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The preliminary analysis essential for the application of the Mandelstam representation to the photo-
production of E mesons has been carried out. The analytic properties of individual multipoles have been
investigated and the positions of the singularities have been located.

I. INTRODUCTION

PPI,ICATION of the analytic properties of the
scattering amplitude to photoproduction was

initiated by Chew and I ow. ' Chew et al.2 applied the
fixed-momentum-transfer dispersion relation to the
photoproduction of pions. They used the static approxi-
mation and exploited the (3,3) resonance. BalP has
extended their treatment by applying the Mandelstam
representation.

In the ca,se of photoproduction of E mesons, we have
not as much information as in the photoproduction of
pions. Ke do not know about the E—I relative parity
nor anything about the magnetic moments of hyperon.
Also the phase of the pion photoproduction matrix
elements is simply related to the pion scattering phase
shifts by unitarity. No such simple relation exists
between the photoproduction of E mesons and the E—I'
scattering phase shifts as exists when there is only one
channel open. Moreover, there is a large unphysical
range on the physical cut, as the cut starts at (p+m)'
and the threshold is at (E+M)2. Thus even the integral
on the physical cut is not simply determined by uni-
tarity. The only simple statement of unitarity applicable
for the multichannel case is that given by Feldman,
Matthews, and Salam. 4

In this paper, we have carried out the initial stages
of analysis essential for the application of the Mandel-
stam representation to the photoproduction of E
mesons. Many complicated features of the problem due
to the four different masses become evident.

In Sec. II, the kinematics are discussed and invariant
amplitudes are set up. In Sec. III, the Mandelstam
representation is written and the residues of the poles
are calculated. In Sec. IV, the multipole analysis is done
and the singularities of the partial wave amplitude are
determined. In the Appendix the singularities are
derived.

II. KINEMATICS

Let the four-vector momenta k, q, pi, p, correspond
formally to the ingoing particles (I'ig. 1). Define the

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1579 (1956).
'G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,

Phys. Rev. 106, 1345 (1957). Hereafter this will be referred to as
CGLN.' J. S. Ball, thesis, Lawrence Radiation Laboratory Report,
UCRL—9172, 1960 (unpublished).

4 G. Feldman, P. T. Matthews, and A. Salam, Nuovo cimento
16, 549 (1960).

three invariants:

s= (I+Pi)'= (q+P2)',

u= (q+pi)'= (k+p~)',

~= (u+ q)'= (p,+p,)'.

(2.1a)

(2.1b)

(2.1c)

Conservation of momentum gives

s+u+ 1=m'+3P+K'. (2.2)

Each of the invariants defined by Eqs. (2.1a, b, c)
represents the square of the total energy in the bary-
centric system for the reactions:

k+pi —& q p2 (p—+—E—+ E+Y), (2.3a)

q+ pi —+ —k —pg (E+X~ y+ V), (2.3b)

k+q —+ —pi —
pg (p+E +E+V). —(2.3c)

These three reactions must be considered together if
one uses the Mandelstam representation.

'tA'e define
k—= (i ki,k), pi—= (e,,

—k),
—q=(~ q) P~=(~~, —q)—,

(2.4)

(2.5)

u= m +E 2Eico —2kq cose,

t= E'—2k&u+2kq cos8,

(2 6)

(2 &)

(s—m')' Ls—(M+E)']Ls—(cV—E)'j
g2 , (2 8)

4s

s —(M' —E')

2+s

s+m'
61=

2+s

s+ (3P E')—
(2.9)

2+s

Fro. 1. Feynman diagram
for photoproduction of E
mesons.

where k and q are the initial and final three-vector
momenta in the barycentric system.

For reaction I:
s= 8'

)
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We write the T matrix as

T=Q B,(s,u, t)N;, (2.10)

The values of the V's and S's for a particular reaction
are tabulated (see Table I).

III. MANDELSTAM REPRESENTATION

Ã2 ——k e,

N3 ——q e,

lV4=I' e,

LV5=iy cy k,

E6= ik ey. k,
(2.11)

Ey= iq ey. k,

iV8 ——iI' ey k.
A, (s,u, t) =

I', (s) I', (u)

m' —s M' —n

The Mandelstam representation for the gauge-
invariant amplitudes A, has been written by BalP:

T=A iM, +A 2M2+A 3MB+A 4M4,

M1——iy ey k)

M, =2i(P eq k P kq e—), .

