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Electromagnetic Sources in General Relativity Theory
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The simplest, most direct method of unifying Maxwell's theory of electromagnetism and Einstein's theory
of gravitation was formulated by Rainich in 1925. That theory applies only to charge-free space. However,
in regions of space in which the electromagnetic field invariant corresponding to E 8 vanishes, the two sets
of Maxwell's equations are independent for Rainich's unified theory. The Rainich theory may be modified
to allow for nonvanishing charge and current density in such regions. The electromagnetic sources and
fields obey Maxwell-Lorentz theory and the electromagnetic matter-energy obeys the laws of Einstein's
general relativity theory. The necessary and sufficient conditions which one must impose on the metric
tensor and its derivatives in order to assure the existence of a unique antisymmetric tensor obeying the
Maxwell-Lorentz laws in the presence of charges and currents have been derived.

I. INTRODUCTION

A UNIFIED classical theory of gravitation and
electromagnetism is important for two reasons:

(1) Quantum theories are in general formulated by
quantization of an otherwise complete classical theory.
(2) Although the existence of isolated purely electro-
magneto-gravitational objects in the real world seems
unlikely, the theoretical possibilities have not been
fully investigated.

The simplest, most direct method of unifying
Maxwell's theory of electromagnetism and Einstein's
theory of gravitation was formulated by Rainich' in
1925. Rainich considered Riemannian spaces containing
an antisymmetric tensor field, Ii;k, obeying Maxwell's
equations. The metric and curvature of the space were
fixed by equating the Einstein tensor to the electro-
magnetic stress-energy-momentum tensor, Tk&'. The only
matter-energy considered was that in the electro-
magnetic field. The field equations are:

/k' 0,A )

F„i,+Fr; ~+Fbi, =0,
T~I F'F.a+~(F="—PF p)&'I,

R~„,'Rh&'i —— (87rG—)T'I„—
(1)

(2)

(3)

(4)

*This work was begun while the author was a National Science
Foundation Postdoctoral Fellow at California Institute of Tech-
nology, Pasadena, California.' G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).

6 is the Newtonian gravitation constant. R;k is the
Ricci curvature tensor and R is the scalar curvature.
Rainich considered the questions:

(1) What are the necessary and sufficient conditions
which one must impose on the metric tensor and its
derivatives in order that an antisymmetric tensor F,k

satisfying Eqs. (1)—(4) exists?
(2) To what extent do the metric tensor and Eqs.

(1)—(4) determine the electromagnetic field F,r,
'?

In this formalism, charges and currents can be con-
sidered only as singular points, lines, or surfaces on
which the field equations fail. Recently, Misner and

II. RAINICH'S CHARGE-FREE SPACE

Rainich' showed that the following are the necessary
and sufficient conditions which one must impose on the
metric tensor in order to insure the existence of a non-
null electromagnetic field satisfying Eqs. (1) to (4).
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q, = (—g) (R".R".)-'e,.p,R" PR.~. (10)

g is the determinant of the metric tensor. c,. p~ is the
totally antisyrnmetric tensor density whose components
are 0 or &1. Equations (6)—(8) are algebraic equations
which must be satisfied in order that F,k exist and
satisfy Eq. (3). Equation (9) is a fourth-order differ-
ential equation which must be satisfied in order that F,k
satisfy Maxwell's equations, Eqs. (1) and (2). Rainich
also showed that except for a constant determined by
specifying the ratio of the field invariants at one point,
the metric tensor determines the electromagnetic field
uniquely.

2 C. W. Misner and J. A. Wheeler, Ann. Phys. 2, 525 {1957).

Wheeler' have attempted to introduce charges and
currents by considering topological "wormholes" in a
multiply connected space.

