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g'. Also, because the cone is narrow,
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If the surface were smooth, all y~'s would be zero
except for yo. The difference between the rough and
the smooth surface lies only in the factor

v"l-1—(klq)'1',

Thus we have shown that the heat Aow across the solid-
helium interface is necessarily smaller for a rough
surface than for a smooth surface. This result is not
to be confused with the increased heat Row which
occurs when a surface is roughened due to the increase
of the macroscopic area of the surface. The distinction
between macroscopic roughening and microscopic
roughening being given by the mean free path of the
phonon. This effect has been discussed previously. '
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Particle interactions in a Fermi gas may be such as to attract
pairs near the Fermi surface more strongly in /= 1, 2, 3 or higher
states than in the simple spherically symmetrical s state. In that
case the Bardeen-Cooper-SchrieGer condensed state must be
generalized, and the resulting state is an anisotropic superfiuid.
We have studied the properties of this type of state in consider-
able detail, especially for /=1 and 2. We have derived expressions
for the energy, the moment of inertia, the magnetic susceptibility
and the specihc heat. We also derive the density correlation func-
tion and the density-current density correlation; in some cases

the latter implies that the liquid has net surface currents and a
net orbital angular momentum. The ground state for /=2 is
different from those previously considered, and has cubic sym-
metry and no net angular momentum. A general method for
replacing the possibly rather complicated potential by a simple
scattering matrix is given. A brief discussion of possible collective
effects is included. We apply our results to liquid He'; after cor-
rection for scattering by a method due to Suhl, it is found that
the predicted transition should take place below 0.02'K. Other
possible applications are suggested.

I. INTRODUCTION

INCE the publication of the Bardeen, Cooper, and
Schrieffer (BCS) theory of superconductivity, ' at-

tempts have been made to extend their method to
describe possible condensations of other interacting

' J. Bardeen, I. N. Cooper, and J. R. SchrieRer, Phys. Rev.
108, 1175 (1957).

fermion systems, particularly liquid helium-3. It has
been recently observed by several authors' 4 that the
problem of determining the ground state of a fermion

' J. C. Fisher {private communication); D. J. Thouless, Ann.
Phys. 10, 553 (1960).

3 K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel,
Phys. Rev. 118, 1442 (1960).

V. J. Emery and A. M. Sessler, Phys. Rev. 119, 43 (1960).
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assembly with attractive forces has solutions which
correspond to condensing the fermion pairs into
/=1, 2, 3 states rather than into the spherically
symmetric s state of BCS theory. Brueckner et al. ' first
pointed out that the forces in liquid helium-3 are
favorable to a condensation into an /=2 state at a
temperature of the order of 0.07'K. This situation is a
consequence of the strongly repulsive short-range part
of the He'-He' interaction potential which dominates
the first few terms of its expansion in terms of spherical
harmonics, thus preventing a condensation in the 1=0
or 1 configurations. In higher order, however, (beginning
with /=2) the long-range attractive part contributes
more than the repulsive core so that the balance is
attractive and a condensation is possible. It is not in-
conceivable that a similar situation could occur in other
cases of interacting fermion systems, such as electrons
in transition metals.

It must be pointed out that the existence of such
condensed states has not been observed yet in any
physical system. Measurements' of the specific heat of
liquid helium-3 at temperatures as low as 0.008'K
failed to show any transition to an ordered state; this
experimental result does not, however, preclude a con-
densed state of the type we are discussing here, for the
critical temperature T, derived for an ideal Quid

(without scattering) is certainly well above the true
transition temperature for the real Quid. Indeed, Suhl
argues that a transition to a condensed state cannot
take place unless the energy broadening due to scatter-
ing is smaller than kT, .' One can see from self-diffusion
measurements' that the amount of particle-particle
scattering is still quite large at 0.03'K and that the
resulting energy broadening will be small enough to
allow a condensation, only at a signi6cantly lower tem-
perature, probably of the order of 0.01' to 0.02'K. It
is thus possible .that the stable state of liquid helium-3
be a condensed state at the absolute zero and at tem-
peratures close to zero, even though helium-3 is still a
Fermi liquid in the range of temperatures which are
attainable now. In any case, these nonisotropic con-
densed states appear interesting enough to justify as
complete an investigation as possible of their properties
and of the conditions for condensation.

We erst introduce a general theory of ideal many-
fermion systems specifically designed to include possible
condensation of the particles into nonspherically sym-
metrical pair states, following a straightforward gen-
eralization of the method of Anderson' (Sec. II); then,
we renormalize the interaction potential in order to
eliminate formally divergent matrix elements (resulting
from the strong repulsive core of the He'-He' potential)
and reduce it to an "effective potential" acting only

5 A. C. Anderson, H. R. Hart, Jr. , and J. C. Wheatley, Phys.
Rev. Letters 5, 133 (1960);A, C. Anderson, G. L. Salinger, W. A.
Steyert, and J. C. Wheatley, ibid. 6, 331 (1961).' H. Suhl, Bull. Am. Phys. Soc. 6, 119 (1961).

~ P. W. Anderson, Phys. Rev. 112, 1900 {1958).

near the Fermi surface (Sec. III). The problem of 6nd-
ing the ground state is then reduced to solving a
HCS-type nonlinear equation: Sec. IV is devoted to the
treatment of this equation and the derivation of the
properties of the ground state, particularly the ground
state energy (condensation energy). We present in Sec.
V a novel approach to the derivation of the thermo-
dynamics of the condensed system, based on Anderson's
formalism; the critical temperature T„ the specific
heat, and the paramagnetic susceptibility of the con-
densed Quid are evaluated. The two following sections
are devoted to the study of the Qow properties of this
model; in Sec. VI we show that a small fraction of the
particles take part in a spontaneous circulation in the
ground state at O'K, because the average correlation
between the density of particles and the current-
density fails to vanish on account of the anisotropy of
the ground state; in Sec. VII, we show that the con-
densed Quid is superfluid as could be expected from the
analogy with the superconducting property of the con-
densed electron gas in metals, and in accordance with
the finding of Glassgold and Sessler. ' Finally, we dis-
cuss the alterations of the properties derived in the
previous sections for an ideal fluid, brought about by
scattering and in general departure of the real Quid

from the ideal model; we emphasize particularly in this
last section (VIII) the significant lowering of the
transition temperature by scattering in the case of

,liquid helium-3.

II. PRESENTATION OF THE FORMALISM

We write the Hamiltonian of our system of inter-
acting fermions in second quantization and expand the
wave function in term of plane waves:

H=Q tkCk, r Ck, (r

R, o

Vkg~Cklp Cq k~, p~ Cq k, n~C—kp. (2.—1)
k, k', ti o, a'

Here c&,,~ and c&,, are, respectively, the creation and
annihilation operators of the fermion 6eld, ek the energy
appropriate to single-particle excitations of the system,
and Vkk the interaction potential matrix element. The
most basic approach to treat the Hamiltonian (2.1)
would be to take ek as the "bare" particle kinetic
energy and V&k equal to the Fourier transform of the
free space He'-He' interaction potential, and to derive
all many-body eGects, including a possible condensa-
tion, from there. We shall not, however, follow this
course since we are only interested in ending the energy
difference (or condensation energy) between the con-
densed state and the Fermi states of a system of
"dressed" particles. Anderson' and others' have shown
that the usual many-body effects, leading to a re-

A. E. Glassgold and A. M. Sessler, Nuovo cimento 19, 723
(1961).

E.g. , N. N. Bogolyubov, Uspekhi Fiz. Nauk 67, 549 (1959);
Y. Nambu, Phys. Rev. 117, 648 (1960).
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normalization of the Hamiltonian in terms of quasi-
particles or "dressed" particles, are probably substan-
tially unaffected by the transition into a BCS-type
condensed state, when the condensation involves only
a small fraction of the total number of particles; the
many-body corrections, such as the exchange energy,
the screening of the interaction potential, etc. , are
practically the same in the normal and condensed
states. Consequently, it is adequate to replace the basic
Hamiltonian (2.1) by the renormalized Hamiltonian
which is the result of a complete treatment of the usual
many-body effects in the normal state, that is to say
to include effective-mass corrections into ek and to use
a screened potential instead of the free-space interaction
potential.

Furthermore, Anderson has shown that the reduced
Hamiltonian H„z which includes only the term q=0
of the full Hamiltonian (2.1), leads to the correct
zero-order equations of motion for the excitations of
the system, in the generalized random-phase approxi-
mation. It is thus satisfactory to use this reduced
Hamiltonian instead of (2.1) for the purpose of finding
the ground state of the system. In the ground state, all
particles are associated in pairs with zero total mo-
mentum and either zero total spin (antiparallel pairing)
or a total spin equal to 1 (parallel pairing). In the
former case, we can define the BCS operators:

=Ckt C k$

~k= C k J,Ckt)

Sk=Ckt Ckt=C —kl C k4.

We find, in this case, that the odd part of Vkk can be
canceled by symmetrizing the interaction terms of the
reduced Hamiltonian. Since we shall later use the ex-
pansion of Vkk. in term of spherical harmonics, it is
pertinent to remark that only even terms of this ex-
pansion remain after the symmetrization: even / terms
are associated with antiparallel pairing.

In the case of parallel pairing, we can instead define
the operators:

6k, a =Ck, a C k, a

6k, a' C—k, o'Ck, o)

~k, a Ck, a Ck, a =C k, a C k, a.

Now, only odd terms are left upon symmetrization of
the interaction, meaning that the odd l terms of the
expansion of Vkk in terms of spherical harmonics are
associated with parallel pairing. A slight complication
arises in this case because the two spin populations are
left uncoupled by the interaction: One can then write
two "half-Hamiltonians, " one for each spin, and con-
sider, in principle, the case of unequal populations of
the two spin states. It can be shown, however, that
this situation could not occur in the weak-coupling
limit, ' so that the average values of the above operators
"Indeed, if the interaction has a reasonable strength, the bind-

ing energy gained by concentrating more particles in one spin

W

=V

FIG. 1. Representation of the mean value of the "pseudo-
spin" operator 0-q in the occupation space of the individual particle
state k.

are independent of the spin; this allows us to forget the
distinction between the two spin states in this case and
to write the reduced Hamiltonian both in the cases of
parallel and antiparallel pairing as

H„&=2 Q skulk —2 P Vkk bk *bk.
k kk'

(2.2)

We now carry these expressions into (2.2) and also
slightly alter the definition of ek to the effect that, from
now on, this energy will be measured relative to the
Fermi level. Omitting an irrelevant constant, we find

Ked P &k&kw 2 P Vkk'[gku&k'u+&kegk's j (2.3).
k kk'

The analogy with the problem of ferromagnetism leads
us to use the so-called "semiclassical method" for the
purpose of finding the ground state of the system; this
method consists in replacing the spin operators (here
the operators ok) by their mean values, which can be
treated as ordinary vectors of moduli equal to 1, in
their respective spin (occupation) spaces (Ounw) k."
I.et then Xk and pk be the usual latitude and longitude
angles defining the direction of the vector (ek) (see
Fig. 1). In term of these new variables, the mean value

state than in the other is more than offset by the resulting in-
crease of the kinetic energy."G. Belier and E4. A. Kramers, Proc. Acad. Sci. Amsterdam
37, 378 (1934); M. J. Klein and R. S. Smith, Phys. Rev. 80, 1111
(1951);P. W. Anderson, ibid. 86, 694 (1952).

Following Anderson's method, we express the three
operators bk*, bk and zk in terms of one vectorial
operator ok, formally identical, in the occupation space
of the pair state kg, —kg (antiparallel pairing) or
kt, —kf (parallel pairing), to the spin ~i operator in
spin space:

bk g(&k fak )

bk ———,'(O.k +iak.),
+k ~—k 0 km' ~
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E of the reduced Hamiltonian is

E Q pk cosXk —
2 g Vkk sinXk e'&&k' &». (2.4)

k kk'

1
tanxke'&k= —p Vkk sinxk e'&k'. (2.5)

Minimizing with respect to fk does not bring a more
restrictive condition, for the derivative of E with re-
spect to pk vanishes as a consequence of condition (2.5).
This of course was to be expected since adding an
arbitrary constant to all fk is irrelevant to the physical
situation.

