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Limiting Optical Frequencies in Alkali Halide Crystals
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It recently has been pointed out by Rosenstock on the basis of symmetry arguments that the frequencies
of the three optical branches of an ionic crystal in the limit of infinite wavelengths are all equal. This result
is in contrast with the relation (cubi/sr~) = (ep/s ) & dne to Lyddane, Sachs, and Teller, where co& and au& are the
limiting longitudinal and transverse frequencies and e0 and e„are the static and high-frequency dielectric
constants, respectively. By use of Kellermann's model for NaCl we have obtained the small-k expansions of
the elements of the dynamical matrix for a finite spherical crystal of radius R. It is found that, if the limit
k ~ 0 is taken before the limit R ~ ~, the three optical frequencies are all equal, while if the order of taking
limits is reversed the result of Lyddane, Sachs, and Teller is obtained. These conclusions are in agreement
with Rosenstock s result, and with remarks of Frohlich, and provide an explicit expression for the infrared
frequency in the finite-crystal case. A similar calculation for Wigner s low-density electron crystal yields the
result that in a finite spherical crystal the limiting frequencies of the two transverse branches and the one
"longitudinal" branch are all equal. The possibility of the experimental observation of these effects is
discussed.

I. INTRODUCTION =1 cannot therefore be due to his neglect of ionic
polarizabilities. On the other hand, Frohlich has
pointed out that in a spherical specimen of an ionic
crystal whose radius is large compared with the lattice
parameter but small compared with the wavelength of
the lattice waves propagating through it, there is no
difference between longitudinal and transverse waves,
and that the frequency of these long-wavelength waves
in a sphere is different from those in a specimen which is
large compared with the wavelength. It is of some
interest, therefore, to see under what conditions the
ordinary theory of lattice dynamics leads to Rosenstock's
result, and under what conditions it predicts Keller-
mann's result.

We have, accordingly, used Kellermann's model to
evaluate the normal mode frequencies of a finite, spheri-
cal ionic crystal of radius R in the limit as k —+ 0. Our
results, briefly summarized, are that if the passage to
the limit k~0 is carried. out for Axed, finite E, the
limiting optical frequencies are all equal, while if the
passage to the limit R —+ ~ is carried out first, and then
the limit k —+0 is taken, Kellermann's result is re-
covered. In the former case an explicit expression for the
infrared frequency in the finite-crystal case is obtained.

Before proceeding to a study of the limiting optical
frequencies in ionic crystals, however, we first discuss
the analogous problem for Wigner's low-density elec-
tron crystal. ' Essentially the same questions arise here,
but the discussion is simplified somewhat by the fact
that there is only one particle in a unit cell. Also, some
of the results obtained in this case can be carried over
directly to the study of ionic crystals.

'N a recent paper Rosenstock' pointed out on the
~ ~ basis of symmetry arguments that at k=0 (i.e., the
infinite-wavelength limit) the distinction between longi-
tudinal and transverse lattice waves in a crystal breaks
down, and that in particular the limiting values of the
so-called longitudinal optical and transverse optical fre-
quencies in an ionic crystal should be equal. This con-
clusion contradicts the well-known I-yddane, Sachs,
Teller relation, '

Mr/air = (ep/eco) *W 1&

where oui and o&i are the limiting (as k ~ 0) longitudinal
and transverse optical frequencies, and ~0 and e„are the
static and high-frequency dielectric constants, respec-
tively. Furthermore, Kellermann' in his study of the
vibrations of the sodium chloride lattice obtained differ-
ent limiting frequencies as k ~ 0 for the longitudinal
and transverse optical modes. Kellermann's numerical
results for co& and co& do not quite satisfy the relation
(1.1), presumably largely due to his neglect of the
polarizability of the ions. 4 Rosenstock in his discussion
has also neglected the polarizability of the ions. How-
ever, as Rosenstock points out, ' neglect of the ionic
polarizability means setting e„=1, but since eo is still
unequal to unity in the general case, so is the left-hand
side of Eq. (1.1).' Rosenstock's conclusion that (a&&/co&)
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3 E. W. Kellermann, Phil. Trans. Roy. Soc. London A238, 513