The purpose of the present work is to consider the
possibility of introducing charges and currents simply
by dropping the first of Maxwell's equations [Eq. (1)]
and defining:

Jk Pak

The four-vector current density (—g)rJi may be con-
sidered in the classical sense as some primordial ooze
(which is conserved by virtue of its definition) fiowing
with local velocity v. Alternatively, Jk may be considered
simply as a differential property of the electromagnetic
field defined by Eq. (5). It is in no sense a singularity of
the fields or the space.
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where

Ta, —=F.aj +&.ag =o,

III. NONVANISHING ELECTROMAGNETIC
SOURCES

It is well known that given Eqs. (3) and (4) with the
Bianchi identity, not all 8 of Maxwell's equations are
independent. ' ' ' Equations (3) and (4) with the Bianchi
identity imply

For the moment, the null case (rt rt =0) is excluded.
From Eqs. (3) and (17), one obtains

(20)

Clearly, Rainich s algebraic conditions on T'a, Eqs. (6),
(7), and (8) must still be satisfied. The fourth-order
differential condition, Eq. (9) is however, replaced by
a third-order differential condition.

To obtain the third-order condition note that

(12) T aq + ', (rt~rts)q-a F„a——ota, — (21)
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(13)
which may be proven by expressing each of the tensors
explicitly in terms of $, and tta. Clearly, if the second set
of Maxwell's equations, Eq. (2), is satisfied then:

Since Eq. (2) requires that ga vanish, Eqs. (2), (3), and

(4) imply that'
F IJ =0.

Clearly J~ must vanish unless

d«~F, a~ =0,

which is equivalent to

S=e»'F pF~) ——0.

(15)

(16)

F,a= $,qa rt,$a— (17)

There is no loss in generality by assuming that

P4= —1,

Pr),,=0.
(18)

(19)
' A. Einstein, Sitzber. preuss. Akad. Wiss. , Physik. —Math. Kl.

(1919) Ltranslation: A. Einstein et al Z7te Prilct'Pte of Rett.ttt'et'ty

(Dover Publications, New York, 1924)j.
4 Louis Witten, Phys. Rev. 115, 206 (1959).
~The local vanishing of the Lorentz force density need not

imply that the force exerted on a charged object by an external
field vanishes. The field acting on the charge-current density
may be (conceptually) divided into two parts: (1) the 6elds arising
from the object's own charges and currents and (2) the external
field. The integrated force due to the first may be interpreted as an
inertial force or the rate of change of the object's mechanical
momentum. The integrated force due to the second is the usual
Lorentz force. They are equal in magnitude.' Bruno Bertotti, Phys. Rev. 115, 742 (1959).

7 J. A. Schouten, Eicci-Calcllls (Springer-Verlag, Berlin, 1954),
p. 35.

S corresponds to E B in a fiat space.
When S vanishes, the dependencies implied by the

Bianchi identity exist entirely within the two individual
sets into which Maxwell's equations are usually divided
LEqs. (1) and (2)$. These two sets are independent of
one another and tb.e charge and current densities need
not vanish. Previous investigators' —"have overlooked
or ignored this point (except for a few speculations
regarding null electromagnetic fields).

In order to reduce Eqs. (2)—(4) to a purely geometric
theory, note that any antisymmetric tensor satisfying
Eq. (16) can be expressed in the form

T aq-+s (n'ns)qa=o (22)

Conversely, if Eqs. (11), (16), and (22) are satisfied,
then the second set of Maxwell's equations are satisfied
identically. The vectors necessary to express F;& and
P,a in the form of Eq. (17) are all orthogonal and
independent. Given Eqs. (6), (7), and (8) there always
exists an F;a with S=O which satisfies Eqs. (3) and
(4) 1,2

The necessary and suAicient conditions which one
must impose on the metric tensor and its derivatives in
order that there exists an antisymmetric field tensor
F,a satisfying only Eqs. (2), (3), and (4) are Eqs. (6)—
(8), and (22). The electromagnetic field tensor F,a (or
its dual) are determined uniquely by the metric tensor.

Rainich's theory may be modified to include charges
and currents simply by replacing Eq. (9) by Eq. (22).
The vector qi, must be an eigenvector of the stress-
energy-momentum tensor T&I,. In regions of space where
the curl of this eigenvector vanishes, both sets of
Maxwell's equations are obeyed. If the curl of the eigen-
vector q& does not vanish, then only one set of Maxwell's
equations are obeyed and the charge-current density is
nonzero. Perhaps a more general class of spaces with
direct physical interpretation may be obtained by
requiring either Eq. (9) or Eq. (22) but not necessarily
both (except on the boundaries between regions of the
two types).