Finally, using relations (2.4) and (2.5), we find the
energy in the ground state:

E,= —p pk(cosxk+-,' sinXk tanxk).
k

(2.6)

The ground state at T=O'K is found by minimizing E
with respect to Xk and pk. The former operation leads
to the condition:

the Fermi level and Xk —+0 above the Fermi level, if
the actual distribution of individual particle states
approaches the Fermi distribution). Let us then split
the summation on the right-hand side of (2.5) into
summation inside and outside the shell:

ln

tanxke'&k= —p Vkk sinXk e'&k'

sinXk= tanxk+0(~ sin'Xk ~). (3.2)

We obtain thereby, as far as the summation outside
the shell is concerned, a linear integral equation which
can be solved by iteration. Substituting expression (3.1)
for tanxk in (3.2), we find:

out

+Q Vkk sinxk e'&k', (3.1)
kt

and replace sinXk in the second term on the right-hand
side by

6k

The condensation energy is then the difference between
E, and the energy corresponding to the Fermi state
(cosxk ———1 inside the Fermi sphere and +1 outside):

Wp= p p f pk
f

e(kc soX+kslilXk tanXk)]. (2.7)

tanXke'&k

in ] out
=—p Vkk. sinxk e~'k'+ —p Vkk tanxk e'&k'

6k'

Although this energy 8'0 is usually quite small, it is
indeed the main contribution to the binding energy
gained by the pairing of the particles. The contribution
of the interaction terms included in H„d to the usual
correlation energy is altogether negligible (to order
1/E). On the other hand, the usual correlation energy
results from terms which are not included in the re-
duced Hamiltonian (scattering, exchange, exchange-
scattering matrix elements, . . .) and therefore, is not
significantly altered by the condensation. "

4

in Vkk s]ngk e &k' in out Vkk Vk k slnxk e'&k"

+ZZ
k)l k/ Ck 6k'

ou««vkk Vk k"Vk k " SinXk "e'«"'
+ZZZ

6k 6k' 6k"
~ ~ ~

(3.3)

1 ln

tanxke'«= —Q Ukk sinXk e'&k', (3.4)

By relabeling the summation indexes, this equation can
be written in the more convenient form:

III. EFFECTIVE POTENTIAL

Since we are interested here in the weak coupling
limit, we consider only states of the system not too dif-
ferent from the Fermi state: We expect, in other words,
the distribution of individual particle states in the
ground state of the system to be essentially identical to
the Fermi distribution outside a fairly thin shell about
the Fermi surface. Restricting our interest to these
quasi-Fermi distributions, we assume that ~sinxk~ is
significantly diferent from zero only inside the shell

~
pk~ ($ in momentum space, $ being much smaller

than the Fermi energy. It is clear that most of the
binding energy results from the contribution to (2.7)
of transitions inside this shell. This region near the
Fermi surface is also the domain where Eq. (2.5) is
nonlinear, for sinXk is almost equal either to + or
—tanXk outside the shell (that is to say, Xk —+ m. below

"See reference 7, Sec. V-

where the "eRective potential" Ukk is defined by

out

Ukk' Vkk'+Q Vkk" Vk" k'
k"

out out 1 1
+Q g Vkk~ —Vk"k»~ Vk "k ' ' ' (3 5)

out

Ukk'= Vkk'+Q Vkk" Uk" k'.
k qk"

(3.6)

Note that Eq. (3.4) is quite similar to (2.5) although
much simplified since the summation is to be extended
only on a small region of momentum space; on the
other hand, the original potential V is replaced by the
rather awkward expression (3.5). In this respect, we
shall find convenient to use instead of this definition
of Vkk, the equivalent integral equation:
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Ke notice furthermore that the terms of the second
order in sinXk cancel from the expression (2.6) for the
ground-state energy, in the limit of small sinXk (that is
to say, outside the shell):

in

E,= —g ek(cosXk+-,' sinXk tanXk)

out—2 LI "I+o(l»nxkl')j (3/)

8 ik' ~ r V(y)eik rd&

2s'(2l+1) r=P Pi(k. k') . Ji+, (k'r) V(r)Ji+1(kr)rdr
L=O (kk')' ~ o

~ 2l+1
Vg(k, k')Pi(k k'),

l=O
(3.8)

'3H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A258, 551 (195/).

'4 If 8, q and 8', q' are the usual latitude and longitude angles
which determine the directions of the unit vectors u and I' with
respect to a fixed frame Oxyz, we have:

Pi(d d')=P~(cos8)P~(cos8')+ Z 'P~ (cos8)P~~(cos8')
+'

(l m)!—
=1 (l+m) ~

m=+3

Xge' &+' ~&+c c 5= Z Y. i„. (8,e) Y~ '(8', e').
2l+1 m=—l

The last term on the right-hand side is of the order of
LV/P (where 6 is a measure of the condensation energy
near the Fermi level) and must be neglected in the

. weak-coupling limit. In this "effective potential"
scheme, therefore, the binding energy t/t/'o results ex-
clusively from the contribution of transitions inside the
shell. We justify thereby the "cutoff" hypothesis of
BCS since we have obtained an equivalent expression
of the ground-state energy by replacing the actual
potential V&i, by the effective potential U» defined

by (3.6) if both k and k' are inside the shell
I ski ($

and equal to zero otherwise.
This procedure was a necessary step in the helium-3

problem, because of the presence of a practically di-
vergent repulsive core, which is to a great extent
renormalized out in the integral Eq. (3.6). It is very
close to the Bethe-Goldstone scheme and Eq. (3.6) can
indeed be re-expressed in position space and integrated
like a Bethe-Goldstone equation. " It is, in addition,
extremely convenient in any weak-coupling case, since
it allows the replacing of the energy-dependent V»
by the substantially energy-independent U» thereby
leading in general to a soluble integral equation (since
this effective potential is factorizable).

To elaborate on this last point, let us expand Eq.
(3.6) in terms of spherical harmonics, with the help of
the "addition theorem" for Legendre polynomials. '4 The
expansion of Vi, i, is

where we denote by k the unit vector parallel to k.
Here Pi(se) is the (un-normalized) Legendre poly-
nomial of order I, and J~+., is the Bessel function of order
l+ ', I-n. the limit of small r, Ji+., (kr) is approximately
proportional to (kr)'+l; consequently the short-range
part of the potential V (r) (inside a range of the order
of kp ') contributes little to the high-order terms of
expansion (3.8). This property is particularly signifi-
cant in the case of a long-range attractive potential with
a repulsive core; although the core may be strongly re-
pulsive, the long-range part eventually dominates the
higher order terms of (3.8) so that Vi is positive (corre-
sponding to an attractive int. eraction) for large enough /.

Similarly, the expansion of Ui, k is

~ 2l+1
Ukk ——Q — Ui(k, k')Pi(k k').

L 0
(3 9)

V&(k,q) U&(q, k')q'dq. (3.10)

We can now demonstrate that the divergence due to the
repulsive core has been eliminated from the effective
potential. For the sake of the argument, let us take
V(r) as a square potential of fixed range and arbitrary
large strength A. Then Vi(k, k') is proportional to A
and (3.10) can only be satisfied if U&(k, k') is independent
of A, hence finite. Thus divergent terms cancel each
other on the right-hand side of Eq. (3.6) or (3.10),
so that Ui(k, k') is finite, even though Vi(k, k') may be
formally infinite.

Furthermore, we note that we only need to solve
Eq. (3.10) in a very small range of values of k and k':
our basic assumption, relevant to the weak-coupling
case, is indeed that the thickness 2$ of the domain of
summation is much smaller than the Fermi energy so
that the relative variations of the moduli k and k' are
quite small; it is then an excellent approximation to
replace the functions U&(k, k') in expansion (3.9) by

"We assume the system is large enough so that Z& is approxi-
mately equal to fdpi, /8x'. More precisely, we shall replace
Zk'" by (Ne/2x) f, e&fe pf e'~sin8d8d&pd and Eke'"' by (te/2e)
)(f, ~"Jy 0 f„0' sin8d8dyd~. $0 is one-half the individual par-
ticle density of states at the Fermi level.

These coef6cients at large values of k are of course im-
portant only because the equations we are to solve are
for pairs of particles in the presence of the Fermi sea; the
repulsive centripetal barrier, which for ordinary wave
equations always ensures that a spherical potential
binds l =0 states most strongly, is here at least partially
overcome by the zero-point kinetic energy of the de-
generate gas.

Carrying these expressions into (3.6) and replacing
the summation by integration over the corresponding
domain of momentum space, "we obtain

Ui(k, k') = Vi(k, k')
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their mean values on the Fermi surface: Ui(kr, kr) or
U& for short. The Ui are not well (intrinsically) defined
parameters of the system since their values depend
logarithmically upon the arbitrary parameter $ (we
shall show, however, that the energy of the system and
the other physical quantities of interest are independent
of $). In order to derive explicitly this dependence, let
us assume then that the function Ui(q, kr) of ore variable

q is increased by an infinitesimal amount 5U&(q, kr),
proportional to Ui(q, kr):

U (iq, kr)+8Ui(q, kr) = Ui(q, kr) $1+fix].

This function is the solution of Eq. (3.10) corresponding
to a slightly different value $+6$ of the parameter:

1+Ax
I

1
(1+bx)Ui ——Vt+ Vi(k p, q)

4~' i, i &t-+~~

instead of (4.2), is quite small; the amount of other
spherical harmonics in a predominantly l-type solution
of (4.2) never exceeds few percent and moreover, the
error in the ground state energy involved in neglecting
this slight mixing is very small indeed (0.1%).We shall
therefore simplify the problem of finding the ground
state by taking into account only the most attractive
term of the expansion of the effective potential (which
is likely to give the most favorable condensed state).

Similarly, one could also argue that diferent I'&

(for a given /) are slightly coupled in Eq. (4.4) and one
sees easily that this equation has indeed simple solu-
tions like

(4 5)

For such solutions, (4.4) reduces exactly to the BCS-
type integral equation:

XUi(q, kr)q'dq. (3.11)

Subtracting (3.10) from (3.11) we obtain in first order:

I
v-(8', v') I'

(4.6)

or:
8Ui ———XOUpd(/$ (3.12)

1/1VpUi =ln)+ constant, (3.13)

where Eo is one-half the density of individual-particle
states at the Fermi level,

IV. GROUND STATE AT T=O'K

We can more conveniently rewrite the Eq. (3.4) in
the form

(4.1)tanXpe'&& =C (8, (p)/eg,

thereby separating the angular dependence from the
energy dependence. C(8, p) is defined by:

Fi *(8',y')C(8', p')
C(8, (p) =P 2xU, V,„( q8) P . (4.2)"' L~~'+lc(8 ~)l'j'
This is a nonlinear integral equation, the nonlinearity
resulting from the presence of the term

I C(8, y) I' in the
denominator on the right-hand side. Since this term is
small in the weak-coupling limit, one expects that the
mixing of diGerent l spherical harmonics will be small
and that therefore Eq. (4.2) has a series of almost
pure l-type solutions like

On the other hand, the perfect decoupling of diGerent
m in (4.6) is only the result of the heuristic "Ansatz"
(4.5) and there can be no doubt that (4.4) has also
mixed solutions like (4.3): for example, the solutions
derived from (4.5) by a rotation of the coordinate
system. We have therefore performed a complete
analysis of this problem for the case l=2 (condensed
state of helium-3) in the Appendix B. After removing
the irrelevant degrees of freedom (three for rotational
invariance and one for gauge invariance"), we have
found that Eq. (4.4) for /=2 has at least two inde-
pendent mixed solutions in addition to the three simple
solutions AOF20, A~I'2~, and 62F~2.

