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We use the electric dipole approximation to study the problem of ending commuting solutions of coupled
equations of motion. We point out that for a charged particle in an external radiation field, the solutions
of the coupled equations cannot be considered independent in the sense of commuting with one another if
the homogeneous solutions are assumed to have the commutation properties of uncoupled variables. We
explicitly treat the case of a charged free particle and a charged harmonic oscillator in an external radiation
field. We indicate that for a retarded (advanced) self-field, the free particle 6ts into a canonical formalism
while the oscillator does not. For a stationary self-field, both the free particle and the oscillator fit into a
canonical formalism. We show that the Fourier transforms of the con6guration space solutions (based on
e'"'" and e'&') do not exist. In the latter connection, we point out that earlier treatments of the oscillator
by Sokolov and Tumanov and Norton and Watson contain misleading results as a consequence of their
using Fourier transforms.

I. INTRODUCTION

'HIS paper will be the first in a series' dealing with
the electric dipole approximation in electro-

dynamics. ' We propose to discuss the problem of
developing a consistent canonical formalism in a theory
where variables associated with the electromagnetic
field as mell as the particle variables are treated as
dynamical variab1es. With the understanding that in
the quantum theory of the model to be discussed the
particles are to be treated in first quantization while
the radiation Field is to be treated in second quantiza-
tion, the discussion will be valid for both classical and
quantum theory. '

In order to develop a consistent canonical formalism,
we will have to deal with two related problems. First
we will have to identify a complete set of dynamical
variables. By completeness we mean that the dynamical
variables form the minimal set of conjugate pairs
required to determine the canonical equations of
motion. Having identified a complete set of dynamical
variables we are then faced with the next problem.
Suppose the solutions of the inhomogeneous equations
of motion are given as some functions of the solutions
of the uncoupled equations. Now the identification of
dynamical variables must be made for all times.
Therefore the commutation relations' for the uncoupled
solutions will have to be speciFied for all times. In
particular, if one imposes conditions such that the
solution for the particle variables reduces to the solution
of the uncoupled equation at some initial time, the
commutation rules for the uncoupled particle variables
will then be 6xed. However, the solution for the
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electromagnetic field variables will contain a mixture
of uncoupled field and particle variables in such a way,
that at the initial time, one will be left with a mixture
of uncoupled field and uncoupled particle variables.
One may then argue that the commutation rules for
the uncoupled Field variables should be determined by
the requirement that they guarantee that the full set
of dynamical variables satisfy the proper commutation
rules. Suppose one requires that the free-fieM variables
satisfy free-field commutation rules. Kill it then be
consistent with the canonical commutation rules for
the dynamical variables if the free-Field variables are
assumed to satisfy free-field commutation rules at all
times?4

Since it is the radiation field which will be treated in
second quantization, one would hope that the above
question may be answered aKrmatively.

In this first paper of the series we should like to
emphasize that the choice of position, momentum
conjugate to position, electromagnetic vector potential,
and its conjugate momentum as dynamical variables
is not complete in the electric dipole approximation.
In order to illustrate the preceding statement and
elucidate the mathematical problems to be overcome
in connection with the free-6eld commutation rules, we
will solve the free-particle and harmonic-oscillator
models exactly. At the end of the paper we will indicate
the course of action to be followed in overcoming some
of the probIems raised.

To some extent, the problems to be raised have been
dealt with by Kramers, ' Sokolov and Tumanov, ' and
Norton and Watson. ' However, Kramers is incomplete
in that he does not discuss constraints nor does he
(from our point of view) adequately discuss the free-
field prablem. Sokolov and. Tumanov and Norton and
Watson treat the oscillator model. However, they did

4 A. S. Wightman and H. Epstein, Ann. Phys. 11, 201 (1960)
have considered a relativistic theory in which the above question
is answered negatively.

'A. Sokolov and I. Tumanov, Soviet Phys. JETP 3, 958
(1956-57) .

6 R. E. Norton and W. K, R. Watson, Phys. Rev. 3,16, 159/
(1959).
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not deal with the completeness question. Moreover,
they incorrectly assume the existence of Fourier
transforms and are led to misleading conclusions.

II. COMMUTATION RULES AND
INDEPENDENT VARIABLES

We wish to consider a charged particle under the
inQuence of an external potential and an external
radiation 6eld. Ke use the Coulomb gauge and assume
the electric dipole approximation. '' We start with
the Lagrangian,

Lp ,'mpV'+——eV—5—eC —U(R)

Since the term eC does not affect the particle equa-
tions of motion, we may without loss of generality drop
it and J'd'x(V'p)' from La The reduced Lagrangian
is then

L= 'm-p V'+e V 5—U(R)

f
+-; d'x(LTr(E)g' —PTr(H) j') — t d'x ioV'

J (g)
8$

with p playing the role of a Lagrange multiplier in the
last term and

TrE = BA/B—t.