(1940).
4 M. Born and K. Huang, DynarrIical Theory of Crysta/ Lattices

(Oxford University Press, New York, 1954), p. 87.
5 However, Kellermann's results for co~ and co~ agree reasonabl

well with Eq. (1.1) if e is set equal to unity and the experiment
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II. THE ELECTRON CRYSTAL

Wigner's model of the low-density electron gas is that
it consists of a body-centered cubic array of electrons
immersed in a uniform background of positive charge.
The elements of the dynamical matrix for the vibrations
of the electron crystal have been found to be'

where j&(p) is the Zth spherical Bessel function, "and we
see that the sum vanishes at k=0 in a 6nite spherical
crystal as we would expect from symmetry arguments.
The elements of the dynamical matrix for a finite
spherical crystal can thus be expressed in the small k
limit as

3k.k„q
8 3Xlyl —5»f l

D.v(k) = s~'&"— 2' — (e'" " &-.), (—2 1)
M

3j&(kR) )
x~ 1- l. (2.6)

kZ ]where ~„'is the square of the classical plasma frequency,
and rl is the position vector of the lth electron in the
-ys'T ~ primeon ~ sumexcu -t ep»n r=o W;ththe„, uit„v,„b F . (26) w, fi„dt},.t.
In the present case

(u~'= 47rne'/M, (2.2) TrD= P n;s(k)=(0, ',
where m is the number density of electrons and equals
2/as' in terms of the lattice parameter as.

The last sum on the right-hand side of Eq. (2.1), viz. ,

3$l2 —rl2
I

)
& 5

e~ 3xlyl —5&zlrl2
D.„(k)=-'(u '-—P' e'"" (2.3)

M 5

will be shown below to vanish for a finite lattice of cubic
symmetry. It also vanishes, as can be seen from sym-
metry arguments, ' in the case of an infinite lattice having
cubic symmetry. Since these are the only cases we will
consider in this paper, we simplify the following dis-
cussion by omitting this term from discussion and using
as the elements of the dynamical matrix

X= 1—A (twice); X= 1+26;
or in terms of frequencies,

j&(kR)
or„' (twice)

kE.

(2.8)

so that Kohn's sum rule" is still satisfied in a finite
spherical crystal, at least in the long wavelength limit.

We denote the factor [1—3j&(kR)/kR] by 3,. The
secular determinant constructed from the elements (2.6)
when expanded yields the following equation for the
determination of the eigenfrequencies

X'—3X'+3(1—A)(1+6)X—(1—A)'(1+26) =0, (2.7)

independent of the direction cosines of k, where
X=3''/~~s. The roots of Eq. (2.7) are readily determined
to be

The limiting behavior as k ~ 0 of the lattice sum in
Eq. (2.3) has been found by Cohen and Keffer" in the
case of an infinite crystal to be

j&(kR)-
aP= 1—2 CO+ .

kR

(2.9)

4rrm ( 3k,k„)
3 ( k' ) (2.4)

3x(y( 6,„rp — 47rm felk rt

l 3

3k.k, q

k )

and we see that the limiting value at k=0 depends on
the direction along which the origin in k space is ap-
proached. They have also evaluated the limiting be-
havior of this sum when the crystal is taken to be a
sphere of radius R centered at the reference ion. In this
case they obtain

M3 g ~

R fixed, k~o
(2.10)

On the other hand, if we carry out the passages to the
limits in the order in which they are usually done, first
letting R become infinite and then letting k go to zero,
we obtain the previously derived results":

Now, the function j&(p)/p approaches the limit s as
p~0, and goes to zero in the limit as p —+ ~. From
Eq. (2.9) we see therefore that if we keep R finite and
pass to the limit as k —+0, we find that all three fre-
quencies approach the same limit

3j&(kR) )
x~ 1—

I, (2.5)) 0 (twice)
(2.11)

' R. A. Coldwell-Horsfall and A. A. Maradudin, J. Math. Phys.
1, 395 (2960).' See, for example, C. Kittel, Introduction to SoLid-State I'/zysics
(John Wiley 8z Sons, Inc. , New York, 1953), p. 92.