M3= (p' fq'k r'kq' c),

M4 ——2(y eP k —y kP e imp—ey k).

For (K—V) odd parity:

(2.12)

(2.13a)

(2.13b)

(2.13c)

(2.13d)

T=Q A, (s,u, t)y5M, . (2.14)

This is the most general T matrix allowed by I.orentz
invariance. Application of gauge invariance gives only
four independent functions. We select these inde-
pendent functions in the same way as CGLN. Thus,
for (E V) eve—n parity:

1 (
" ~" a,"(s',u')+- ds dQ

(II+tN)' "(a+I)' (s s) (u u)

1 Z" ~" a,"(s',t')
+— ds' dt'

) J („+a) (s' —s) (t' t)—
aP'( u', t')

du' dt' . (3.1)
7r& J ( +.M)a J (&pa)2 (u —u) (t —t)

There may be present one-dimensional integrals in the
variables s and u in the spectral representation of A, ;
i=1, 3, 4.

As shown by Mandelstam, one can easily derive
one-dimensional dispersion relations with either s, u,
or t held 6xed. For fixed s:

The A, 's are functions of s, u, and t, as well as of the
isotopic spin. Denoting the isotopic index of the out-
going Z by P, we have three isotopic spin invariants for
the reaction (y+N —& E+Z):

00

A, (s,u, t) =poles+—
aP (u', s)

dl

1 (
" aP (t',s)

dt' . (3.2)
7l (p+gg) 2

and
A, =A;~+V+s+A;~-V t'+A, r'Vo&,

A;= A;s+5++A;s'So,

for Z and A, respectively.

U+ = 2Lrprg+rgrp j= 6Sg,

V = ~[rp, r3$,

Vpt'= 7-p.

A' is an isoscalar. Therefore, for the reaction

(y+N —+ E+A'),

we have two isotopic spin invariants,

S+——7.3,

Sp= 1.
Thus

(2.15a,)

(2.15b)

(2.15c)

(2.16a)

(2.16b)

(2.18)

1
aP(u', s) =—

~ ~ (t(t+m)2

a "(u',s')
ds'

s —sI

1 (" a "(u' t')dt', (3.3a)
7r ~ (p~K)& t +s+u —Z

a,"(t',s')
8$

s —s)r

1 (
" a "(u' t')

+ I du'
'

(3 3b)
7I " (p, +M)2 u +s+t Z

The absorptive parts a (x,y) are equal to IrnA; when
the variables s, I, and t are in the physical region for
the reaction "j"defined by Eq. (2.3). Equation (3.1)
shows that

TABLE I. Matrix elements of V+, p and S+, p for the possible charge configurations.

~+p~E++Zo y+p~Ep+Z+ ~+p~E++Ap ~+I—+E++Zp y+n EP+A.P

V+
V
Vp

S+
Sp

0
V2
V2

1
0—1

0—v2
V2
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to the transition moment, becomes Xop„&@3.It is only
here that the relative (Z,A) parity enters. Thus

'1
Ggv+ ——e 0

—1
G,V0=0

Fro. 2. The diagrams which give rise to poles.

where
Z =M'+m2+E'. (3 4)

The spectral functions a;&~ actually vanish over parts
of regions of integration in Eqs. (3,1) and (3.3).

The poles may arise due to diagrams shown in Fig. 2.
For a particular reaction, either diagrams (i), and (ii),
or (i) and (iii), or (ii) and (iii) contribute. Ordinary
perturbation theory calculations show that any two
of the diagrams combine to give a gauge-invariant
combination. The diagram (iii) contributes only to 83.
We get the same result if we consider that there are
poles due only to diagrams (i) and (ii), whose residues
are as given below.