The conjugate pairs of variables are

+-,' d'a{LE(x,t)1'+fH(x t))'} (1) R ~ P=mpV+eS,
A ~ 11= E= aA/B—t+Vq.

(10)

and

"iPx p(x)A(x, t)

C = ~d'x p(x) p(x, t),

(2)

where ms is the bare (unrenormalized) mass, R(t) and
V(t) are respectively, the position and velocity oper-
ators of the particle, U(R) is a scalar potential energy,
E(x,t) and H(x, t) represent respectively the electric
and magnetic field vectors at the space point x, and A
and C are respectively the vector and scalar potentials
associated with the electr'omagnetic held. Units are
chosen so that A=c=1.

The Hamiltonian is

EI= 1/2ms(P —e5)s+ U(R)

+-,' td'x((ciA/cit)'+ (V'A)'$, (11)

where Eqs. (9) and (10), H'= (V'XA)'= —A V'A, and
an integration by parts have been used to write the
Hamiltonian in the above form. As the fundamental
commutation rules we adopt

where p(x) is a form factor describing the charge
distribution. p(x) is normalized so that J'~f'x p (x) =1.

Now,
E= aA/at &p and —H= VX—A, (4)

msR= V'U ea5/ai, — —
V'p= —ep(x),

A= —TrepV= —ep(x) V+ Vip(x),

(6)

where TrB denotes transverse part of a vector field B.

Strictly speaking, the electric dipole approximation can be
made only after separating an external Geld from a proper Geld
in the sense of Kramers. ' Only then can one get the correct electric
dipole approximation solutions of the Geld equations. However,
if we simply accept the appearance of Eqs. (2) and (3) in 1.0, with
p independent of the particle position as characterizing the
electric dipole approximation, and exercise care, no inconsistencies
with the approximation wjlJ grtge,

so that the variation of 1.0 will be determined by varying
R, V, A, BA/Bi, and qr. Assuming the usual boundary
conditions at infinity, it is well known that J'rf'xBA/Bt

~ Vqr, which arises from E', is equivalent to a constraint
with p as a Lagrange multiplier. Upon assuming that
A is independent of V, the resulting Euler-i. agrange
equations will be

e
t

p(x') V(t—
~
x—x' ()

A=As+Tr —
~

d'x'

t
x—x'/

(13)

where As is an arbitrary solution of the homogeneous
equation. The appearance of V(t —

~

x—x'~ ) in Eq. (13)
raises the possibility that the assumption that A&,

satisfies free Geld commutation rules is inconsistent
with LR,Aj=0.s In the examples treated below, we
will point out that such an inconsistency exists. A
simi1ar argun:ent holds if one uses advanced or

Note that in the electric dipole approximation, p is a static
Coulomb potential so that y = V V'q.' If the particles were treated in second quantization with P
denoting the particle field, the analogous result would be LP,A jA 0.
However, one couldn't make such a statement without actually
having solutions to tQe coupled field equations,

1 ( 1=i 8,;b(x—x') ——8;8
~ ~

. (12)
E )x-x'()

All other equal time commutators are assumed to be
zero. The assumption that A is independent of V is
now to be realized by the condition that LR, A)=0. We
proceed to investigate the validity of that assumption.

We determine A by solving Eq. (7). If, in order to
be specific, we use the retarded Green's function, we get'



ELECTRI C D I POLE APPROXI MATION 1905

III. FREE PARTICLE

For the free particle U(R) =0. We retain Eqs. (5)—P)
as fundamental equations. It follows from Eq. (5) that

P=mpR+eS= const. (14)

The particular solution of Eq. (7) will depend on the
boundary conditions chosen. We will consider the cases
of retarded and stationary L-,'(advanced+retarded))
boundary conditions. The solution for advanced
boundary conditions is immediately obtainable from
the retarded case by appropriate substitution of the
advanced time.