"M. H. Cohen and F. KeIIer, Phys. Rev. 99, 1128 (1955l.

"See, for example, I . I. Schiff, Quantum MecIzanics (McGraw-
Hill Book Company, Inc. , New York, 1949), p. 77.

"W. Kohn (unpublished work); see J. Bardeen and D. Pines,
Phys. Rev. 99, 1140 (1955).' C. B. Clark, Phys. Rev. 109, 1133 (1958).
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The pathological behavior of ro, (k) in the limit as
k —+0 described by Eqs. (2.10) and (2.11) has previ-
ously been commented on by Carr. "

In obtaining the results expressed by Eq. (2.9) we
have made the assumption that the reference ion is at
the center of the sphere. This assumption arises in
obtaining the expression (2.5). It is of some interest to
see what are the eGects of displacing the reference ion
from the center of the sphere by a translation vector of
the lattice. We denote this translation vector by a. The
required lattice sum becomes

The integrals are evaluated in Appendix A with the
result that

4x ~ j( r(kR)
I(a; k) =—P i'(ak) 'Pq(cos8), (2.19)

jp t=o (kR)' '

where 8 is the angle between the vectors a and k. Since
we want the second mixed partial derivative of this

~ function with respect to u, and a„we need consider only
the terms with /&~ 2.

As a check on the calculation we consider the 3=2
term in this expansion:

4m jr(kR) 1
I» (a; k) = —— —(3(a k)' —a'k']. (2.20)

M 2
Xexp)ik (r~ —a)]. (2.12) pre th„s obtain

Since a is a translation vector of the lattice, the infinite
lattice result for the small k limit of this sum, Eq. (2.4)
still holds. The value of the sum appropriate to a
spherical crystal of radius R is given by

O'I»(a; k) 47r gr(kR)
(8,„k'—3k,k „). (2.21)

88 BC„k kR

From Eqs. (2.13), (2.15), and (2.21) we finally obtain
(2 13) the result that in the case a —+ 0,

where S„gis the contribution to this sum from points
r& lying outside the sphere. Following Cohen and Keffer,
we evaluate this latter contribution by replacing the
sum by an integral:

4~re ) 3k.k„q 4r r3rsj, (kR) )
3 ( k' ) 3 kR

which is identical with the result given in Eq. (2.5).
It is clear from Eq. (2.19) and the fact that

Xexpc ik (r—a)]d'r. (2.14)

j~(p)
lim

p' 1X3X5 X (21+1)'
(2.22)

This replacement is valid in the small-k limit. For our
purposes this integral is most conveniently written as

S„g——I exp( —ik a)
88,88„

~oo p li 27i g 'bk 1'

X
~

d'r (2.15)
~a ~o "o

that all terms in the expansion for l(a; k) with t&~ 3 are
of 0(k' ') as k ~ 0 and are well behaved, i.e., show no
pathological behavior in the small k limit. The result
obtained by taking the second mixed partial derivatives
of I(a; k) with respect to k is also well behaved in the
limit as k ~ 0. Since for large p

=e exp( —ik. a) I(a; k).
88,88„

(2.16)

where y is the angle between a and r. The integral
I(a; k) becomes

~2K haik
~ I

E(a; k)= Q a' t
i=o J, J „ J „ rt+r

XP~(cosy)r' sinedrd8dg. (2.18)
"W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961).

Since we have that ! r! &~R&!a!, we expand the de-
nominator of the integrand in powers of (a/r):

1 8 g2

!r—a! '= —+—Pr (cosy)+—Ps(cosy)+, (2.17)
r r2 r3

the terms with l~&3 in the expansion of the second
derivative will show a strong a dependence only for
values of a comparable with R, provided M is large.
However, if we pass to the limit k ~ 0, the terms with
l&~3 go to zero and we are left with the contribution
from only the l=2 term, which is independent of a.
Therefore, as long as we are only interested in the
limiting values of the frequencies in the limit as k —+ 0
for 6xed R, we can assert that the results given by Kq.
(2.10) are independent of the location of the reference
lattice point.