At this point, numerical computations are necessary
to proceed and choose the most favorable configuration
among these solutions. This computation is straight-
forward enough for the simple solutions (4.5); after
integrating (4.6) over the energy and discarding terms
of the order of 6„'/P (negligible in the weak coupling
case), we obtain

( 2$ tr
1=EoUil ln—

I
7'i„

I

' ln
I Fi„I

dD I, (4.7)

or, more conveniently,

C(8, v) =E ~-Vi-(8, ~) (4.3) 6 =21'$ exp( —1/1V, Ui), (4 g)

These considerations are borne out by a more refined
evaluation of the amount of coupling between different
terms of the expansion (3.9) of the effective potential
(see Appendix A). One finds that the error involved in
solving the simplified equation:

'" Vi-*(8', v')C(8' ~')
C(8,&p)=2xUig V& (8, (p)Q, (4.4)"' I:~"+lc(8',v') I']'

where 6 plays the part of the energy gap derived by
BCS and where the constant F is de6ned by

I
Vl (8, 9) I'»

I
Vl (8,P) I

dfl. (4.9)

16 Ke have seen in Sec. II that the physical situation is not
changed by adding the same arbitrary phase angle to all Pp.
Such a gauge transformation is equiva1ent to multiplying C(8,q)
by an arbitrary phase factor.
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TABLE I. Values of 1nF for different solutions of Eq. (4.2).
The binding energy is proportional to F' for a given U&.

m=o
m=1
m=2
m=3

Ground-state con-
figuration (4.12)

1.263 1.048
1.201

l=2
1.020
1.131
1.131

1.154

t=3
1.010
1.090
1.123
1.075

C(8 ~)=~f(8 v) (4.10)

where f(8, cp) is the relevant combination of spherical
harmonics normalized to unity. 6 is again given by
(4.8), with I' defined in general by

»I'= —
„ I f(8, ~) I' »

I f(8,~) I
« (4.11)

We have listed the values of lnF for the simple solutions
Y& up to l=3 in Table I. Note that widely different
configurations yieM close values of F and, consequently,
correspond to almost equal condensation energies
[according to expression (4.13) for the condensation
energy). We wish to get at the same convenient relation
(4.8) for mixed solutions also, and therefore we define

dependence upon $ actually cancels out; d and conse-
quently the ground state energy are indeed independent
of the "cutoff" scheme we have introduced to compute
them.

Equation (4.13) shows that 6 must be maximized in
order to maximize the ground-state energy. Equations
(4.11), (4.10), and (4.8), in turn, show that, in order to
do so, we must maximize

—(f'(8 v) l»1f'(8 v)1&-

relative to (If I), itself. Since the above function is
convex downward, this means that we must minimize
the total variation of

I fl'; essentially, we must make
the "gap" spread as uniformly as possible over the
Fermi sphere. This concept is very useful in visualizing
what is likely to be a good solution and what its prop-
erties are. First, of course, m=0 and other real solutions
are very bad because clearly we can always find
another real spherical harmonic which is large when
this is small and vice versa, and make then a complex
solution which is more favorable because

I
f221+ I f21'

is more uniform than
I
fisI. That is important in our

later discussion of currents. Second, clearly the solution
should have as few zeros of as low order as possible.
That is why (4.12), with only point zeros, is preferable
to the simple (4.5) in the case 3= 2.

1
f(8) cp) F20+ 2 (F22 F2,—2)

V2
(4.12)

This configuration does indeed yield an energy about
5% lower than the energy corresponding to either
simple solutions I'22 or F22 (see Table I).

Ground-State Energy

Carrying the expression (4.10) for C(8, cp) into (4.1)
and (3.7), we obtain in a straightforward fashion the
following convenient expression for the condensation
energy 8'p.

Ns t t
& e'+-,'

I C(8, cp)1'
pip —

1 dQ ["+ I C(8, v ) I'j'

Ep P Xph'=——i

I c(8,~)1 «=-
8m ~ 8x

(4.13)

Although the expression (4.8) for 6 formally involves
the cutoff" parameter $, we see from (3.13) that the

' D. Thouless (private communication); see also D. Thouless,
Ann. Phys. 10, 553 (1960).

We find that the p-type ground state is given by the
simple solution Y»., the d-type ground state configura-
tion, on the other hand, is not a simple solution but
rather a mixture of V2p and I'22 spherical harmonics, in
accordance with a suggestion of Thouless. "More pre-
cisely, the most favorable d-type solution is

Es= [e"+ I C(8, 2 ) I'3'. (4.14)

For l=0 this extra term is a constant ~p, the corre-
sponding spectrum has therefore a gap of width 2ep.
In the non-spherically symmetrical condensed states,
however, C(8, cp) can vanish for some directions, so that
the energy spectrum does not exhibit a true gap, but
only a sharp reduction of the density of states near the
Fermi level (in fact, the density of states vanishes at
the Fermi level). Now, the Jacobian for expressing the
density of states in terms of the variables E, 8, p in-
stead of k, 0, q is

D(k,8, cp) ni
I
E

I

D(E 8 cp) A'kr [E'
I C(8, cp) I

'j-'—
and therefore

(4.15)

N(E) =NslEI
I I

dn
(4.16)

4~ " " LE'—IC(8, v)l'3'*
Z

The integration here is extended over the region Z of
the sphere, where IC(8, q)1 is smaller than E. It is
clear from (4.16) that the excitation energy spectrum

Individual Particle Excitation Spectrum

As BCS pointed out, the condensation perturbs
strongly the distribution of individual particle states
near the Fermi level because of the appearance of an
extra "condensation energy" term in the expression for
the individual-particle excitation energy:
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is altered only near the Fermi level since the right-hand
side reduces to the normal value )Vp if E is large com-
pared to D. Furthermore, one notices that the integral
on the right-hand side is finite, except maybe when 8 is
equal to a relative maximum of

l C(8, q ) l; the integral is
still finite if the maximum is reached at discrete points
but is divergent if the maximum is reached on a line.
We see then that this maximum is analogous to the
gap 6p of BCS, as far as the energy spectrum is con-
cerned. We shall find examples of both situations below:

where
l
C

l
is approximately proportional to the distance

from the node. Transforming (4.17) to a new system
of coordinates 8', q' with the s' axis passing through
the node, we obtain therefore in this limit:

NplEl
t I

dQ'
N(E) =8-

4ir " ~ [E'—2es'sin'8')'*
~l

(4 1g)

26p

/=1: C(8, q I =essin8.
On the other hand, we have seen in Appendix 3 that

In this special case, (4.16) can be integrated exactly lC(8, &) l
reaches the maximum value ep at the six

and one finds: points 8=0, 8=a., and 8=a/2, p= (2ts+1)a/4. The in-

NslE] E es- tegral on the right-hand side of (4.16) is therefore always
N(E) = ln finite and reaches a maximum (about 1.43Ns) at E= ep

E+so (see Fig. 2).

The density of states N(E) vanishes like Ns(E/es)' in
the small excitation energy limit, and becomes infinite
at E=ep.

NslEl p
l

dQ
N(E) =8

4- » [~-ICll-: (4.17)

)=2: lC(8, q&) l
= ise,[(3 cos'8 —1)'+3 sin'2q sin'8)l

In the small energy limit, the domain of integration Z
splits into 8 subdomains Z~ in the neighborhood of the
nodes of the function lC(8, p) l:8=8iora.—8i, q=n7r/2
(cos8i ——1/V3). Each subdomain contributes an equal
amount to the right side of (4.16) on account of the
symmetry of lC(8, q) l, so that this expression can be
written:

V. THERMODYNAMICS OF THE SYSTEM

I.et us now go back to our "occupation space" for-
malism of Sec. II, and notice that the total energy
(2.4) of the system can be written

(5.1)

where ok is (in the ground state) a unit vector in the
occupation space of the pair k, —k, and Ek a pseudo-
field defined by

Eke p l kk'(o k' )
k'

Eke Q I kk'(&k'e)y
k'

+km Gk

(5.2)

We can still use here the effective potential Ukk instead
of Vkk, for the derivation which led to Eq. (3.4) at
the absolute zero, is very nearly exact at temperatures
finite but much smaller than the cutoff energy $. Since
we are only interested in the range of temperature
below the critical temperature T„ this condition is
fulfilled and we can write instead of (5.2):

0
~ N(o)

O

in

Eke Z Ukk'(o k'm)q
kl

in

Ek„——p Ukk (ok.),

+km &k

(5.3)

t.=o

%Flap
ENERGY

FIG. 2. Comparison of the individual-particle excitation energy
spectra for normal Quid (constant density of states equal to Ã0),
an s-type condensed Quid (l=0) and a d-type condensed Quid

(l=2).

Since the potential Ukk is separable, Ek is indeed the
product of a k-dependent factor by a (self-consistent)
sum over all states k' inside the cutoff. It is all right
then to write the total energy in the form (5.1), for
each term of the sum on the right-kand side depends
only upon its subscript k (there is no hidden dependence
upon the other ek, except through the self-consistent
field Ek).
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TA&LE II. States of the pseudo-spin vector. .

Ground pair
Single-particle excitation: k
Single-particle excitation: —k
Excited pair

+k
(parallel to Ek)

+1
0
0—1

Energy

0
0

+~k

straightforward to compute the "sum-over-states" Z
and the related thermodynamic quantities for each
subsystem k, —k and consequently the over-all thermo-
dynamic behavior of the system.

Critical Temperature

We shall consider first for guidance the case of the
Fermi distribution, for which the pseudo-field Ek re-
duces to the to component ek, and ez is equal to +1 and
parallel to the to axis (corresponding to full occupancy
of the pair k, —k below the Fermi level and both k and
—k empty above the Fermi level). There are altogether
four possible occupation number combinations of the
individual-particle states k, —k: the ground state, two
single-particle excited states (one occupied, one empty)
and one excited pair state (two holes below the Fermi
level, or two excited particles above the Fermi level).
The same considerations apply to the condensed state
where the pseudo-field is a vector of modulus E~ Lgiven
by (4.14)7 not parallel to the to axis in general. The
reduced Hamiltonian (2.2) simply does not act on the
two single-particle states, so that the pseudo-Geld E» is
ineffective and they simply act like two extra states of
the pseudo-spin with energy 0. The occupation vector
ek must be parallel to the direction of the pseudo-field
E& and may take any of the four values given in Table
II. Note that this procedure is strictly equivalent to the
treatment of Bogoliubov eI, al. ,

"and is simply a more
graphic method to picture the independent "quasi-
particles" introduced by these authors. It is now

TAsLE III. Critical temperatures and specifIc heats of
some generalized BCS states.

Con6guration C(o, y)

I,=O
1p m 1
2fm=1, or 2

)state (4.12)
1=3, m=2

2ep/k T,

3.50
4.03
4.20
4.93
4.26

fC yT,—'l—
I

g &T, jr=a,
1.55
1.29
1.085

1.055

After performing the angular integration, we find the
BCS equation

or

de
1=1VpUi tanh(p, e/2) —,

dp
(5.7a)

kT, =1.14) exp( —1/1VpU, ). (5.7b)

Again, it is straightforward to verify that the formal
dependence of T, upon the cutoff parameter P actually
cancels out by virtue of (3.13).It is interesting to com-
pare this critical temperature with the "gap" parameter
ep defined in the previous section. We have listed the
values of the dimensionless ratio 2ep/kT, for a few
different angular configurations (Table IQ).