The electromagnetic fields satisfying the above condi-
tions fall into three classes depending on whether q, is
a spacelike, timelike, or null vector. The null case is
singular and is discussed in Sec. IV. The vector (; is by
definition spacelike.

If g; is timelike, then qA, and J~ are spacelike. There
exists a coordinate system appropriate to each point
such that (1) the field is purely electric and (2) the
charge density vanishes at that point.

If g, is spacelike, then J~ and qg, are orthogonal and
one of them is timelike (unless they are equal and null).
There exists a coordinate system appropriate to each
point such that at that point (1) the field is purely
magnetic, (2) the charge density may or may not be
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zero, and (3) the current is zero or parallel to the
magnetic Geld.

Four eigenvectors of T&i, are $&, z&, q&, and J&. They
are independent unless qp and J~ are equal and null.

and therefore,
gg =0,

T'k —0'la.

(23)

The metric tensor and its derivatives determine g,
uniquely. There will exist a null electromagnetic Geld

satisfying Eqs. (2), (3), and (4), if and only if there
exists a vector (& satisfying the first-order linear
differential equations:

~""k(hest n.b);—3=0 (25)

The conditions which one must impose on the field g, in
order to assure existence and/or uniqueness of solutions

to Eq. (25) are not considered here. However, Eq. (25)
is satisfied identically if both p, and g& are gradients of

scalar s.
There has been some speculation as to whether an

electromagnetic field which is null in some region of

space must be null everywhere because of Maxwell's

equations. ' Since Maxwell's equations are independent
in such regions, it is perhaps more interesting to focus
attention on the invariant 5 and the single set of
Maxwell's equations.

V. EUCLIDEAN ELECTROMAGNETISM

If one neglects the eGects of gravitation, the concepts
considered in the previous sections can be presented in

a more familiar physical notation. The field equations
are

q 8=0; qXE+aB/at=0, (26)

q K=p; qXS—BR/Bt=j, (27)

SXj—pK=O. (28)

Equation (26) corresponds to the second of Maxwell's

equations, Eq. (2). The first of Maxwell's equations,

Eq. (1), is discarded and the differential quantities
merely define the charge current densities, Eq. (27).
The vanishing of the Lorentz force density, Eq. (28),
corresponds to the vanishing of the divergence of the
electromagnetic stress-energy-momentum tensor. It
may be considered to be the limit of Eq. (4) and the
Bianchi identity as the gravitational constant goes to
zero. It assures that the energy and momentum of the
electromagnetic field are conserved and therefore,
electromagnetic matter-energy obeys the laws of
relativistic mechanics. The local vanishing of the

IV. NULL ELECTROMAGNETIC FIELDS

The considerations of the previous sections break
down for null electromagnetic Gelds because many of
the significant quantities vanish identically. In this
case F,i is of the form given in Eq. (17) where

I.orentz force by no means implies that charges will not
be accelerated by external Gelds. It asserts only that
this theory accounts for no masses other than electro-
magnetic energy (and gravitational energy in the more
general case).

These equations may be combined into a single set
of four equations for the electromagnetic potential,

y.=ye= o, (31)

is a solution. It is, of course, not physically significant
and it is unstable to perturbation by external fields due
to the nonlinearity of Eq. (28) or Eq. (29).

VI. CHARGED ELECTROMAGNETOGRAVITATIONAL
OBJECTS

A cliarged electromagnetogravitational object would
be described by a space of the above type in which the
charge-current and energy densities were not every-
where zero and were concentrated in the neighborhood
of some average world line of the object. At any time
the charge, energy, linear momentum, and angular
momentum of such an object would each be an integral
over the region of three-dimensional space in which the
corresponding densities were concentrated. These
integral quantities may be interpreted as mechanical
properties Q, L", P, and L which are conserved by virtue
of the field equations. If such an object interacts with
a Geld generated by some other external source, only
the totals for the two systems are conserved. Any
attempt to describe the one object independently of
the other will lead to variations in the individual
mechanical properties with time due to the "inter-
actions. "If the object under consideration is a localized
charge distribution such that the external Geld is
"almost uniform" over the region of space which
contains "nearly all" of the electromagnetic energy,
momentum, and charge of the object during the very
short time interval Av-, then the change in energy and
momentum hE and AE' during 67- can be expressed as
two-dimensional surface integrals over the space-like

(29)

(30)

which are also valid in the modified Rainich theory,
if covariant derivatives are implied. The imposition of
the Lorentz gauge, Eq. (30), is no restriction.

