or
CsCl structure. For any wave vector k in the direction
of a cubic axis, the directions of polarization are deter-
mined by crystal symmetry; there is one longitudinal
mode of frequency ; and two transverse modes of
frequency w;. But as k—0 (A\— ), all interacting
pairs of atoms are vibrating at approximately the same
phase, so that an individual atom vibrating in the direc-
tion Oy has only a slight indication from its neighbors

3 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1954).
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as to whether it is taking part in the motion of a trans-
verse wave with wave vector along Ox or a longitudinal
wave with wave vector along Oy. It follows that
wy/w;— 1 as k— 0, and that at k=0 the three modes
become completely degenerate. This degeneracy is
lifted when ks£0 by the difference in phase between
neighboring primitive cells, sowever small this may be;
along certain symmetry directions there will still be
degeneracy of the two transverse vibrations, but since
the crystal structure is not isotropic the degeneracy in
most directions will be wholly lifted, and the vibrations
will be neither purely longitudinal nor purely transverse.

The situation is quite different in ionic crystals. Here
for small k the long-range Coulomb forces will feel the
effect of a finite wavelength much more strongly than
the short-range forces. The approximation of Born and
Huang? is thus justified, in which as k— 0 the effect
of finite wavelength on the short-range forces (including
the Coulomb forces between near neighbors) is ne-
glected, so that they provide merely an isotropic re-
storing force. The polarizing effect is thus due to the
Coulomb forces between distant neighbors; and the
electric field on an ion due to distant neighbors can be
considered as being a part of the macroscopic electric
field, and hence as dependent only on the electrical
polarization at distant regions. But the macroscopic
theory of polarization of a cubic crystal is wholly iso-
tropic, and does not involve the crystal structure. All di-
rections of k are thus equivalent, and for each the long
optical waves are purely longitudinal and transverse.
Such waves must be long compared with interionic dis-
tances, since otherwise the nonisotropic effect of the
short-range forces cannot be neglected.

It should be noted that the above argument does not
apply to acoustic waves, since these do not polarize
the crystal and consequently Coulomb forces between
distant regions are negligible.

3. LYDDANE-SACHS-TELLER RELATION

We now consider the validity of the L.S.T. relation
(1) and in particular whether it depends upon the cyclic
boundary condition. Here we shall follow the electro-
static treatment of Born and Huang,? correcting it
where necessary and bringing out explicitly some of the
underlying assumptions. Retardation of the Coulomb
forces will be discussed in Sec. 4.

The argument of Sec. 2 justifies the isotropic ‘“macro-
scopic” equations of Born and Huang?® (p. 82) for all
motions of the crystal (whether waves or not) in which
the phase of the ionic vibrations is effectively constant
over distances large compared with the ionic spacing.
These equations are:

w=b1;w+b1E, (2)
P=b21W+b22E, (3)

where w is proportional to the displacement of the
positive ions relative the the negative ions, E and P
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are the macroscopic electric field and polarization, and
b11, bag, D19, and by are constants; the dimensions and
amplitude of w are chosen so that d1,=bs;. From (2)
and (3) Born and Huang derive a dispersion formula,
the parameters in which can be identified with those in
the phenomenological dispersion relation :

€= € (0= €) /[ 1— (w/w0)?]; ©)

here eo and e, are the low- and high-frequency dielectric
constants, and wq can be regarded as defined experiment-
ally by Eq. (4). Thus 11, b1, and b, can be expressed
in terms of the quantities €, €,, and wy derived from
experiment.

In order to solve the equations of motion we need,
in addition to Eqgs. (2) and (3), the electrostatic field
equations

div D=div(E+47P)=0, (5)

curl E=0. (6)

Born and Huang proceed by splitting w into curl-free
and divergence-free components, stating that this split-
ting is unique, and then identify the two parts with
longitudinal and transverse motion, respectively. It is
this step that implicitly involves some assumption
about boundary conditions, since in fact the splitting
is not unique; any vector of the form grad ¢, where ¢
satisfies Laplace’s equation V=0, is both curl-free
and divergence-free, and this is precisely the kind of
field vector that will be affected by electrostatic bound-
ary conditions.