Speci6c Heat

The total energy of the system at finite temperature
is evidently

linear equation for which the superposition principle is
valid: All simple solutions Yt (for a given l and various
m) and combinations of simple solutions are equivalent
energy-wise. Equation (5.5) does indeed split into 21+1
equivalent equations:

'- IFi-(0' v') I'
1=2~Ui Q tanh(P, ea /2). (5.6)

kl

Eke—pgk —Eke p~k
The thermodynamic average of o& at a finite tem-

perature T is e~e&+e ~e&+2
ePEk —PEk

= —Q Ek tanh(PEg/2), (5.g)

(o ~). = = tanh (pE&/2),
e~e&+e ~~&+2

(5.4) and the specific heat C is therefore

where P is 1/kT. Consequently, Eq. (3.4) must be
replaced by

1I1

tanX~e'&I =—Q Ua~. sinX~ e'&&' tanh(pE~ /2). (S.S)

The critical temperature T, is the temperature above
which no solution C(e, rp) of this equation exists At T„.
the solutions C(8, &) vanish exactly and (5.5) becomes a

' N. N. Bogoliubov, V. V. Tolmachev and D. V. Shirkov,
A %em Method in the Theory of SNpercorldletivity (Academy of
Sciences of U.S.S.R., Moscow, 2958).

dE
C= —=2kP' Q I

E"+pE. I (5.»
dT a (1+e»~)& & dP j

P@k

g 2ePEk

Cr p=2kp'Q-
k [1+e&8~7'

(5.10)

It is straightforward to see that (5.10) gives the ex-

In the low-temperature limit, the modulus 5 of C(g, y)
becomes approximately constant so that both d (E&')/d T
and (o, fortiori) Tgd(Eq')/dT7 vanish; the expression
for the specific heat reduces then to
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pected result for the normal Fermi Quid, if El, is re-
placed by e&"

C =4J2k'NoT=pT. (5.11)

For a condensed system, however, the excitation energy
spectrum is strongly perturbed near the Fermi level and
a quite diferent temperature dependence is expected.
One finds, respectively:

p Type -Condensed State (t=1, m= 1):

J4(kT, I' (T l' (Tc=—
I I h T.) I

—
I
=3 5(~T.) I

—
I

&T) &TJ

d Ty pe C-omdensed State )State (4.12)]:
Since the statistical factor on the right-hand side of

(5.9) or (5.10) is strongly peaked at E&——0, the domain
of integration practically splits into the 8 subdomains
Zi near the nodes of Ic(8,p) I. One can use the same
technique as in the last paragraph of Sec. IV and one
finds:

or Ar, 'q'. (5.14)

It is straightforward to show that the longitudinal
modes (5.13) give a small contribution to the specific
heat:

Ci,„s——0.04 (yT,) (T/T, )', (5.15)

of the order of 1%%uo of the contribution (5.12) of in-
dividual particle excitations. On the other hand, the
total energy of the rotational modes at the temperature
T is the statistical average:

(5.16)

portional to the square of their wave vector q; further-
more, one can estimate the energy necessary to cause
this gradual rotation by noticing that all condensation
energy will be lost if a 2x rotation takes place within a
distance of the order of the cohesion length r, (see
next section). The energy spectrum of the rotational
modes will therefore be very approximately

2J4]kT,y' ) T q' p T q' where e is the number of modes per unit volume with
C=

I I (&T.)l —
I
=46(&T.)I —I. (5 12) an energy smaller than»o: n=q'/&n'. We obtain fromJ, L &o ~ &Tc) ETc~ relatjon (5.14):

It must be emphasized that the above results have been
derived by taking into account only the contribution of
individual-particle excitation modes of the system and
neglecting all collective excitations. This procedure is
rigorous in the case of superconducting electrons only,
because the long-range Coulomb repulsive force pre-
vents in this case the existence of low-energy collective
excitation modes lying in the gap. It is not so for a sys-
tem of neutral particles (with a short-range interaction)
and it has indeed been shown by Anderson' that a neu-
tral Fermi gas condensed into a s-type state has low-

energy excitation modes corresponding to long-wave-
length (small wave vector»l) longitudinal waves:

1 t a)&dM 1.8(kT) &

4x'6:r.' 0 e&"—i 4x'A&r, '

and therefore:
d(E,.») 4.5k (kT) &

c-»=———
dT 4 ~ryan ~ i

(5.17)

This contribution to the specific heat vanishes like T&

only and will therefore eventually dominate in the low-
temperature limit; comparing the expressions (5.12)
and (5.17), and noting that the cohesion length is of
the order of kg 'ep/eo, one finds in the case of helium-3:

1 kFq
(5.13)

C... t
coy')Tq-& pTq-~

=0.0»I —
I I

—
I

=6X10-'I —
I

. (5»)
C &„J &T,J &T,i

On the other hand, the spectrum of collective excita-
tion modes in the case of helium-3 (anisotropic d-type
condensed state) is certainly more complicated than
the simple case of the isotropic neutral Fermi gas. In
addition to longitudinal waves, there will be transverse
or "rotational" waves corresponding to a gradual rota-
tion, in space, of the anisotropy axis of the condensed-
state configuration. These rotational modes are rather
analogous to spin-waves in the usual ferromagnets and
one expects therefore that their frequency may be pro-

"We have used here the dehnite integrals:

o (1+e')' o 1+e' '

The 6rst four J are: J1=0.693; J2=1.64; J3=5.4, and J4=23.

This ratio is of the order of unity only when the tem-
perature T is of the order of i0 'T, and, consequently,
the contribution to the specific heat from these rota-
tional collective modes becomes important in a range
of temperature well below the transition temperature
and also well below the temperature which could con-
ceivably be attained by the present day cryogenic
techniques. These estimates of the contribution of
collective excitation modes of the system justify then
our claim that they are negligible in the interesting
range of temperatures.

It is also interesting to evaluate the specific heat
near the critical temperature T,. In this limit, one can
easily derive the expression for d(E»2)/dP from Eq.
(5.5) if one assumes that the configuration f(8,p) of the
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stable state does not change; that is to say,

(5.19)

t.o

O.Q

o.a

Using the result derived by BCS in the t=0 case, one
finds

0;7

0.6

d(A')

dP r=r,

10.2
(5.20)

0.4

03

%e have listed the values of the dimensionless ratio
(C yT, )/—yT. which measures the relative magnitude
of the specific heat discontinuity at the critical tem-
perature, for the simple configurations 6 Ft„(8,y) up
to 1=3 (Table III). We would expect the specific heat
discontinuity to be of the same order for the ground-
state configuration (4.12) as for the V~2 configuration;
this, however, is only of academic interest since it
appears that the actual transition of liquid helium-3
into a condensed state certainly cannot take place at
the computed critical temperature T, (see Sec. VIII).

Purareagnetic SuscePtibility

Since the condensation into an even / configuration
is based on the formation of pairs of particles with anti-
parallel spins, one expects that the freedom of the in-
dividual-particle spins and, therefore, the over-all para-
magnetic susceptibility are reduced in the condensed
state. At the absolute zero, the spins have no freedom
at all since all particles must be paired and the sus-
ceptibility must vanish. On the other hand, condensa-
tion into an odd-l configuration leaves the spin-up and
spin-down populations uncoupled (exactly like the
Fermi state) and therefore the susceptibility of a p-type
of f-type condensed fluid is essentially the same as the
susceptibility of a normal fluid. " I et us then restrict
our attention to the case of antiparallel pairing. The
excitations of the subsystem kg, —kg are still those of
Table II but, in this case, the degeneracy of the two
single-particle excitations is lifted by the paramagnetic
interaction, their energies are now +tiH and tiH, —
respectively (ti is the nuclear magnetron in the case of
helium-3). The average paramagnetic moment
temperature T is then

ePpH e
—PyH

M. =tiQ—
~ e«~+e eE~+e»"-+e e~&-

sinh(PtiH)
=IJ

~ cosh(PEq)+cosh(PtiH)

' The susceptibility may be slightly increased for an odd l
condensed state, if the coupling is strong enough to yield a sizeable
increase of the condensation energy when the two-spin popula-
tions become unequal.

02

0.)

This expression is identical to the expression derived
by Nosanov and Vasudevan" by Bogoliubov's method.
In the weak-field limit, (5.21) reduces to the expression
found by Yosida for the special case t=0":

e~~&

M, =yH=2Pti'H Q
(eeEg+ 1)2

(5.22)

It must be emphasized that, in view of the smallness
of the nuclear magneton, one is practically always in
the weak field limit: Fields of the order of j.0' oersteds
must still be considered as "weak" at 0.01'K. Again,
the summation on the right-hand side of (5.22) in-
volves a statistical factor strongly peaked at E&=0
and therefore the integration can be performed by the
same technique as for the specific heat (5.10). One
finds that the paramagnetic susceptibility vanishes in
the low-temperature limit Llike 1. 80( T/T)'] as ex-
pected (see Fig. 3).

VI. DENSITY AND CURRENT-DENSITY CORRELATION
IN THE GROUND STATE

One expects, in the case of the weakly interacting
condensed fluid we are considering, that the condensa-
tion is a rather long-range cooperative phenomenon,
involving the coherent ordering of the momenta of a
large number of particles; one expects, in other words,
that the condensed state is characterized by a special
long-range correlation between the particles. Further-
rnore, the average particle current around a given
particle does not need to vanish everywhere as in a

"L.H. Nosanov and R. Vasudevan, Phys. Rev. Letters 6, 1
(1961).' K. Yosida, Phys. Rev. 110, 769 (1958).

0 0.1 0.2 0.3 0.4. 0.5 0.6 0 7 OA5 0 9 LO

T
TG

Fro. 3. Comparison of the variation of the paramagnetic
susceptibility versus temperature for an s-type condensed fluid
(l =0) and a d-type condensed fluid (l =2).
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normal Quid or an isotropic condensed Ruid, since the
usual symmetry argument does not apply in the case.
of the anisotropic configurations under discussion. It is
therefore instructive to evaluate the average particle
density and the average current density versus the
distance from a given particle, that is to say, the mean
values of the operators n(x)n(x') and n(x)j(x') in
the ground state; e and j are the usual density and cur-
rent density operators in second quantization:

n= f*P,

j= —(i/2)A[P*V1t —(VP")P]'
The ground state is the vector

(6.1)

We are only interested in the space average of this cor-
relation function, which depends only upon the relative
distance r= x' —x and the spins:

(n(o)n(a')), = Q (@0I Ck,~*Ck,,Ck,.*Ck4~
I +0)

R1k2k3R4

+,=gk[cos (Xk/2) e'»"
+sill(xk/2)e

'

bk ]k~x4 (6 2)

where bk* is the creation operator for the pair k, —k
with parallel (antiparallel) spins for odd (even) l con-
figurations. To simplify the matter, we shall only con-
sider here the case of antiparallel pairing; the same
results would be found in the case of parallel pairing,
only with the opposite spin combination. Expanding the
operators m in Fourier series, we obtain immediately:

(n(x,~)n(x', ~')) = 2 (+a I cki ckg&ck3& ck4 'I +0)
&1&2&3&4

Xei&kX ki) xe—4&k4 k» x —
(6 3)

nomenon in which the close region (in position space)
does not play a major role: the short-range "correla-
tion hole" and the long-range correlation due to
condensation:

(nn) = —,
'

~ P k sinxke'&" '+»)
~

' (6.6)

are well decoupled in position space. Let us remember
that this correlation (6.6) affects particles with opposite
spins in the case of antiparallel pairing and particles
with the same spin for parallel pairing. In any case, we
see that this extra term in expression (6.5) is the con-
tribution of the terms ki ———k3=k and k~ ———k4 ——k'
in the sum on the right-hand side of (6.4). The same
terms also provide a finite contribution to the density-
current density correlation (nj) in the condensed state
(this term would vanish otherwise). The same deriva-
tion leads to

A

(nj) =—([p k sinXke4&k'+»)][+ sinxk e '&k "+»']
k'

(JI*+J*—I),
8

+C.C.)

(6.7)

where we have defined the integrals:

I(r) =Qk sinXke" k'+»)

J(r) =pk k sinXke""'+»'.
(6.8a)

(6.8b)

We note that the second integral is the gradient of the
first multiplied by (—i) so that we shall only need to
compute I(r) Let us fir.st remark that if I(r) is written

&&e' 4 k»'&)(ki —k2+k3 k4). (6.4)
I(r)= lI(r) le' &') (6.9a)

In the case of antiparallel pairing, we obtain in a
straightforward fashion:

(n(&)n(&)). =n[n+I'r(r)]
(n(g)n(g)) =n2+-'[Qk sinxke'&k'+&»]

)&[Pk sinxk e '&""+»']. (6.5)

Here n is the total density of particles of one spin (up
or down) and I'r(r) is the exchange correlation or
"Fermi hole. "Note that the above results include the
correlation e6ects due to the statistics of the particles
and to the condensation but not the spin independent
"correlation hole" due to the direct interaction. This
many-body eGect is, however, included in the formalism
from the very beginning, since c&* creates a quasi-
partide, that is to say, a particle dressed by its cloud
of correlated particles. We have implicitly assumed that
this rather short-range many-body eGect, which deter-
mines the effective mass of the quasi-particles, is
essentially unaffected by the transition into a condensed
state. In other words, we are specihcally considering
the case where the condensation is a long-range phe-

J(r) = —ie'&&')V,
~
I(r) ~+I(r)V,y(r) (6.9b).

Since the first term of this expression of J(r) cancels in
(6.7), we obtain thereby a general relation between the
correlation functions (nn) and (nj):

(nj) = -4')ri
i I i

'V,y(r) =)ri(nn) V,y (r). (6.10)

This relation is really all what we need to know if the
condensed state under consideration has rotational
symmetry around its anisotropy axis Os (case of a
simple lm configuration, such as the ground state for
p-type condensation). Indeed one sees directly from the
expression (6.8a) by performing the rotation in mo-
mentum space which brings the Os@ plane onto the
radius vector r, that the phase factor of I(r) is simply
nip (p is the azimuth angle of r around the s axis).
Then:

( J),=(mI/)( ). (6.11)

That is to say, that in this simple case each particle J'
of the condensed Quid attracts a small "hump" of cor-
related particles and that this hump rotates around the
anisotropy axis originating at P, according to the law
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of equal swept areas (velocity decreasing as 1/r). The
total angular momentum of this correlation current is
therefore proportional to the total number of correlated
particles e, :

+C

kk'r

f f'
sinxk sinxk e"&k «')e'&" k')' — dv.