(i) Retarded Case

The solution of Eq. (7) is given by Eq. (13). If we
substitute Eq. (13) into Eq. (14) we get

e' ~ t p(x)p(x') .
mpR+ — d'x Tr d'x' R(t—i

x—x i)
47r» [x—x'~

= P—e5(,. (15)

The second term on the left in Eq. (15) blows up in
the point charge limit. In order to avoid the blow up,
we introduce mass renormalization in a well known
fashion. Define"

e
i p(x')

Ap ———Tr d'x' R(t), (16)4' ~ [x—x'(
"E.T. Whittaimr, Analytical Dynamics (Dover Publications,

New York, 1944).
"Apart from a solution of the homogeneous wave equation,

the definition of A0 and A» follows Kramers.

—',(retarded+advanced) Green's functions to find the
self-held.

The above conclusion was not discussed in the paper
by Norton and Watson, ' but its consideration is
essential if one wants to make comparison with current
formulations of quantum field theory.

If we continue to insist that As has the properties of
the free held, then one is led to conclude that there are
constraints as well as additional variables to be con-
sidered. In fact, the first half of Eq. (10) is a constraint
relation while the appearance of V in Eq. (13) leads to
an acceleration dependence in I.. Kramers' has devel-
oped a theory which properly presents a complete set
of dynamical variables, but he does not consider the
constraint problem for his variables nor certain impli-
cations regarding the possibility of quantization. In
the second paper of this series we will present a formu-
lation alternative to Kramers. ' Our formulation will be
based on the Ostrogradsky method" and the constraint
problem will be fully discussed. We will Gnd the self-
field arising from several different boundary conditions
and discuss the possibilities for quantization in each
case.

In order to get a feeling for the problems to be
encountered, we will devote the next two sections of
this paper to the free particle and the harmonic oscil-
lator.

and
A, = A—Ay, —Ap. (17)

Replace the left-hand side of Eq. (15) by mpR+eKi
+eSp. Let

, p(x)p(x')
gm ~ d3&d3&~

6m ~ Jx—x'[

denote the electromagnetic mass, and call

m=mp+8m (19)

the observed mass. Since mpR+eSp=mR, Eq. (15)
becomes

(20)mR+eS, =P—emi, .

Having arrived at a procedure for obtaining finite
equations of motion in the point charge limit, we will
now pass to that limit. By restricting ourselves to
point charges, we will lose no essential generality and
gain immense simplification of the calculations.

For a point charge 'gi (t) = Ai (O,t) = —
p (e'/4ir) R (/).

Equation (20) then reduces to

coop CVp

R(i) (upR(/) = As(0, i) —P
m ns

(21)

where ppp=6sm/e'. The charact:eristic function of the
homogeneous part of Eq. (21) is

D~(cp) = p~(cp cpp) ~ (22)

where the subscript E. is used to indicate that it is
associated with retarded boundary conditions. Partic-
ular solutions of Eq. (22) may be obtained by means
of the Green's function,

ei~(t—t')

Gii (t,t') =— do~
2n. ~ „Dir(ipi)

cite(t—t')GO

do~

27I ~ cp (cp+'Leap)

1——(e"«'-"~—1); t' »0—
cap (23)

Gn(t, i") satisf:es
0; l' —t~& 0

O'G g/Bt' coprlGR/Bt = 8—(t t')—(24)

The appearance of the runaway exponential in Eq. (25)
is a manifestation of the fact that R, Pn, A, IIA do not
form a complete set of dynamical variables, i.e., one
cannot base a Hamiltonian formalism on those variables
alone. Since Hamilton's equations of motion are first

A solution of Eq. (21) which satisfies the condition
that R(—po)=P/m is

R(t) = Rp+ Rie"o'

e P
dt'(e"«'-'& —1)A, (0,&')+—&. (25)



MELVI N SCHWARTZ

of Aii and interchange orders of integration in the
above particular solution without regard for the zeros
of Da(ko), then

order, the solutions must be determined by specifying
data at a single time. However, it is clear from Eq (.25)
that the requirement that R(t) be finite at all times
requires that R, =O, which in turn requires specifying
R at some finite time as well as at t= —~.As mentioned
previously, we will overcome this difFiculty in the
second paper of the series by use of the Ostrogradsky
technique. At the present stage we will simply require
that R(~) be finite and set Ri ——0. Then

ezco(t —t')

2' ~ oo D~ ZCO 2

tPk
f a e i k t+—a fei k ij

1
I

d'k ae '"'

(2~)'* " (2k)& De( i(u)—Dig(ice)
e p P

R(t) = R,——,~ dt'(e o&'—'& —1)A„(0,t')+—t, (26)
nz Jt However, the zeros of De(ice) introduce a nonuniform

convergence with respect to t' and make the use of
8(co+k) to obtain the right-hand side of Eq. (29)
invalid. If one were to use the right-hand side of Kq.
(29) in calculating commutators, then one would
obtain misleading contributions from the particular
solution.