IIL LIMITING OPTICAL FREQUENCIES IN
NaC1-TYPE CRYSTALS

The dynamical matrix for the NaCl crystal has been
given by Kellermann':
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xxf

y xj

1 1

1 2

y g

22
S

1 2

2 2

11
X y

2 1

Xy

1 1

2 1

y y

8 y

2 1
8

f12
$x y

2 2

my

1 2

.y y

2 2
CO

1 2
8 y

2 2
S y

2 1

y S

1 1

X SJ

2 2J

22 2
cp

J

where

1--—eI el
(M~M~ )'* axay!r —a'! .=. -

Xexp[2+ik. (a' —ri, ~ )]
1 e2

8.„[Acos2mrpk,
(M pMi )*' V

+B(cos2mrpk„+cos2prrpk, )], (3.2a)

8' 1
ei'lim g exp(2prik a')

Mp " ' i BxBy!r—a'!
82 1 1 82

+ 8,„(A+2B). (3.2b)
BxBy ! r! Mg V,

This sum differs from that given in Eq. (2.3) only in the
replacement of k by 2', and in the fact that it is
carried out over a face-centered rather than a body-
centered cubic lattice. Noting these changes we can use
Eq. (2.4) to give us the small-k behavior of

(k ky

&x y)
for the case of a finite spherical crystal of radius R
centered at the reference ion:

(kk~ '
4m 1 ( 3k,k„)s, ! I:— I

a.„—
Exy) "~ 3 2rp'h k' )

3ji(2~kR) ~
X! 1— (3.6)

2mkR )
In these expressions k and k' label the two ions in a unit
cell, 3f~ and MI, are the corresponding ionic masses,
r» is the vector joining the two ions in a unit cell, a'
is a lattice translation vector, and ro is the distance
between nearest-neighbor ions. The constants 8 and A
are proportional to the first and second derivatives of
the repulsive interaction between ions, which is assumed
to act between nearest-neighbor ions only. They are
related to the coefficient of compressibility P by'

Combining this result with Eq. (3.2b) we obtain for

in the small k limit

e' 4~ 1 ( 3k,k„y ( 3ji(27rkR)y
!/

a.„—
Mi, 3 2rpP( k' ) ( 2mkR )

1 1
(A+28).

P 6rp V
(3.3)

e2

+b,„(A+2B). (3.7)
3fg, 2ro'

The lattice generated by the {a') is a face-centered
cubic lattice, and the {a') can be written explicitly as

Turning now to the lattice sum appearing in Eq.
(3.2a), we see that it can be written explicitly as

(k k') 3(xpp a.')(ypi a„') —8.„!ri. i a—'!'— —

(x y) rkk'

a'= rp(l „I„,l,), (3.4)

where l„ l„, 1, are three integers whose sum is even. V,
the volume of a unit cell of the lattice, is 2ro'.

The sum in square bra, ckets in Eq. (3.2b) can be
written as

Xexp[2mik (a' —r pi, )g. (3.8)

The small-k limiting behavior of this sum for an infinite
lattice,

s„ (k k'q

&x y)

(k k) 3a 'a '—b (a')'
S! !=P' exp(2prik a') (3.5).

&x y) i (a')'
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is obtained in Appendix 8, with the result that

(k k'y 4ir 1 p 3k,k„ys
I I

=——la, „—
(x y)k p 3 2rp'E k' ) (3 9)

The contribution to this sum coming from values of a'
lying outside a sphere of radius R centered at the point
a'=0 is again approximated by an integral:

where we have used Eq. (3.3). Thus, as expected, the
Liebfried-Brout sum rule" is satisfied in the long wave-
length limit for a finite crystal.