Sm' Sm'

kk'

d7'k
sinXx sinXx e'&»»'6'(k —k')

Sx'

iM

Sin Xkj
8~'

k

(6.12)

A straightforward integration shows that e, is of the
order of %pep, that is to say of the order of es/ep times
the total density of particles e. The total angular
momentum of the correlation currents in a volume V
of the condensed Quid, is in this case:

I=mke, U rrlk(es/ep—)eU. (6.13)

We notice, however, that this spontaneous circula-
tion in the ground state is not a volume effect (to the
contrary of what expression (6.13) seems to suggestj
because the correlation current around one particle
inside the Quid is exactly canceled by the currents
around the neighboring particles. On the other hand,
this cancellation does not obtain on the boundary of
the sample and, if the same anisotropy axis is retained
on the surface of the fiuid (completely ordered state,
presumably stable at absolute zero), these uncanceled
correlated particles currents add up to form a sheet
current on the surface, the total angular momentum of
which is just I as given by the relation (6.13).

This discussion is not applicable to the true )=2
ground state (4.12), however, since the corresponding
angular dependent energy gap function C(8, p) has no
rotational symmetry. We need therefore to compute
I(r) explicitly. The interesting region in position space
is the long-range region, where kyar is much larger than
1; this suggests computing I(r) by the so-called sta-
tionary phase technique (see Appendix C). We have
found:

2A'o cos(k pr) fr
(
C (r) [ )

I(r) = Es~ ~C(r), (6.14)
gap

where Eo is the modified Bessel function of the second
kind and order zero. This remarkable result shows that
the long-range correlation (Nm) in a given direction
depends only upon the value of the gap function C(8,p)
in that direction and, of course, upon the distance r.
We note particularly that the correlation vanishes in
the directions of the nodes of ~C(r) ~. The radial de-
pendence is dominated, in the long-range limit, by the
exponential Eo function, the extension of which is of

FIG. 4. Correlation current pattern at a 6xed distance from a
particle for the d-type ground-state configuration (4.12). The
points S are the nodes of the angle-dependent gap function

~
C(r) ); M are its maxima.

the order of Avp/
~
C ~. The range of the correlation func-

tion (ee) is therefore anisotropic and extends to in-
finity in the direction of the nodes of

~
C(r) ~. We may,

however, de6ne an average coherence length r, :

Avp 6p
r,=~ kp '. —

eo
(6.15)

Going back to the general expression (6.10) of the
correlated particles' current density, we note that the
only complex factor in the expression (6.14) of I(r) is
C(r); consequently, the correlation current has no
radial component. It is straightforward to compute the
tangential components from (6.14) for any gap function
C(8, q). For the ground-state configuration (4.12), we
find:

(ej)„=A(nrem) — sin'8(3 cos'8 —1) cos2p,

(nj)&=A(ee)— sin28 sin2 p.
16 if/'

(6.16)

We have sketched the correlation current pattern on a
sphere for this configuration (Fig. 4). Note that the
current flows around the nodes of the gap function C(r)
and vanishes at both the nodes and the maxima of C(r).
These currents add up in such a way that the whole
distribution has no net angular momentum about any
axis. Under these circumstances, there will be consider-
able, if not complete, cancellation of the correlated
particle currents at the surface unless the surface is
strongly curved. In conjunction with the results of the
next section, it appears that the anisotropy of the
d-type ground-state conlguration (4.12) is of such a
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subtle character that it may be rather difficult to detect
it in physical measurements.

H'=H —pp L, (7.1)

where L is the total angular momentum of all particles.
Note that B' is not numerically equal to the Hamil-
tonian B of the system at rest; the extra term is a
perturbation of the first order in the rotation speed cv,

corresponding to the Coriolis forces. Using the relation:

VII. FLOW PROPERTIES, SUPERFLUIDITY

As we mentioned in the Introduction, the experi-
mental investigation of liquid helium-3 properties has
not yet disclosed any departure from a normal Fermi
liquid behavior; particularly, it has been found that
the Qow properties of helium-3 are those of a normal
Quid, that is to say that helium-3 does not participate
in the superQuid Qow of helium-4 in mixtures of both
isotopes. " If, however, a condensation of the type we
have been discussing above does indeed occur at very
low temperature, one expects that liquid helium-3 is
not a normal Quid near the absolute zero. The analogy
with the Meissner eA'ect of superconducting electrons
condensed into the l= 0 configuration indicates that con-
densed helium-3 would be superQuid. We shall show by
a straightforward generalization of the BCS derivation
of the Meissner e6ect that the alteration of the excita-
tion energy spectrum brought about by the condensa-
tion entails superQuidity, in accordance with the sug-
gestion of Brueckner et al.' The same result has been
found by Glassgold and Sessler by a somewhat different
method '

The most convenient theoretical approach to super-
Quidity is to consider the Qow of the Quid in a rotating
container. Since we do not know how to treat the inter-
action between the Quid and the rotating wall of the
container in the laboratory coordinate system, we shall
transform our problem into the rotating coordinate
system in which the container is at rest; as Blatt et al. '4

pointed out we have to perform this canonical trans-
formation to rotating coordinates in order to do sta-
tistical mechanics at all. This, of course, is identical to
the "cranking model" procedure proposed by Inglis"
for nuclei. The new (transformed) Hamiltonian is

system with respect to the fixed coordinate system:

A(r)=epXr (7 4)

In second quantization, the perturbation to the Hamil-
tonian is then

H~ t qr*——piViA(r) v)%'dr

= —(2m)& P hk. a(q)ck+, *ck.,
k, q, a

(7.5)

where we have used the plane wave expansions of the
operators 4' and 4*, and where a(q) is the (formal)
Fourier transform of A(r). This procedure is not strictly
correct since the plane waves fail to satisfy the boundary
conditions of the system (cylindrical container) and a
Fourier-Bessel expansion of the operators + and +*
should be used instead. We expect, however, that the
conclusions we shall draw from the comparison of the
(formal) Fourier transform of the current operator j(r)
with the (formal) Fourier transform of the speed Geld
A(r) will be strongly indicative of the exact behavior
of the model. I et

j(r) = Z (2k+q)e "'ck+p,.*c"
2fPS k, q, ~

(7.6)

where %p is the ground-state wave function at the
temperature T (energy Ep):

r

ak Xk

I
cos—e'&k"+sin —e '&k"bk*

I

ground pairs (

( Xki Xk.
X II I

cos e '» "5 *—sin e'&k'i'
I

excited pairs ( 2 2

be the expansion of the current density operator (6.2).
Since the expectation value of the current vanishes in
the system at rest, this expectation value in the rotating
system is, in the 6rst order in co,

&q pIH~Iq")(q" lilq p)
j(r) =p +c.c.r, (7.7)

Ep —E;

pp (r,Xv,)=(ppXr, ) v, , (7.2) II . (c' *)Iq'-. & (7 8)
single particles

the perturbation can be written

—tp. L=i7i
all particles

(ppXr, ) v, . (7.3)

"J.G. Daunt, R. E. Probst, H. L. Johnson, and L. T. Aldrich,
Phys. Rev. 72, 502 (1947), and J. Chem. Phys. 15, 759 (1947).

24 J. M. Blatt, S. T. Butler, and M. R. Schafroth, Phys. Rev.
100, 481 (1955).

25 D. R. Inglis, Phys. Rev. 96, 1059 (1954).

Let us introduce the vector field A(r), with A as the
speed of a point attached to the rotating coordinate

The summation in (7.7) extends over all excited states
%r; (energy E;). Fortunately, states corresponding to
different anisotropy axes are orthogonal, "so that the
angular degeneracy can be disregarded. We remark
furthermore that the perturbation Hg due to the rota-
tion of the coordinate system is formally identical to
the magnetic perturbation considered by BCS. We shall

"The scalar product of two states +; and 0, corresponding to
different s axes, is an in6nite product of factors including at
least one zero (for the individual particle state k such that
Xk =Xk'= ~/2, pk = tt k'W7r).
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therefore obtain a formally identical result: but the following terms cancel upon integration over y'.

A2

j'(r)= -(2qr)& p (2k+q)e 'o'[a( —q) k]
2m

XL(k, k+q), (7.9)
where

I~

Pkp
lim j„' = I'dn " do

4x'" ~0

t a~k' sin'0

a„k' sin'8 . (7.14)
(1+EPEO)2.2u, k' cos'8.

(
&q O[ C, *C,—C ,*C , [

q', &('
L(k,k') = 2 P — — — —. (7.10)

'b jvo —jv,

Even for nonspherically symmetric distributions,
L(k,k') has a simple expression in the limit k' —+ k:

lim L(k,k') =—
2'-+k dg (]+esE2)2

(7.11)

The (formal) Fourier transform of the current is then
in the long-wavelength limit:

2AOP ePEg

limj'(q) = g k[a(q) k]- . (7.12)
m (1+EPEg)2

Since the statistical factor is strongly peaked at E=O,
the integration here reduces practically to an integra-
tion in a shell near the Fermi surface. For a normal
Fermi Quid, we can replace k[a(q) k] by the angular
average -'okE2a(q), and we find the expected result:

k p' p e~'de
limj '(q) =2P a(q) =22a(q). (7.13)
6~0 32r2 J o (1+Epe)2

This result (7.13) means, of course, that the thermo-
dynamically stable state of a Quid in a rotating con-
tainer is such that the Quid is at rest with respect to
the container, that is to say, rotates at the same speed
as the container:

j„(r)=22A(r). (7.13a)

27 E. L. Andronikashvili, J. Phys. Moskow 10, 201 (1946); see
also K. R. Atkins, Liqlid Helium (Cambridge University Press,
New York, 1959},for further references.

We shall show that it is not so for a condensed Quid
and more precisely that the statistical average j' of the
current density vanishes in the low-temperature limit
for finite rotation speed of the container; in other
words, the fiuid at large (i.e., as far as large-scale
motions, corresponding to the long-wavelength Fourier
components, are concerned) does not participate in the
motion of the container at O'K. En accordance with the
usual meaning of superQuidity in the context of oscil-
lating-disk" experiments, for example, we can char-
acterize this behavior as "superQuid behavior. "

For the anisotropic condensed state (4.12), we cannot
use an angular average of the term k(a k) as above and
we must instead compute separately the three com-
ponents of j'. Since E~ depends only upon sin'2y, all

or, more conveniently:
=4J222a(q) (kTjoo)2 (7.15)

( j'(q) ~
lim

(
—

f
= 1.08 (T/T, )'.

q~o, T~o l j ~(q))
(7.15a)

Note that the variation of the long-wavelength Fourier
components of the current density versus temperature
is approximately the same as the variation of the para-
magnetic susceptibility (see Fig. 3).

The reason why (7.15) is isotropic is, of course, that
the ground-state (4.12) has cubic symmetry for

~ f(8, qr) ~2 and thus for Eo. It appears that this is a
special circumstance of the t=2 case; but we do expect
that qualitatively the stage will attempt to be as
isotropic as is consistent with /.

VIII. CONDENSED STATE OF A NONIDEAL
FERMION GAS

We shall now specialize to the case of liquid helium-3
and indicate the properties of the condensed phase in
the low-temperature limit. Previous analysis by
Brueckner et al.' and Emery and Sessler4 have indicated
that the most favorable condensed state configuration
is d-type (f=2). The result of Brueckner et a/ is given.
in terms of the E-matrix formalism of Brueckner and
GammeP' which takes into account the usual many-
body e6ects; it is found that the 3= 2 coefficient of the
expansion of the E matrix in terms of spherical har-
monics is positive and the largest" and therefore the
largest condensation energy is obtained for a p-type
configuration. On the other hand, Emery and Sessler
have solved Eq. (5.5) in the limit T —+ T, (where this
equation becomes linear) and have found that the
critical temperature for the transition into an /=2 con-

~8 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
{1958}.