That the particular solution should contribute
nothing to the LR,Pj commutators is just what we
would expect from the fact that it. vanishes in Eq. (27)
in the limit 3 —+ % ~. Were we to use the right-hand.
side of Eq. (29), we would get a time-independent:
contribution to the commutators —which contradicts
the result in the preceding sentence.

It is now clear that the Fourier transform of the
solution does not exist. If one initially assumed the
existence of Fourier transforms and transformed the
difI'erential equations into algebraic ones, one would
arrive at the right-hand side of Eq. (29) as a particular
solution. However, the homogeneous solution for R(t)
obviously has no Fourier transform, while the above
particular solution has none either. In treating the
harmonic oscillator, Sokolov and Tumanov' and Norton
and Watson' used the Fourier transform method and
consequently arrive at misleading conclusions. We will

return to the latter point again when we discuss the
harmonic oscillator.

R(t) = —
~ dt' e"«' "'Ai, (0,t')+—,

8$ t ns
(27)

e R(t—fxf)
A (x, t) = Ai„+——

4~ fxf

e
I

d'x' R(t—
f
x—x' f)

(4~)-'~ fx—x'f fx'f'

3f R(t—fx —x'f) x']x'
(28)

It is worth noting that G~ determines a particular
solution the first time derivative of which remains
finite for all times. There exist other particular solutions
which when combined with the homogeneous solution
will satisfy the condition R(—~)=P/m, but cannot
avoid R(t) blowing up when t = ~ . For example,
another solution is

R(t) = Ro+Rie "+— ~ dt'(e""' "'—1)Ai, (0,t')
m ~tp

Pe"" P
+ t. —

~o m

By setting Ri= 8/meso we obtain

R(t) =—' dt' e" &'—'~Ai, (p,t')+—,

(ii) Stationary Case

The solution of Eq. (7) is now given by

SS tp

A= A„+Tr—,I d'x' p(x')
Jwhich satisfes R(to) =P/m, but R(~) blows up.

We turn now to the commutators. Our particular
solution involves f V(t —fx—x'f)+V(t+ fx —x'f)j

X (30)
fx—x'

fzen(t —t')e'—,~ dt,
' ~ d A (O,t').

2' & „„Dii(ia) Upon going over to the point-charge limit and using
Eqs. (16)—(19), we get the equation of motion

R(t) = —(e/I) A&(p, t)+ (1/~) P, (31)

(32)R(t) = R,—— dt' A, (o,t')+ Pt-
'l+ 4

gq m

If one does not interchange the order of integration,
then straight-forward calculation shows that this
particular solution contributes only to LR,A]. We may
then state that except for [R,A)&0, all the initially the solution of which is

p,ssumed commutation rules will be satisfied.
In calculating commutators the following pitfall must

be avoided. If we make the usual plane wave expansion
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The results regarding commutators are the same now
as in the preceding case.

d'R (rd2R (r—(K/m) R= (en/m) BA„(o,t)/(it,
dt3 dt2

(33)

where n=6rrm/e2. The characteristic function of the
homogeneous part of Eq. (33) is

Dri (rp) = (u' rrrp2 —nK/m— (34)

A particular solution of Eq. (33) may be obtained by
means of the Green's function,

eird(t —t')

Gi2(t, t') =— d(p
22r ~ Dii (2(p)

e~o(t—t')
t' —t) 0

(z(pp+2rpr+(P2) (2(pp+Z(P] CO2)

IV. HARMONIC OSCILLATOR

(i) Retarded Case

We now take U(R) =-,'KR'. The solution of Eq. (7)
is again given by Eq. (13). We substitute Eq. (13)
into Eq. (5). We again adopt the defining Eqs. (16)—
(19). Upon passing to the point charge limit, the
resulting equation of motion is

If we now follow Dirac's prescription" for getting rid
of the real exponentials in Eq. (37), we are left with
just the last term on the right hand side. But P
=md R(t)/dt (m—/n)d2R(t)/dt2+eAs(o, t). A calcula-
tion then shows that

[R(t),P(t))=i 1—
4((P1'+(P2')

d(p2+2 ((p12+rp22)
(39)

(ii) Stationary Case

Using Eq. (30) and following the procedure outlined
above, we arrive at the equation of motion

Although Eq. (38) is not equivalent to the particular
solution in Eq. (37), one can use it to calculate
[R(t),P(t)] and obtain the same result as in Eq. (39).
However, the two calculations are not equivalent.
Upon using the particular solution in Eq. (37) we find
that [R,Rj= [R,d2R/dt2$ =0 so that [R(t),P (i)]
=e[R(t),As(o, t)). A direct calculation shows that the
preceding statement is not true if one uses Eq. (38).