The 6X6 secular determinant is inconvenient to ex-
pand and we have solved it only for waves propagating
along the [100],[110]and L111]directions. Setting the
factor [1—3Ji(2irkR)/2mkR] equal to 6 as before, we
find in each case the following six solutions:

(k k'y
s

(X y)k P

~p'= 0, (three solutions)

4m (3.15)
X (A+28) 5, (tw—o—solutions)

3Xcpa ik (r—r»~)dpr (3 10)

e')1 1y
+r" 3(* *-—)(y-y-) ~.—,( r "—')' V. (M, M )

2r,pJ, J, J, &kk'

This is just the integral appearing in Eq. (2.14) and we
can make use of the results of Appendix A to write

fk k'qs„,
l

y) kmp

e-'-"» j,(2~kR)
kr

2~0

3k.k„q
(3.11)

k' )
Combining the results expressed by Eqs. (3.9) and (3.11)
we have that

(k k'i 4m 1 ( 3k,k„is
l

I=— la.„—
(x y) 3 2rpP E kP

e'(1 1) Sx
l

(A+28) ——a .
V. &M, M ) 3

In view of the results of the preceding section we can
assert with confidence that these six frequencies are the
eigenvalues of the dynamical matrix in the small-k
limit, and are independent of the direction along which
the origin in k space is approached.

The first three roots clearly correspond to the acoustic
modes, and we do not discuss them further here. The
next two frequencies are those associated with the
"transverse" optical mode. We see that if we pass to the
limit k ~ 0 keeping R fixed and finite, the three optical
frequencies approach the common value

ji(2~kR)~
xl 1—3 l. (3.»)

2m.kR

e'(1 1)
happ'=

l +
l
(A+28).

V. &M, M )
(3.16)

This result is not too surprising in view of the inde-
pendence of such sums to the choice of origin in the
limit as k —&0. The corresponding element of the
dynamical matrix becomes

On the other hand, if, in the usual way, we pass to the
limit R ~ pp first and then pass to the limit k —+ 0, the
two "transverse" optical frequencies approach

g2lk kl 4~ 1

Ix y (Mi,Mi, )' 3 2rp'E.

3k,k„)
kP )

eP ( 1 1
pi, '=

l + l (A+28 4~/3), (3.17a—)
V. EM, M )

while the "longitudinal" optical frequency approachesji(2mkR) ) e'

xl 1-3
2mkR ) (MkMk ) l e't'1 1)

piP =
l + l (A+28+87r/3). (3.17b)

V. (M, M )1
X $2+28]. (3.13)

2f0 The results expressed by Eq. (3.17) are, apart from an
obvious misprint in his paper, the limiting values of the

With the result of Eq. (3.7j we see that the trace of optical frequencies found by Kellermann.
the dynamical matrix in the limit as k~0 is given by F t (3 16) tt h th d f F (3 3)

p1 1y e'
Tro(k) =3l + l (A+28)

4M~ M ) 2rp'

18rp( 1 1

l
+

P (M+ M
(3.14)

6rp( 1 1
+ (3.18)

P EM,
G. Leibfried, Haedblch der Physik, edited by S. Flugge

(Springer-Verlag, Berlin, 1955), Vol. 7, Part 1, p. 247; R. Brout,
Phys. Rev. 113,43 (1959).
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gives an explicit expression for the single infrared fre-
quency in the finite-crystal case discussed by Frohlich.

IV. DISCUSSION

In this note we have established the result that the
values of the longitudinal and transverse optical fre-
quencies in an ionic crystal of the sodium chloride type
in the infinite-wavelength limit depend on whether the
crystal is assumed to be of infinite extent or of finite
size."In the former case the results of Kellermann have
been recovered which show that the two kinds of modes
have different limiting frequencies. In the latter case, it
is found that the longitudinal optical and transverse
optical modes have the same frequency in the infinite-
wavelength limit, in agreement with Rosenstock's
contention.