~' The magnitude of the l = 2 coe%cient is approximately equal to
the magnitude of the (repulsive) l=0 coeKcient; this gives us a
very useful indication of the relative magnitude of the coe%cients
U0 and U2.

Because the statistical factor is strongly peaked at
8k=0 in the low-temperature limit, the domain of
integration practically reduces to the eight subdomains
Zi near the nodes of ~C(8, q) ~

(see the last paragraph
of Sec. IV). Replacing k' sin'8 and k'cos'8 by their
average values at the node, respectively —', kp' and ~3k+',

we can therefore replace (7.14) by

kEO
I

t
" e~E&

limj'(q) =4P—a(q) dQ do
32r2 " ~ o (1+esE&)2



1926 P. W. AN D ERSON AND P. MOREL

densed state is the highest; these authors have esti-
mated the critical temperature T, on the basis of the
best phenomenological potential known and of the
quasi-particle excitation spectrum computed by Brueck-
ner and Gammel"; they have found a probable value
of 0.07'K. It must be emphasized, however, that this
result is quite sensitive to even small discrepancies
between the phenomenological potential (adjusted to
fit low-pressure compressibility data) and the true inter-
action potential in a dense phase. Particularly, any
screening would have the effect of reducing the long-
range attractive part of the potential and therefore
decreasing the transition temperature. Ke shall never-
theless use this value 0.07'K for T„as an indication
of the strength of the effective interaction Us (possibly
too large by a significant amount).

Thermal Properties in the
Lour-Temperature Limit

Knowing the ground-state configuration (4.12) for
d-type condensation, we can correlate the thermal
properties of the Quid near 0 K, with the interaction
parameter U2 or equivalently, the critical temperature
T,. Ke have found that the individual particle excita-
tion spectrum is strongly modified in a shell of thickness
6p near the Fermi surface:

ep
——2.46k T,=0.17'K. (8.1)

Since ep is not truly negligible with respect to the
normal Quid Fermi energy op= 2.5'K," the weak-

coupling assumption on which this treatment is based
does not hold well. One expects, however, that the
rather large coupling does not affect significantly the
results derived in the low-temperature limit, since
only excitation modes very close to the Fermi level are
important in this limit. One can, for example, estimate
accurately the amount of condensation energy per
particle at O'K with the help of (4.13):

breaks down at temperatures of the order of T, where
excitations with an energy of the order of ep become
important; we shall see particularly that the scattering
has the effect of destroying the pairs almost as soon as
they are formed and, therefore, prevents their accumu-
lation and the transition of the system into a condensed
state. One expects, then, that the actual transition tem-
perature will be significantly below the critical tempera-
ture T, for an ideal gas.

k~
Ia,b,*]=~b,*=2I e,+s- Ib,*

in—2(1—2') Q U), g b~ * (8.4)

be the equation of motion of the operator b&* creating
an excited pair, in the presence of the Fermi sea; f» is
the Fermi-Dirac distribution function, In this scheme,
the appearance of an imaginary eigenvalue co char-
acterizes the onset of instability of the Fermi state
with respect to the formation of pairs. Defining

0=(u-2i(h/r),

we derive from (8.4), with the help of the expansion

(3 9):
2 tanh(Peg/2) ~ m=+t

b 2mUtFt (8,y)
0—2&i, l=p m=—l

Effect of Scattering on the
Transition Temperature

Following an argument first proposed by Suhl, ' we
shall represent the scattering by adding an imaginary
part s(h/r) to the individual particle excitation energy
e& and we shall investigate the condition for stability
of the Fermi state with respect to the formation of
pairs. I.et then

3 lV—~2&10 ' 'K.
3271 cg

(8 2)

On the other hand, higher energy individual particle
excitations ba* or cz* (excitation energy of the order
of es) are no longer well-behaved quasi-particles: they
rapidly lose their individuality and disintegrate into
many-particle excitation modes by the process of in-
elastic scattering. The relaxation time r for this process
can be estimated from the spin diffusion data reported
by Wheatley and his co-workers': one finds that z is
still as small as 6)& 10 "second at 0.03'K (correspond-
ing to an energy broadening h/r= 0.12'K, of the order
of magnitude of es). Consequently, our treatment

We use here the value: m=1.64X10~ particles jcm' derived
from the molecular volume data obtained by L. Goldstein )Phys.
Rev. 117, 375 (1960)j and the effective mass m*=2nt computed
by Emery and Sessler (see reference 4).

Multiplying both sides of this equation by I'& *(H,q)
and summing over all k, we obtain therefore the dis-

persion relations for 0:
t~

I
F&~(fi~ p) I

' tanh(pes/2)
1=4s Ut Q--

0—2~i,
(8.7)

in 4ea tanh(Pes/2)1=4«Z I 1't-(tl, ~) I' (8.8)
) kI)ky' 4&),~—Q~

Taking advantage of the symmetry with respect to the
Fermi level (ea —+ —e~), we can replace the sum on the
right-hand side of (8.7) by a sum over the states above
the Fermi level only:
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in tanh (P.es/2)
1=4wU~ 2 II'~-(e, ~)l'--

l kl)kg 6k

Let us first consider the case of negligible scattering
where 0 reduces to co. We have plotted the variation of
the right-hand side of (8.8) versus co' in this case (Fig.
5). The discussion of Eq. (8.8) follows immediately:

If U&(0 (repulsive), the equation has only real
solutions and consequently, the Fermi state is always
stable with respect to the formation of /-type pairs.

If U~&0 (attractive), (8.8) has only real solutions at
high temperature but has two conjugate imaginary
solutions (cv'(0) below the critical temperature T,
defined by the relation:

f.75 kTc

Tc
TRANSlTION

TEMPERATURE

TEMPERATURE ——

(u= ai(us+2i(h/r), (8.9)

which are both in the upper half of the complex plane if
the energy broadening li/r is larger than &u&/2. We have
plotted the variation of both quantities versus tempera-
ture (Fig. 6); cus increases rapidly near T, and then

identical to (5.6).
These imaginary solutions +is» and icos corre-—

spond to a damped perturbation and a diverging
perturbation, respectively; in other words, the insta-
bility of the Fermi state is characterized by the appear-
ance of an eigenvalue of Eq. (8.8) in the lower half of
the complex plane. I.et us now go back to the actual
case where the scattering is important and the imaginary
part i(h/r) of the excitation energy is not negligible.
Above the critical temperature T„ the eigenvalues of
(8.8) are complex: &cur+2i (Ii/r) and describe a damped
oscillation (with the relaxation time r/2). Below T„
on the other hand, (8.8) has two pure imaginary
solutions:

Fxo. 6. Plot of the inverse scattering relaxation time and of
the imaginary solution of Eq. (8.8) versus temperature. The
Fermi state becomes unstable below the crossing point of these
two curves (arrow).

levels oG and approaches the value 1.75kT, near O'K;
Ii/r, on the other hand, follows a T' law down to 0.03'K.
At this temperature, the lowest attained experimentally,
2h/r is about twice as large as the limiting value of ~s
and consequently the Fermi state is still stable. If we
can make the reasonable assumption that the 1"' law
holds in the 0.01'—0.03'K range, we And that the two
curves cross at 0.02'I approximately. One expects
therefore, on the basis of this argument, that the
actual transition temperature for helium-3 is close to
0.02'K.

Note that for the typical (low temperature) super-
conductors, the electron-electron scattering is quite
small in the range of temperature where the transition
occurs, so that the condensation does take place sub-
stantially at the critical temperature T, computed in
the weak-coupling limit.

Pro. S. Plot of the function on the right-hand side of (8.8)
versus co~. The intersections with the straight line y= 1 determine
the solutions of this equation.

Flow Properties

Since the density-current density correlation does not
vanish in the ground state, there are spontaneous
macroscopic currents on the boundary of the Quid
at rest at O'K; however, these currents are small (even
in one single ordered domain) since they involve only a
fraction n, /n of the particle, that is to say, about 1%.
One may argue furthermore that the amount of energy
necessary to cause a very gradual rotation of the
anisotropy axis is quite small indeed (see the para-
graph on Specific Heat in Sec. V); one expects there-
fore that there will be no long-range order with respect
to the orientation of the anisotropy axis,- even at ex-
tremely low temperature. Since the currents in ran-
domly oriented domains cancel each other, one does
not expect that such a spontaneous circulation could be
observed. All this is valid for a pure m state; for the
cubically symmetric state (4.12) it is true a fortiori

On the other hand, the appearance of a condensed
state would be striking if the Quid is in a moving co-
ordinate system (rotating container) since the con-
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densed phase is superfluid, according to (7.15). One has
found that the condensed fluid current vanishes like
T' for a given rotation speed in the low-temperature
limit. The ground state for d-type condensation is such
that this temperature dependence is isotropic (inde-
pendent of the relative disposition of the anisotropy
axis Os and the rotation axis).

x/x„= j/j. . (8.10)

This suggests a two-fluid model of the condensed sys-
tem. The condensed state is then described as a mixture
of a "normal" phase (the relative amount of which is
x/x„and vanishes at O'K) and a superfluid phase which
does not participate in the flow of the fluid and has
zero paramagnetic susceptibility.

IX. CONCLUSION

Our subject may be separated into two divisions:
first, the general question of Fermi gas with reasonably
weak interactions which are attractive in pair states
l/0, and second, the specific properties of liquid
helium-3.

As far as the first division is concerned, we have
concluded, by means of a generalization of the BCS
theory, that there is an anisotropic condensed state of
the gas with various characteristic superfluid properties,
that is lower in energy than the normal Fermi gas state.
This state may be best described as a condensation of
Cooper pairs with zero linear momentum, but with an
orbital angular momentum depending on the inter-
action potential. For angular momentum /=1, the gas
as a whole has a net angular momentum, and may be
described as a kind of "orbital ferromagnet, " but for
l=2 the net angular momentum is zero; the ground
state of the pairs is most probably such that the physical
properties will have cubic symmetry. It can be con-
jectured that the same techniques will lead to similar
states for l&2 also, although we have not computed
such states because they probably have no physical
realization. (Note that this cubically symmetric state
is quite different from what we believed to be the
ground state in earlier publications. )

There still remains the question, even in a relatively
weakly interacting Fermi gas, as to whether the methods
we have used are correct or complete. The next most
urgent problem is to study the collective oscillation
spectrum around the ground state which we have found.
In particular, by this means (or by the equivalent
technique of Thouless') we could determine whether our
state is stable as compared to similar configurations of

Magnetic Properties

It is interesting to note that the paramagnetic sus-
ceptibility x of the condensed Quid also vanishes like T'
in the low-temperature limit, following the same varia-
tion law as the current in a rotating container:

finite rather than zero linear momentum. Unfortunately,
the study of collective oscillations leads into complicated
mathematics which we have not yet worked out.

The second division of our paper concerned itself
primarily with liquid helium-3. The forces in He are
rather strong. The most serious question is whether we
can rely on a "Fermi liquid" type of picture at suffi-
ciently low temperatures, having quasi-particle rather
than pure single-particle excitations with a spectrum
similar to that of an ideal Fermi gas. Our best reason
for relying on this picture is that it does qualitatively
explain the present measurements of various properties
of helium-3 rather well; and also, that it can be demon-
strated that the forces in the metallic Fermi gas are not
weak either —perhaps not as strong by a factor of 2 as
in helium —but nonetheless in many cases the Fermi
liquid picture appears to be valid.

If so, we have demonstrated reasonably well that
some condensed state will probably form. Whether the
state is a BCS-like one or something more complicated
depends on the validity of our approximations; at
what temperature, on the specific assumptions we and
others have made about forces and effective masses,
but most specifically on the amount of scattering. It is
necessary in order for the condensed pairs to stay to-
gether that h/r eo kT„and this can only be satisfied
below 0.02'K. This has never been conclusively shown
to be more than a necessary condition on the transition
temperature, so we must consider it an upper limit.

If, in fact, the transition is 1=2 and is to the cubic
state we suggest, it is interesting to speculate on how
the specific nature of the ground state might be ob-
served. Tensor properties such as moment of inertia,
susceptibility, etc., will be isotropic; only a nontensorial
property such as surface tension or surface current will
show the effect. Since even in the pure m state the
surface current was found to be nearly unmeasurably
small, it appears that the nature of the ground state
will be difficult to elucidate. Perhaps the clearest result
will be the density of states near zero energy, which
will appear in low-temperature susceptibility and
specific heat.