In any case Eq. (39), leads us to conclude (from the
next paper of the series) that (within the framework of
Ostrogradsky method") the above solutions are not
consistent with the canonical formalism.

euo2(t —t') e—ico2(t—t')

2pp2- (2(po+z(pl+(O2) (2(po+z(pl (O2)-

&(e
—"r('—'& t' —t (0 (35)

d'R e aAs(o, t)
-+Mp R=

m
(40)

where cpp)0 and rp, ~i—&p with cpi)0 are the zeros of where pio'=K/m. The characteristic function of the

Dir ((p) Gg (t, t') sa.tisfies homogeneous part of Eq. (38) is

I Gg (xÃCIg

dt3 dt'
—(aK/m) Gii ——5 (t—t') . (36) D~ (rp) = rp +(pp, (41)

The solution of Eq. (33) may now be written

R(])= Roe~pi+Rrs (~1 i~2) &+Rr+s—(»+(~2&i

where the subscript s is used to indicate that D, is
associated with stationary boundary conditions.

Using the Green's function

e oo et', co(t—t')
+—(r) dt' Grr (t, t') (iAs(o, t')/Bt' (37) G (.i i )—QO 22r ~ " D, (i(d)

g e
—ikt g feikt-

(38)
. Drr ( ik) Drr (ik)—

"In using their Fourier transform method, Norton and Watson
first treat the case of a finite size charge. In Dn(co), there then

It follows from Eq. (35) that once again one cannot use
the plane-wave decomposition for As(x, () and inter-
change orders of integration in the particular solution to
obtain the form of Sokolov and Tumanov' and Norton
and Watson, "namely

ien 1
I (k) &

R(i)=-
m (2 ):-~

sin&Op(& —&')
t' —t&0

2coo

sin(Op�

(t—t')
)

2cop

t' —t(0
(42)

appears an integral over k space. This led them to conclude that
Dz(ro) had only one zero. However, they overlook the fact that
in the point-charge limit, their expression reduces to a cubic in co

with three nonzero roots (one real, two complex). Moreover, if
they had not taken Fourier transforms in the 6nite-size charge
case, the above-mentioned integral would appear as a double
integral over x space. Further analysis would then show that for
suKciently small size charge (nz«0), Dz(cv) has three zeros."P. A. M. Dirac, Proc. Roy. Soc. (London) 167, 148 (1938).
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the solution of Eq. (39) may be written

Again, the particular solution on the right-hand side
of Eq. (42) will contribute only to I R,A$. We are
therefore Ied into setting

L Rp, Ro*j= 1. (44)

The assumption of Eq. (43) will then guarantee that
except for [R,Aj&0, all the desired commutation rules
will be satisfied. This will enable us in the next paper
of the series to fit the above solution into a canonical
scheme based on the Ostrogradsky method.

V. SUMMARY

We have used the electric dipole approximation to
study the problem of finding commuting solutions of
coupled equations of motion. We pointed out that for
a charged particle in an external radiation field, the
solutions of the coupled equations cannot be considered
independent in the sense of commuting with one another
if the homogeneous solutions are assumed to have the
commutation properties of uncoupled variables. As we

will show in the next paper of this series, the lack of
independence is a result of constraints in the theory.
In that paper, we will combine the Ostrogradsky

R(t) = LRoe-'"0'+ R 'e*'"o'g

m(2(op)'
e

I

" aA„(O t')
dt' G, (t,t') . (43)

m~ „8t'
method with the modified Poisson brackets of Dirac'4
to show how the theory fits into a canonical formalism.

We have explicitly solved the case of a charged free
particle and a charged harmonic oscillator in an
external radiation field. We have indicated that for a
retarded (advanced) self-field, the free particle fits into
a canonical formalism while the oscillator does not. For
a stationary self-field, both the free particle and the
oscillator fit into a canonical formalism. However, we
have shown that the Fourier transforms of the con-
figuration space solutions (based on e'"'* and e'"') do
not exist. In the latter connection, we pointed out that
one could construct particular solutions using a plane-
wave expansion for the free field, but those solutions
lead to misleading contributions to the commutators.
In fact if one takes the stationary solution for the
self-field, the integrals appearing in the commutators
are ambiguous and divergent.

In the succeeding papers we will also deal with the
problem of alternative Fourier decompositions and
associated boundary conditions.
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