The mathematical explanation for this difference is
based on the nonuniform convergence of the electro-
static lattice sums in Eqs. (2.3) and (3.2), as functions
of k in the limit as k ~ 0. That the qualitative behavior
of a function described by an expansion in trigonometric
functions should be different, when only a finite number
of terms is retained, from the result of extending the
sum to infinity is familiar from the expansion in Fourier
series of functions which are discontinuous or have
discontinuous derivatives. The sum of any finite number
of terms, no matter how large, can lead to only a con-
tinuous, analytic function. It is the passage to an
infinite sum which introduces the discontinuities.

The question we must try to answer now is this: Are
the results we have obtained purely mathematical and
devoid of physical content in that they may be incapable
of experimental verification, or is the degeneracy of the
longitudinal and transverse modes at k=0 a physical
effect which under the proper conditions can be ob-
served P

Since no crystal occurring in nature is infinite in ex-
tent, it may be argued that our result of degenerate
optical frequencies in a finite crystal is the physically
correct one. Unfortunately, the situation is not quite so
simple.

The results we have obtained for the optical fre-
quencies are rigorous only at k=0 itself. When we
proceed to finite values of k the evaluation of the fre-
quencies as functions of k is beset by two related diffi-
culties. The first is associated with the determination of
the higher order terms in the expansion of the electro-
static lattice sums in powers of k. The terms of 0 (k') in
the expansion of the sum in Eq. (2.3) have been ob-
tained in the infinite lattice case by Cohen and KeGer.
To obtain the corresponding terms in the finite lattice
case, we would have to proceed somewhat more carefully

"Although we speak here of crystals of infinite size, it is clear
that these remarks apply as well to calculations based on the cyclic
boundary condition, since in the latter case every ion is considered
as equivalent to every other ion, and the lattice sums are extended
to infinity.

than we have in this paper. The replacement of the sums
over all lattice points outside the sphere of radius R by
integrals corresponds to using the leading term in the
three-dimensional form of Poisson's summation formula.
The omission of the terms past the integral in this
summation formula is justified in obtaining the leading
k-dependent terms, but it would have to be rectified in a
calculation of the higher order terms. The second
difFiculty has to do with the dependence of the values of
the electrostatic lattice sums on the choice of the posi-
tion of the reference ion relative to the center of the
sphere. We can expect this dependence to be small for
reference ions whose vector distance a from the center
is small, particularly when kR is large. However, these
conditions are not satisfied for all of the ions in the
spherical sample. An approximate way of taking account
of the a dependence of the lattice sums and hence of the
frequencies is to evaluate the latter for a particular
choice of the displacement vector a and then to average
the result over all values of a, assuming the spherically
symmetric distribution function

ji(p) = sinp/p' —cosp/p'. (4 2)

As we have remarked in previous sections, if p is suK-
ciently small this quantity approaches —„while it goes to
zero for large p. However, 6 does not reach its limiting
values very rapidly. When 2xkR=1, 4=0.0964 which
is small, but not zero, while at 2mkE. =3m, 6=0.966,
which is not very close to unity. Thus, if by some
technique it is possible to measure the dispersion curves
for the optical branches of the frequency spectrum for
values of k such that 0 (2m kR (3m, the oscillation of the
longitudinal and transverse optical branches should be
observable.

The usual techniques for determining dispersion
curves, viz. , x-ray diffuse scattering measurements, and
the inelastic, coherent scattering of low-energy neutrons,

P(a)da= da, 0&a&R
—;xR'

=0,

for the probability of ending an ion in the shell defined

by the interval (a, a+da).
Rather than carrying out the rather elaborate calcula-

tions outlined above, we have preferred to reason in the
following somewhat simpler way in drawing physical
conclusions from the results of the analysis of the pre-
ceding sections. In the small-k limit, no matter what the
correction terms to ar,'(k) are, they will be of higher
order in k than are the results expressed by Eqs. (3.15).
This means that for small enough k we should be able to
obtain meaningful results from a discussion of Eqs. (3.15)
alone. We see that the small-k values of &v' are deter-
mined by the terms containing 6= 1—3ji(2m.kR)/2~kR.
An explicit expression for ji(p)/p is
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2~cq= io;(k), (4.3)