The familiar solutions of Maxwell's equations for
charge-free space satisfy these field equations. They
correspond to the vanishing of p and j in Eqs. (26)-(28)
or to the vanishing of g', in Eq. (29).

It is not difficult to find solutions for which p and j do
not vanish everywhere. For example, in cylindrical
coordinates, the Geld generated by the charge current
density

t =p(r),

i.=t (r),
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sphere containing the object at that time. These surface
integrals giving the time rate of change of energy and
momentum can, except for gravitational eGects, be
expressed in terms of the external fields and the object's
total charge and average velocity. This new "Lorentz
Force" acting on the total object in interaction with an
external field will in general not vanish. However, it is
by no means certain whether any such physically
significant solutions exist. An examination of the
question of existence proceeds most directly by imposing
boundary conditions pertinent to "physically significant
solutions. "

The problem of boundary conditions for electro-
magnetogravitational objects is difficult, and this
author does not intend to pursue it further. However,
it is worth pointing out that it has not even been proven
that Eqs. (26)—(28) have no solutions similar to an
electron because the boundary conditions usually im-
posed are not consistent with the present concept of the
electron. About sixty years ago, serious attempts were
made to describe the electron as a purely electro-
magnetic object. Maxwell's equations for charge-free
space were imposed everywhere except on some singular
surface or region. Since the vanishing of the Lorentz
Force, Eq. (28), was not required in the singular regions,
these objects failed to obey the laws of relativistic me-
chanics. Pauli' in 1921pointed out that a purely electro-
magnetic object must satisfy all of Eqs. (26)—(28). He
then argued that no solutions exist which satisfy the
boundary conditions then believed to be relevant to the
electron; i.e., a stationary localized charge distribution.
Clearly these boundary conditions are not consistent
with the present view of the electron. The electron
possesses a magnetic dipole moment and, if it is de-
scribed by a charge distribution p, it must also have a
current distribution j. A superimposed electric mono-
pole field and magnetic dipole field possess angular
momentum as well as energy. Even worse, it is generally
accepted today that there is no such thing as a localized,

e W. PauH, The Theory of Relateeity (Pergamon Press, New York,
1958).

stationary electron. An initially stationary electron
would fill all space and an initially localized electron
would after a time fill all space. It is no test of a field
theory to search for solutions satisfying boundary
conditions appropriate to the nineteenth century
concept of a particle.

VII. DISCUSSION AND CONCLUSION

The simplest most direct method of unifying
Maxwell's theory of electromagnetism and Einstein's
theory of gravitation was formulated by Rainich in
1925. He equated the stress-energy-momentum tensor
of a Maxwell field to the Finstein tensor and investi-
gated the restrictions which this imposes on the metric.
This theory, however, applies only to charge-free space.

In regions of space in which the electromagnetic field
invariant corresponding to E B vanishes, the two sets
of Maxwell's equations are independent and one of
them may be dropped from Rainich's theory. In such
regions the charge and current density may not vanish.
The electromagnetic sources and fields obey Maxwell-
Lorentz theory and the matter-energy obeys the laws
of Einstein's general relativity theory. The necessary
and sufhcient conditions which one must impose on the
metric tensor and its derivatives in order to assure the
existence of an antisymmetric tensor obeying the
Maxwell-Lorentz laws in the presence of charges and
currents have been derived LEqs. (6)—(8) and (22)j.

The question of the existence of physically significant
solutions to the field equations presented can be
attacked only after defining "physically significant"
solutions and the corresponding boundary conditions.
This problem has not been considered here.
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