Nonetheless, since this anisotropy is the newest and
most fundamental property of the ground state, it is to
be hoped that it can be directly observed. One might
add that the appearance of anisotropy in a liquid is
not physically a surprising result. The majority of
phase transitions have the same feature, that the sym-
metry below the transition temperature is not as high
as that above. That symmetry changes have not in the
past been associated with superfluidity appears to be of
no particular significance.

We have investigated this new type of superfluidity
both as an interesting purely mathematical possibility
and because it may apply to helium-3. It is interesting
to speculate whether any further examples may arise.
In nuclear matter, experimentally shell effects appear
to obscure the question of what might occur in a
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su%ciently extended volume; preliminary calculations
showed3 that actually the latter might well prefer a d
state for like pairs, a triplet s state for T=1 unlike
pairs. The complications of the situation in nuclear
matter —long-range Coulomb forces, boundary effects,
isotopic spin effects, etc.—do not seem to lend them-
selves well to our formalism in any case.

In metals it is not entirely impossible that our
anisotropic BCS states could occur. A necessary gen-
eralization for metals is to realize that the Fermi sur-
face and the forces have only the invariance of the
crystal point group, not of the full rotation group. The
forces must now be classified according to representa-
tions of this point group, and the type of state which
appears depends on which type of representation has
the most attractive potential. There are three situations
which might arise:

(1) The natural generalization of BCS is the case in
which the most attractive potential belongs to the
identity representation. The energy gap parameter may
be somewhat anisotropic in this case but will be every-
where real and, in general, everywhere finite (at least
near the Fermi surface). The behavior is normal BCS
with anisotropic gap.

(2) A case which does not occur in the spherical gas
is a one-dimensional representation of odd parity. For
instance, in an axial crystal the solution like 1=1,m=0
might be lower either than /=0 or /=1, m= &1. Here
the gap will be real but will in general have zeros and
we can expect triplet pairing rather than singlet, so
that the Knight shift would not change much. (Zeros
may not occur if k values on the appropriate reAection
plane are not represented on the Fermi surface. Note
that in this case zeros are not limited to null points, so
that the density of states near zero energy may be high. )

(3) Finally, we come to the case of multidimensional
representations. Here, in general, the gap function is
complex and has point zeros most usually. Representa-
tions may be odd (triplet) or even (singlet).

There are, of course, a number of experimental facts
which one would like to attribute to the presence of
cases 2 and 3. The existence of zeros in the energy gap
function is a natural explanation of the severe curva-
tures in the specific heat characteristic observed in a
number of cases—Pb, Hg, and most recently, Mo-Re
alloys. " The Knight shift characteristic of a triplet
state is also a tempting explanation of some data. The
difhculty, however, is that superconductivity has been
found to be so extremely insensitive to impurity and
boundary scattering, which destroy the intrinsic sym-
metry of the crystal and should spoil rather easily any
coherence which changes in sign or phase from one
portion of the Fermi surface to the next —i.e., all but
case (1). Thus we must reserve judgment on whether
cases (2) and (3) have been observed, while realizing that
in all likelihood there is no real reason why the forces

"F. J. Morin (private communication).

in some metal or group of metals cannot be favorable
to their occurrence. The diBerences from the simple
case (1) are rather subtle and diflicult to determine
experimentally.

APPENDIX A

We intend to evaluate here the error for the ground-
state configuration C(8, p), and for the ground-state
energy E„ involved in using the simplified Eq. (4.4)
instead of (4.2). Let then C(8, p) and E, be the quanti-
ties computed in Sec. IV with the help of the approxi-
mate Eq. (4.4) and let C(8,p)+5C(8, +) and E,+58 be
the true values. From the expression (3.7) of the ground-
state energy, we derive at once the expression for 8E,

in

5E— Q 6k5(cosXk1g sinX~ tanX~)
k

'-
I
c(8,~) I'~

I c(8,~) I'

~ 4Leg'+Ic(8 q)I'j&

(A.1)

After integrating over the energy, we 6nd then the
rather convenient expression:

&0 r
8R= ——8C(8, p)c*(8,p)dQ+c. c.

g~J
(A.2)

On the other hand, we can derive from Eq. (4.2) the
expression for the error 8C(8,y) resulting from the term
Ui, Pi, (k.k') of the expansion (3.9):

in 2l'+1 „.C(8', y')
8C(8,&)=P U, ,P,, (k. k)

k' 2 ~k'

21+1
+Q U&Pi(k k')

k/ 2

2f'+1 . . -8C(8', &')
+ UpPi (k k') . (A.3)

(We have neglected. terms of the order of 6'/t2, negli-
gible in the weak coupling limit, as well as higher than
first-order terms in 5C.) Now, one can expect that the
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sum E,
Vi.,„ I',

E=2prNp 'Q
jVk

(A.4)

and therefore

8C& i=N, 'U, U,.~E Y,„(8,„).
The energy perturbation is then

is rather small on account of the orthogonality of spheri- 8E= —(1VphP/8pr)(1VpUi)(NpUi )2E'.
cal harmonics (it would vanish if Ep had no angular
dependence). We conclude that: (1) the leading term In the /=1 case, coupling occurs only with the 1=3, 5,
of 8C(8, pp) is the first term on the right-hand side of 7. . ., etc., terms of (3.9); the numerical factor 2E'
(A.3): is then

8C&'&=NpUi g Yi (8,y)
0.07 for l'=3,

~ t~ I'Yi-*(8',~')C(8' p')X,~ de'did'. (A.5)
Ek'

This term vanishes if I and t' have different parity (no
coupling between the even and odd parts of the po-
tential) and is small otherwise (of the order of E).
(2) &C(8, ip) has a predominantly P-type angular de-
pendence: 8C&'& is a combination of I'~ and therefore
does not contribute to 8E. (3) There is a small 1-type
contribution (of the order of (8C&'& ~'/~C() coming from
the second term on the right-hand side of (A.3). This
second-order perturbation alone contributes to 6E. Ke
shall therefore use the following procedure for com-
puting the contribution to the ground-state energy of
the l' term of the expansion of Ukk . First, we evaluate
the leading part 8C&" of the perturbation &C(8, io) with
the help of (A.5), then we carry this expression into
(A.3) to compute the second-order perturbation 8C&'&:

8C& l=NpU, Q Y,„(8,&)

0.0056 for I,'= 5,

0.00j. for /'= 7.

Note that the factor LOU~ can be of the same order
of magnitude as or smaller than NpUi (the ground state
would be a t'-state otherwise). On the other hand,
NpUr may be significantly smaller than one if $ can be
chosen much larger than kT, .

C(8, v) =~LaYpp+&(Ypp —Yp, -p)j
This configuration, which is the d-type ground state

configuration, is particularly interesting because it
allows coupling with the first term Uo of the expansion
of Uap . Because this first term is large (in fact, of the
same order of magnitude as Up) and repulsive, " we
must make sure that the (positive) energy perturbation
resulting from this 1=2, and l'=0 coupling does not oG-
set the small energy di6'erence between this configura-
tion (4.11) and the simple configurations AYpt or AYpp.

Now, the Ypp part of C(8, pp) alone is coupled with Fpp,
for Ek depends only upon sin'2p, therefore:

X
~ ~ .Y.*(8',.')8C (8", ),

de'dn, (A.6) ~ ' '
J „J Z

and finally, we carry this last expression into (A.2). We
shall consider three cases (corresponding to the situation
found for the l=0, 1, and 2 condensations).

C (8,p) =constant

This occurs for the s-type condensed state studied by
BCS. In this case, Eq. (4.2) is linear with respect to
angular dependence and there is no coupling with higher
order terms of the expansion of Ukk'.

C(8, i )=~Fr-(8, v)
This occurs for p-type condensation (ground state:

C=DY»). In this case, Eq. (4.5) reduces to

8C&" =NpUi &Ye (8, y)

a(5 )'
~

NpUph ~ ~~(3 cos'8 —1) lnC(8, pp)dQ
4' (16a ~

~0.007 (1Vp Up) tl.

r rI'20
8C&')=NpU, SCn& Y»(8 &)JI i

'

dedQ

and finally:

~0.00084(NpUp) (NpUp) 5Ypp(8, pp),

hz=0.0c013(Npax/8~) (—N, U,) (N, U,). (A.7)

We are thus satisfied that 8C") is considerably smaller
than ~C( and therefore that bC"' is truly negligible
with respect to 6C&". We can then proceed:

~Fr Fi ~ See reference 3, Fig. 1.The E matrix used in this reference is
X,

~

de d& =NpUi'DEYim(8qp) approximately equivalent to our effective potential V, in the limit
4 4 4 Ekr of large "cuto6" parameter (.
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This coupling produces indeed a positive perturbation
of the ground. state energy of the order of 1/1000th of
the condensation energy and therefore much smaller
than the energy difference between the simple I'» con-
figuration and the true ground state (4.6'%%uo). Let us
finally remark that expression (A.7) is truly inde-
pendent of the cutoff parameter f, although it involves
the $-dependent Uo and U2, in fact, we have seen in
Sec. III that

1/[&DUO) = —1/&OUo= —In/+constant. (A.S)

This relation, together with (3.13), indicates that the
product (NOUO) (XpUg) is independent of $.

APPENDIX B

p Ty-pe Solutious (/=1)

The most general combination of p-type spherical
harmonics is:

C(k) =Ax+By+Cz+i(A'x+B'y+C'z), (8.4)

where x, y, and z are the three Cartesian coordinates of
the unit vector k. The real part represents a plane which
can always be brought by a suitable rotation onto the
Oxy plane, for example; in this case, C, is invariant by
reflection in the planes Oxy, Oyz, and Ozx. The rotation
must therefore bring the plane represented by C; onto
one of the three planes Oxy, Oyz, or Ozx (unless C; is
identically zero). On account of rotational equivalence,
we find that the independent solutions are

Az or ApVgp,

Ax+�'LBy

ol' 61V11+6 1F1, 1.
Our purpose here is to find all independent solutions

of Eq. (4.1), which we shall write for studying con-
veniently its invariance properties:

d Type Sotut-iols (t=Z)

A rather simple computation shows that the mixed
solution (hi= 6 i) or the simple solution EOVio are not
as favorable as b, iF'ii (see Table l).

Le,.2+ ~c(k') ~2)&

C(k) is in general a complex function of the angular
coordinates 9 and y of the unit vector k; let C„(k) and
C, (k) be its real and complex parts, respectively. The
Eq. (8.1) is invariant under all transformations T in
momentum space, which conserve the modulus k and
the scalar product k k': that is to say, rotations and
reAections. We have indeed:

2l+1 i~ „„C(k')
C(Tk)= Uip Pi(Tk k')

2 L~"+ I
C(k') I'j'

2l+1 ' C{Tk')
Ugg Pg(k k')— . (8.2)2»'

I e '+i~C(Tk') j'1&

We conclude that if C(k) is a solution, so are the func-
tions C(Tk) derived from C(k) by rotations or reflec-
tions. Moreover, the real and imaginary parts are
coupled only through ~C~' in (8.2); therefore, if the
square of the real part C,'(k) is invariant under the
transformation T:

C„(Tk)=aC, (k), (8.3a)

then the square of the imaginary part CP(k) must also
be invariant:

C, (Tk) = aC, (k). (8.3b)

The relations (8.3) can only be fulfilled simultaneously,
one being the consequence of the other. Finally, we see
that (8.1) is also invariant under gauge transformations
t multiplying C(k) by a constant phase factor) since the
nonlinear factor on the right-hand side of this equation
involves only ~C(k) ~'.

C, (k) =A (2z' —x' —y')+B(x' —y'). (8.6a)

C„can also be transformed into an odd expression:

C, (k) =Cxy or Dyz or Ezx, (8.6b)

in the special case where the corresponding quadric is
degenerate and reduces to two perpendicular planes.
This is rotationally equivalent to A=O but is con-
venient for computational purposes. As we have seen
above, the rotation which transforms C„ into one of the
expressions (8.6) must simultaneously transform C;
into one of the exPressions:

C,{k)=A'(2z' —x' —y')+B'(x' —y'),
or C'xy,

or D'yz,

or E'zx. (8.7)

We conclude that the d-type solutions of (8.1) are the
16 combinations of (8.6) and (8.7); not all these com-

The most general combination of d-type spherical
harmonics is

C(k) =A (2z' x' —y')+B(—x'—y')+Cxy+Dyz
+Ezx+ iLA'(2z' —x'—y')+B'(x' —y')

+C'xy+D'yz+8'zx j. (8.5)

Both the real and imaginary parts are homogeneous,
traceless quadratic forms representing two quadrics;
the real part, for example, is diagonalized by the rota-
tion in momentum space which brings the coordinate
axes onto the principal axes of the corresponding quad-
rics. That is to say, that the real part can always be
transformed into the even form:
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binations are independent solutions, fortunately (on
account of rotational and gauge invariance). We shall
now study all independent combinations individually.