But the values of w; and w; do not depend on this as-
sumption. Taking the curl of (2), and using (6), we
have

(8%/98) (curlw) = by1 curlw, @)

showing at once that any mode for which the curl does
not vanish identically must have an angular frequency,
say wy, given by

w¢2=—bu=w02. (8)

Similarly, taking the divergence of Egs. (2) and (3),
and then eliminating divP and divE with the aid of
(5), we have

(02/98) (divw)
=[b11— (4mb12b21)/ (14+-4abss) J(divw),  (9)

showing that any mode for which the divergence does
not vanish identically must have an angular frequency,
say wz, given by

w12= —bll+[47rb12521/(1+47r622)]=0)02(€0/6w). (10)

For any ionic crystal eo> e, so that w; and w; are neces-
sarily different. It is impossible therefore to have modes
in which neither the curl nor the divergence vanishes;
either the curl or the divergence must vanish identically
—or of course both of them may vanish. Pure longi-
tudinal waves are curl-free but not divergence-free, and
pure transverse waves are divergence-free but not curl-
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free, while waves that have both transverse and longi-
tudinal components are neither. It follows that the only
possible wave motions are pure longitudinal waves of
frequency w;, and pure transverse waves of frequency
w;; these two frequencies satisfy the L.S.T. relation
(1), which has thus been derived without any reference
to boundary conditions.

We have still to consider modes for which both curl
and divergence vanish. For such modes the electrostatic
Eqgs. (5) and (6) are both trivial, and (2) and (3) are
insufficient to determine the frequency, which can there-
fore take any values including w; and w;. The only
‘waves’ of this type are those for which k=0; the result
does not contradict Rosenstock’s general proof that in
an infinite crystal the optical frequencies for k=0 are
all equal, since this depends on the implicit assumption
that the frequencies are determinate. Thus we see that
mathematically there is a singularity in the frequency
as k— 0, but physically this is not disquieting for two
reasons: (i) we have neglected retardation of the Cou-
lomb forces; (ii) in a finite crystal we cannot let k— 0
continuously and, as Rosenstock points out, there may
be no modes for which k=0. If such modes do exist in
a finite crystal with electrostatic forces their frequencies
depend on the physical boundary conditions.*

4. RETARDATION OF COULOMB FORCES

We must now determine how far the arguments of
Sec. 3 depend upon the electrostatic approximation.
When we drop this approximation, we can still retain
Egs. (2), (3), (5), but (6) must be replaced by the re-
maining Maxwell’s equations:

curlE= — (1/¢) (6H/a1), (11)
curlH= (1/¢)[ (9/3t) (E+4xP)], (12
divH=0, (13)

where we neglect the difference between B and H. The
equations are still isotropic, so that we still have pure
longitudinal and transverse waves. Since we retain
Eq. (5) the derivation of w; is unaffected; this is not
surprising because longitudinal lattice waves do not
interact with electromagnetic waves. The transverse
modes however do interact strongly in the range of wave
vector for which their phase velocities are of the order of
the velocity of light, and as k passes through this range
the transverse electromagnetic waves change continu-
ously into transverse lattice waves, and vice versa
[see Born and Huang,? Fig. 18(a)]. The two transverse
frequencies are roots of the equation

(k2c2/w2) = 5m+[(€0_ Eoo)‘*’oz/ (wOZ_wZ)], (14)

and as k — 0 the frequency of the lattice waves tends
to w;.
It is encouraging that the longitudinal and transverse

4 See, for example, A. A. Maradudin and G. H. Weiss, Bull.
Am. Phys. Soc. 6, 22 (1961).
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waves now have the same frequency as k— 0, but we
must still see what happens when k=0. For k=0, we
can write

(15)

where wo is a vector independent of position. Substi-
tuting this in (2) and (3) we find that E and P are also
of the same form:

E=Ept, P=Pit, (16)

where Eq and Py do not vary with position. Equations
(11) and (12) then become, respectively,

oH/at=0, an
curlH= (iw/c) (Eo+47Po)ei?, (18)

and for ws#0 these are compatible only if the electric
displacement vanishes:

D=E+47P=0. (19)

The effect of Coulomb retardation for k=0 is thus to
give us an auxiliary equation, (19), which with (2)
and (3) is sufficient to determine the frequency uniquely
as w;. As Born and Huang have shown, this is also the
frequency which both longitudinal and transverse lattice
waves have as k— 0. The singularity at k=0 found in
the electrostatic approximation is thus removed by
allowing for Coulomb retardation.

The L.S.T. relationship is therefore valid only over a
limited range of wave number, since it breaks down
both as k— 0 and as k becomes large. The lower limit
of k can be found from Fig. 18(a) of Born and Huang,?
which shows that the effect of Coulomb retardation is
very small for £>10(wo/c)~10* cm™ for a typical
ionic crystal. The upper limit is provided by the con-
dition that the wavelength is large compared with
interionic spacing, and so the L.S.T'. relationship should
be valid to a very good approximation in the range

10~>XA>10-% cm.

w= woezwt’

5. BOUNDARY CONDITIONS

A. Size Effects According to the Cyclic
Boundary Condition

If the cyclic boundary condition is used, the normal
modes have the form of waves in an infinite crystal with
the restriction that k is allowed to have only certain
discrete values. For a crystal of linear dimensions of
order I, these permitted values of k form a lattice of
points in reciprocal space with lattice spacing of order
11, one of which is the point k=0.