where q=
~ iI~, c is the speed of light, and j denotes the

transverse optical branch. The "momentum" conserva-
tion condition requires

do not give very accurate results for very small values
of k. There is, however, another method for determining
the value of the frequency of the transverse optical
mode for very small values of k. This is by measuring
the so-called "reststrahl" frequency, which is usually
defined as the limiting value of the frequency of a
transverse optical branch as k —+0. However, strictly
speaking, the value of the reststrahl frequency is not
that of the transverse optical branch at k=0, but
corresponds to a very small, but finite value of k, which
can be determined in the following way. ' If q is the
wave vector of the incident photon, the energy con-
servation condition on its interaction with phonons
leads to the equation

of the reststrahl frequency would be observed as the
particle size increases. To the authors' knowledge, no
such experiments have as yet been carried out, but they
appear to be feasible.
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APPENDIX A. EVALUATION OF I(a; k)
DEFINED BY EQ. (2.10)

In this Appendix we evaluate the integral I(a;k)
defined by

00 00 'lr

I(a;k)= P a" ~ r'dr ~ sin0d0
n=p 0Z ~o

q= (44) ~2~ ~i' r
Combining Eqs. (4.3) and (4.4), we have for the equa-
tion determining k

2~ck =co;(k). (4 5)

A typical value for a frequency in the transverse optical
branch is 3&10"sec ', so that the value of k obtained
from Eq. (4.5) is

&( d~t P„(cos8), (A.1)
r n+1

where we have chosen a to be the polar axis in writing
the term P„(cos0). Writing k= (k„k„,k.) we evaluate
the q integral to find

k 1.6)(10' cm '. (4.6) expLir(k, sin0cospo+k„sin0sin~t+k, cos0))dpo

From studies of the dynamics of simple models of
crystals" it is known that the values of the wave vector
k are discrete, whether the ionic displacements satisfy
the cyclic boundary condition, clamped boundary con-
ditions, or natural boundary conditions. The minimum
(nonzero) value of k in each of these cases is of the order
of the reciprocal of the linear dimensions of the crystal.
In the present case of a spherical crystal of radius R this
criterion implies

a) p

=2srJoker(k, '+k„') & sin0j expLirk, cos0$. (A..2)

We can simplify this result by noting that

k, =k cos8,

(k '+k ') =k sin5,
(A.3)

where 8 is the angle between k and a. The 0 integral is
then evaluated by using an identity given by Stratton":

k;„1/2R. (4 7)
j„(kr)P„(cosh)

For this value of k;„,2m.k;„E. x, for which 6=0.696.
This value of 6 is intermediate between its two limiting
values, implying a similar statement about the longi-
tudinal and transverse frequencies. Since Eq. (4.7) ex-
presses the minimum value that k can have in a crystal,
combining Eqs. (4.6) and (4.7) we find that in order for
the photons to be able to interact with the optical mode
phonons, we must have

k 1.6&& 10' cm ')k;„1/2R. (4.8)

This means that if reQectance studies to determine the
reststrahl frequency were carried out on powder samples
of (say) NaC1 whose particles are of the order of, or
greater than, 6&(10 ' cm in diameter, then if the present
theory is correct away from k=0, a decrease in the value

» R. E. Peieris, Quarttum Theory of Solids (Oxford University
Press, New York, 1955), p. 56.