(1) C(A) = (PyiP') (2z' —x' —y')+ (Pyi g') (x' —y')

On account of gauge invariance, one can multiply
C(k) by a suitable phase factor to make the coeKcient
of the first term real (A'=0). This solution is therefore:

C(~) +0I 20++2(1 22+ I 2,-2)p (8 g)

where 60 is real and As may a priori be complex. Carry-
ing this expression into Eq. (4.4), we find that 60 and
62 must satisfy the following set of nonlinear equations:

~0 ~+00+0+~02(~2++—2)

~2 ii02+0+1122+2+~22+—2)

+—2 'ti02+0+b22+2+ 1122+—0 (8.13)

Discounting the solution (8.8) studied above, this
system is equivalent to

(2) C(k) = A (2z' —x' —y') +B(x' —y')+i Cxtl

This can be written in the equivalent form:

C(~) 10) ~01 20++2I 22++-2I 2,—2) (8.12)

where the three coeScients hp, A2, and 6 2 are real and
given by the set of nonlinear equations:

&0= igloo&0+2&00&s,

~2 1102~0+ (ri22+f 20)~2y

where we have defined:

(8.9) (igloo
—1)&0+iioo(&0+& 0) =0,

ii02+0+ (112'2 1)(+2+~—2)

(8.14) has the following solutionsoo:

(8.14)

a„„=XpU)
~

dc dQ
~p

0

b„„=EpU)
~

de dO
~p

(8.10)
Ap=0,

~,= ~/K2,

Ag=D) 6 2=0,

a,=-a,= a/v2,

As= —6 0=6/2,

lnI' = 1.I31;
InF=O 98.
lnF = 1.154;

A

The imaginary part cancels since ~C(k)
~

is invariant
under the transformation q

—+ —q, and therefore, h2
is real. This is true unless 1—app=ap2=1 —a~~—b22=0
which happens to be satisfied when 6& is pure imaginary.
This solution will be discussed under (2). Using the
notation (4.10) and (4.11), we can write (8.10) in a
form convenient for numerical computations:

a„„.—8„„.= —EpU) 8„„ lnF

Re(V0„*Vs„.) In
~ f ~

dQ, (8.11)

1V0Ui
J

Re(V&„') ln) f~dQ.

The numerical tabulation of these coefficients versus
60/60 indicates that (8.9) has four solutions:

~p=~,
a.=+3/2S,
Do= 1/2&,

Dp=0,

62=0
a,= 1/+8a,
~,=+3/gga,
h2=h)

InF —1.02.

lnF =0.98.
Inr=1.02;
lnF =0.98.

A 90' rotation brings the first into the third, the second
to the fourth, so these are only two independent solu-
tions. These solutions are therefore not favorable (see
Table I) and this could be related to the fact that the
zeros of the "gap"

~
C(k)

~

form continuous lines (instead
of being discrete nodes as for the most favorable
solutions).

and possibly also solutions of the general type (8.12)
with A2 +~ 2.

Rote added in proof. V. Emery has indeed brought
to our attention the possibility that solutions displaying
a low degree of symmetry may exist. This author an-
alyzes Eq. (5.5) in the limit of a vanishing gap, corre-
sponding to the situation near the critical temperature.
He finds that the first order expansion of (5.5) in
powers of C(k) has, in addition to the solutions Ci to Co
below, the two following solutions:

C(~) +L1/v2I 20+1/2(~21 1 2,—1)] (a)

C(k) =6)1/2(F01—Fs, 1)+1/2(F00+ Ys, 0)), (b)

with 6 and 4 nodes, respectively. Both configurations
belong to group (2); (a) and (b) can indeed be brought
to the form (8.12) with 60WA 0 by a 90' rotation.

~ It is interesting to note that the condition at)0 —1 = a22 —b2~ —1
=0, for the existence of a solution of the type C(8,y}=60Y20
+6~(F~0—Ya &), is exactly fulfilled when IC(e, q) I

has cubic
symmetry. Indeed, the above condition can be written:

f (&00)'inlf ldll= f2 sin'2m
I
1'001'in If ldll

with
I f(cia') I'= sr V~0'+sin'2 q' I

Y'» I'
After performing a m j4 rotation around the s axis (q —+ y+-', 21-),

we have:

I f I'= L*'+y'+0' sV s'0—' 0'x'3— — —5
821-

Using the cubic symmetry of
I f I, we find indeed that:

f3 (x' y')' ln If I
d—'0

=fL2(x' —)')'+2b' —0')' —(~—y')'j» If ldll

(20' —x' —y')' ln I f I dQ.
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It has not been demonstrated yet whether these solu-
tions satisfy Eq. (5.5) to all order of its expansion, or
not (private communication).

(3) C(k) = A(2z' —z' —y2)+B(x2 y—2)+iCzy

This is equivalent to set (2) under a 90' rotation
g ~ s.

(4) C(k) = Azx+iBzy

This is equivalent to

also have discrete nodes and therefore we do not expect
that they could improve much upon the configuration
(4.12). Furthermore, the low-temperature properties
derived for such configurations would be essentially the
same as those we have found for the configuration
(4.12). Thus, in any case the configuration (4.12) yields
accurate results about the properties of the ground
state for a d-type condensed system.

APPENDIX C

The purpose of this appendix is to compute the
integral:

~1 1211~1+illiki

C(e P) +1+21++-1+2,-1

where the two coeKcients 61 and 6 1 are real and solu-
&

. ,~„,+&„&
C(k)I r = Sinxke'( '+&»= ~ik r

tions of k [222+
I
C(k)

I

']'*

or rather
~-1 f 11+1+i'll+-1

~1+~-1 (1211+~ ll) (~1+~-1)
~i—& i=(ikii —&»)(&1—& i).

(8 16)

One sees immediately that (8.18) has only four possible
solutions:

Ay=A, 6 g=0,

Ay=0, 6 g=A,

lnF = 1.131.
lnF = 1.131;
lnF =0.98;
lnF =0.98. (8.17)

[The last two are the same (x2—y') solution we found
under (1).]

The final result then is that we have found five in-
equivalent solutions, all highly symmetrical but not
particularly simple. In terms of direction cosines, these
are:

C1 ~y « ~'—y'= I 21+ I 2,—1

C2= 2s' —x' —y'= V2 (),

C2——(x+iy)z= I'2 1,

C&= (x+2y)2= V2, 2,

C, 22+ A+2+ 62y2(2= '+1),

lnF =0.98;
lnF = 1.02;
lnF = 1.131;
lnF = 1.131;
lnI'= 1.154. (8.18)

The most favorable solution we have found thus far
[that is to say, excluding possibly a more complicated
solution of the general type (8.12)] is the configuration
C5. It appears that the value of lnF and therefore the
condensation energy is linked to the multiplicity and
distribution of the zeros of

I C(k) I
. On this account, Ck

is better than C2, for example, since the former has only
eight discrete nodes, whereas the latter has two lines o&

nodes.
It is likely that the special configuration C5 is the

ground-state configuration on account of its high degree
of symmetry. On the other hand, we have not quite
excluded the three-parameter solutions (8.12) which
we have not studied completely, and they may be
slightly more favorable than (4.12); these solutions

in the long-range limit (kkr))1), by the stationary
phase method. Here C(k) is the angle-dependent gap
function appropriate to any solution we may choose to
consider; we think particularly of the 1=2 ground state
(4.12). To do this, let us express the integrand in terms
of new angular coordinates: the cosine I of the angle
between k and r, and the azimuth angle p of k about r:

&o ~+' t" r" C(~2)
I(r) =— d2 dq dl ~ikey

["+I C(~, 2 ) I'7'
(C.2)

C(N )~jkru to
1+ioo C(2i ~)—gikru

dl= dl
& 1 [2'+IC(u &P)I']l " 1 [22+IC(go22)I'7'

~1+ioo C(22 ~)~ikru
d@. (C.3)

[2'+ IC(l, k ) I']'

Since kr))1, the exponential factor is vanishingly small
everywhere but near the real axis; neglecting then the

-1+ lCO +2+ I.oo

-FIG. 7. Contour for
integrating the function
(C.3) by the stationary
phase method.

REAL AXIS

+1

Let us consider first the integration with respect to the
variable n. Now, if e/0, the integrand is an analytic
function of I and we can therefore replace the integra-
tion from —1 to +1 on the real axis by integration on
the contour r in the complex plane (see Fig. 7); we have
then:
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~+1 C(u ~)eikru C(+1)e'"1
du=—

, [,+fC(u, )f g: skr[, +fC(+1)f j-:

C(—1)e ""
(C 4)["+I C(—1)

I
s)'

Note that this result is independent of the variable q

and involves only the value of the gap function C(k) in
the direction of the radius vector r, that is to say, C(r)
Since this function has the same parity as I, the expres-
sion (C.4) can be written:

variation of the factor C(u, p)/(e'+
f
C f') i in the small

interval where the integrand is sizeable, we obtain:
Observing now that k varies only slightly in the interval
of integration (near the Fermi surface), we shall use its
expansion in powers of e.

Hence:
k =kr+ e/1svr+ (C.7)

I(r) = iVpc(r) I+& f re
~ de

krr J
k L.isvr) [es+

f
C(r)

f
sg:

e"=e'"r"[cos(re/Avr)+s sin(re/hvr) j. (C.S)

The second term on the right-hand side is odd and there-
fore cancels in the integration. Neglecting second-order
imaginary terms, we obtain in the same fashion as BCS
(see Appendix D of reference 1),

~+1 C(u +)e4kro
du=

"-i ["+Ic(u, v ) Is3'

C(r) eikr~ e 'ikrX,, (C5)
skr [e'+

f
C(r) f']l

sinker, l even
x ' . (C.9)

f scos—krr, 1 odd

where the + sign corresponds to odd configurations
and the —sign to even configurations.

The deformation of the contour of integration over u
upon which (C.5) is based is not allowable if e is near
zero and C(u, io) goes through a zero in the range
—1&u(1.In that case there is a branch point near the
real axis beyond which we may not deform the u con-
tour. It can be verified easily that the contribution from
integrating around this branch point is negligible, as
follows: carrying out first the e integration by the
method used later in getting (C.10), we obtain a
function like C(u, to)Ep(fcfr/Avr). This behaves like
C ln fC f

at fC f
=0. It is then easy to verify that the

contribution from the branch point behaves like

du dkoc(u, p) lnf CI e'kr'"

which is of order (1/krr)s smaller than (C.10) in the
interesting case in which the zeros of

f
C

f
are isolated

points on the sphere.
%e may write then:

The integrand is the product of a monotonically de-
creasing function of e, by a very rapidly oscillating
factor (in the long-range limit); we can then extend the
interval of integration to (—oo, +oo) without intro-
ducing a significant error [the error involved in this
approximation is of the order of the area of the first
arch of the interval (+$, +~), i.e., er/&krrj We.
obtain finally:

I(r) = 21Vpc(r) f r
f
C(r) f q sinkrr,

E,f

krr ( Avr i f i coskrr, 1 odd—

1 even

(C.10)

where Eo is the modified Bessel function of the second
kind and order zero. '4 Ep(s) diverges like lns when s
approacheszerosothatI(r) vanisheslike fC(r) fin fC(r)

f

near the nodes of
f
C(r)

f
. On the other hand, the leading

term of the asymptotic expansion of Eo is

Ep (rr/2s)'e * s~ ~.
This exponential factor, exp[ —r

f C(r) f/Avr), dominates
the dependence of I(r) upon the distance r in the long-
range limit.

1VpC(r) t
+& e""+e '"" de

I(r) =
2s' ~, [.s+fC(r) fs]: k

(C.6)
"E.T. Whittaker and G. N. Watson, Coarse of Moderl Aealysss

(Cambridge University Press, New York, 1946), Chap. XVII,
Example 40.