A complete set of independent modes is given by
k values within the first Brillouin zone, at the boundaries
of which £~a~1~3X 107 cm™ for a typical ionic crystal.
The optical modes are effectively longitudinal and trans-
verse for 251076 cm™, and the L.S.T. relation holds
in the range £2>10~* cm™, so that in a large crystal
only one long optical transverse wave in a million
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disobeys the L.S.T. relation. In small crystals (I<10~*
cm) the electrostatic approximation is valid for all k
except k=0, where there are three optical modes each
of frequency w;; the L.S.T. relation holds for all other
long waves. In very small crystals (/<100 A) long waves
are prohibited by the boundary condition, and we no
longer have pure longitudinal and transverse waves.

B. Use of the Cyclic Boundary Condition in
Statistical Mechanics

Rosenstock! has pointed out that the standard proofs
of the validity of the cyclic boundary condition for
calculating “bulk” thermodynamic properties depend
upon the assumption that only short-range forces are
present, while in fact it has been widely used—together
with the electrostatic approximation—in ionic crystals.
This is indeed disquieting, but its validity seems plaus-
ible on physical grounds.

In ionic crystals the validity of the cyclic boundary
condition could break down in two ways: (i) Because of
the long-range forces the frequencies could become in-
determinate (as for k=0 in the electrostatic approxima-
tion); (il) even if the frequencies are uniquely deter-
mined, the motion predicted for the ions may differ
from the motion in crystals with realistic physical
boundary conditions. We have already seen in Secs. 3
and 4 that the frequencies of long optical waves are
uniquely determined, although these waves polarize the
crystal and give rise to long-range effects; this being so,
it is difficult to see why the frequencies should not be
uniquely defined for other modes. It is also worth noting
that unique frequencies have been obtained in many
detailed calculations (see Rosenstock! for references),
although this cannot be regarded as conclusive without
careful examination to determine whether these calcu-
lations do not contain some additional assumption.

If the frequencies are indeed uniquely determined,
the cyclic boundary condition predicts a quite definite
“bulk” frequency distribution as / — <. Use of the elec-
trostatic approximation will make very little difference,
since it only affects about one mode in every 10 in a
well-populated frequency range. The cyclic boundary
condition will be valid if the local motion of ions as
l— o is indistinguishable from the motion of ions in
the middle of a crystal with physical boundary condi-
tions. Experimentally it is known that bulk thermody-
namic properties exist, and hence that the motion of
ions is similar in different internal regions of a crystal.
Again it is difficult to see why this motion should be
different from that predicted by the cyclic boundary
condition, since those modes which might be expected
to give the strongest long-distance Coulomb effects
(i-e., those which in the interior of the crystal polarize
it over regions which are large compared with the ionic
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spacing) have frequencies w; and w; independent of the
boundary conditions. (It should be remembered that
the results of Sec. 2 were obtained without assuming
that the normal modes were plane waves.)

For statistical problems, therefore, the use of the
cyclic boundary conditions seems plausible, although
admittedly the foregoing arguments are no substitute
for a rigorous proof.

C. Interaction of Ionic Crystals with
Infrared Radiation

The three main experimental measurements are those
of dielectric constant at frequencies well removed from
resonance, of selective reflection from surfaces, and of
selective absorption in thin films. Dielectric constant is a
bulk property, and hence the cyclic boundary condition
should be adequate; but both the other measurements
obviously may involve surface effects. We can only agree
with Rosenstock that the situation here is particularly
complicated since, even without allowing for surface
effects, the theory of the fine structure of the infrared
adsorption spectrum is not simple.?

6. SOME OUTSTANDING PROBLEMS

(a) The theory of Born and Huang predicts that trans-
verse optical waves with wavelength >10~2 cm should
exist in large crystals with frequency w;. Are these waves
sufficiently coherent for this to be physically meaningful,
once we allow for anharmonicity and the imperfections
present in even the best experimental crystals? If so,
can the waves be detected by any means experimentally ?

(b) Can a rigorous proof be found for the validity of
the cyclic boundary condition for calculating bulk
thermodynamic properties of ionic crystals?

(¢) To what extent do surface effects invalidate
existing theories®? of the interaction of infrared radia-
tion with ionic crystals?

Note added in proof. A proof of the validity of the
cyclic boundary condition for a model representing an
ionic crystal is given in a very recent paper on the
lattice dynamics of alkali halide crystals®; it is also
pointed out that the “macroscopic” theory given in
Born and Huang?® is applicable only to optical modes
whose wavelengths are short compared with the size
of the crystal. T am grateful to Dr. Hardy for sending
me a copy of this paper before publication.
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