'8 See, for example, E.%.Montroll and R. B.Potts, Phys. Rev.
102, 72 (1956).

e~k,ft COSb COSH

2 J,
XJp(kr sin0 sin0)P„(cos0) sin8d0, (A.4)

where j„(x) is a spherical Bessel function of order rt.
Thus we are finally left with the r integral

t" j (kr)
dr4in "P~(cos0)

~

j„ i(kR)
=4tri "k" ' P (cosh), (A.5)

(kR)" '

which leads to the expression for I(a; k):
4sr j„ i(kR)

I(a; k) =—P i "(ak)"P„(cos0) . (A.6)
ks „=p

"
(kR)n —i

"J.A. Stratton, Blectromagrletic Theory (McGraw-Hill Book
Company, Inc. , New York, 1941),p. 411
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APPENDIX B

Ke work out here the behavior of the lattice sum

1975

(h h'
) 3(x»' u ')(y»' ap') I')

pl a' —r»'I'
5~I I

=P expl 22ik' (a rpp~)]"&x y) I kk'

in the limit as k —+ 0. In fact, what we will a,ctually do is to evaluate the sum

expL22-ik. (a' —r), p )]
8 —1'It, yr

(8.1)

(8.2)

and take mixed partial derivatives with respect to k, and k„.
We begin by rewriting Eq. (8.2) as

00

t& expL —tla' —r), ), I'+22.ik (a' —r» )]dt,
r(5/2) i ~,

1
p expL22ik (a' —r), ), )] ti exp( tla—' rp)—, I')

I'(5/2) )'

1
+ ~' t'*dt p exp[22ik. (a' —rk~ )—tl a' —r), ), I']

I'(5/2) ~p—Q(&)++0)

(8.3)

(8.4)

The sum P&') can be transformed into

te 2

—2 expl 2~ik (a' —»„ )]0',(.Ia —r» I'),
I'(5/2) ~

(8.5)

where we have introduced the auxiliary integrals

(x)= tme "dt,m (8.6a)

+~--~(x)
x s

(8.6b)

2 2' 1 7r2

p expL22ik (a' —r+)„. )—tl a' —r» I']= p —exp ——Iy(h)+k['+2vriy(h) rp+
V, »t'

where y(h) is a, translation vector of the reciprocal lattice. Thus, Q") becomes

7r 1
pp) =

(/
f 2&I 1 7P

t~dt—Q —exp ——
I
y(h)+kl' +2~iy(h) r), A-,.

2 F52)"o V, ) tl

1 22- t-" du u—P exp —2'—
I y(h)+k I'+22'iy(h) rpk

2 I'(5/2) V, ~& u' &

We transform the sum P'P) with the aid of Ewald's generalized theta-function transformation"

(8 &)

(7r2 e"'""' "'
p - I

—
I y(h)+k I' I.)I'(5/2)V. p E p

To ensure equal rates of convergence in the sums Po' and P~" we pick p to equal 7r/rp', and obtain

(8 8)

' 2

2 «pL ~ik (a' —»')]p -:I
—la' —r» I' I+- 2 " '""' ""'p-2(~«'Iy(h)+kl')

r(5/2)rp' ~ (rpP ) 2I'(5/2)rp' "
~' Reference 4, p. 251.

(8 9)
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We need the nonvanishing terms in (8 /Bk, pjk„)P in the limit as k —& 0. Differentiating, we obtain

(k k'i f m

2 {3(~ ' ~p~')(~ ' y» ) ~* (a' —'»)')p-:I —Ia' —»p I'
I exp[2vrik (a' —r„)]

&x y) r(5/2)r P
~ 'ir, P )

P exp[2priy(h) r», .] exp{—wrpP[y(h)+k]')
4m' 21'(5/2)rp h

In the limit as k ~ 0 this expression becomes

, 3Ly.(h)+h.][y,(h)+k,]—&.,[y(h)+k]'
X47rr p' (8.10)

[y(h)+k]'

pk k'i ( 7r

& {3(& ' —»')(&.' —y») —~*.(a' —r»)') v-:I —,la' —r» I'
I($ y 3 k p F(5/2)fp i (rp

gran

3k,ky
exp (—prrp'k')—

21'(5/2)rp' kP

7ra 3y.(h)y. (h) ~*py'(h)—P' exp[2ziy(h) rqq ]exp[ rr 7y—p'P(h)] — . (B.11)
2I'(5/2)rp' & y'(h)

The sums over l and h vanish identically, and we are left with

(k k') 4~ 1 ( 3k.k„i

(x yj ""'3 2r, 'I k' j (B.12)