Case I. (E—Y) Relative Parity Odd

r, (s) is given by

r»v+ =gze/2,

r, v+, , gze/(t —E')
ra"= gz(t ~

—t -)/»
r»"= —gz( .—t -)/2,

/,
r, '+ o=g~e/(t E')—
r +=gg(t»„—t»„)/2,

r»"= g~(t n t -)/2— —

r3 ' gz(t», +t»„)/——2,

r»"= —gz(t .+t -)/2,

r3"=g»(t .+u-)/2,
r»"= g~(t,+u-)/2—

In order to calculate r;(u) we have to consider the
electromagnetic vertex of the hyperon.

(—P2l j'Iu)-i[G». +G2~"(—P~—
V
—P2) j

Then
r» ——Gggv+2 (M—m) G2gv,

r 2
——Gggv/q. tt,

= —G2gy,

I'4= —G2gy.

The electromagnetic current due to the hyperon is

j„Zy„T3z+X'y„23+X'yQ'.
Since Z is an isovector, it only contributes to the iso-
vector part. The first and second terms contribute to
the Z part and second and third to the A' part. If the
(Z,A) parity is odd, the second term, which gives rise

1
I'2 +——2gze/t —E' 0

—1
F2vp ——0

r3v+=r»v+= —gz (g»/gz)t»r,
p )

Vp p Vp 0

r, +=2(M—m)t»rgz, rg '——2(M m)t»—»og»,

s+ o=0

p S+ p S+
g p

I"3Sp= I'4 '= —g~p~'.

Case II. (E—Y) Parity Even

r;(s) —+ —iI';(s) (odd),

r»(u) = i [Go+2(M+m—)G2jGr,
I'2(u) —& —ir2(u) (odd),

r~, »(u) ~ iI'3, »(u) (odd).

IV. ANGULAR MOMENTUM ANALYSIS AND
LOCATION OF SINGULARITIES

For (E Y) parity even, we wr—ite the cross section in
the barycentric system as

da- q

dQ k
(4.1)

G=i
cr se k g c e.ao'. g

G)+i G2+i G3
k q q eqekqe

+i G», (4.2)

1 S'—m
G,=— [(e,+m) (eg+M) j-*

4n- 2$"

q'k

t—E2
&( A,—(W+m)A» — (A»+A»), (4.3)

2(W+m)

p+.
G2v'= (g»/gz)t r, G,vo=p,

p

G S+,p 0
G2'+= (gz/g»)t r,

where p+, p, and p~o are the magnetic moments of Z+,
Z, and A and p2 is the transition magnetic moment.
Thus

1
r»v+ ——gze 0 +2(M —m)gz (g»/gz)t»r
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1 TV—m
62= [(41+2)2)(62+M)]'q

4x 28'

1 W —2)2 t 4,+2)2 q
-'*

4)r 2W (42+M )

1 W—2)2 (42+222 ~
'

G4——— 2

4r 2W (e2+M)
~'4~Z+

[(W+M)' —E']'(qk) ')& [A 2+A 4+ (W—2)2)A2). (4.6)

If (E—I') parity is odd, then as in CGLN, we have it will be free of all the kinematical singularities in the
8' plane. This amplitude also has the correct threshold

(4 y) behavior. u, P, etc., now become
do' g

I xr&Fx))(I,
dQ k

lV' 5"—m'
Cl ~

162r (qk)'
(2 q(r (k&(e) 42 kq e

F=ie eFi+ F2+i F2
qk qk

(2, p, etc. , are kinematical factors. There are similar
expressions for Mz, Ez+, and Ez .

M(+ contains singularities due to the kinematical
factors (2, p, etc. , in addition to the singularities due to
the Az"s. The Az"s have kinematical as well as dy-
namical singularities. The kinematical singularities
arise due to the fact that for small qk, A('goes like (qk)',
as can be seen from Eq. (4.14). Therefore A(' for odd l
has a branch cut in the W plane, which is not related to

2(W—2)2) the singularities due to the vanishing of denominators
in Eq. (4.14) but is due to the relation between t or 24

and cos8. Hence if we consider the characteristic am-
plitude

e.q(f a
+i F4. (4.8)

p —)
42r [(W+M)' —E')(qk)' '

The Ii s are related to the A, 's as in CGI N. In the rest
of analysis we shall assume (E Y) parity o—dd.

The multipole analysis has been done by CGI.N.
Inverting their equations, we have

7~
g~ (qk)—

W (W' —2)22)[(W—M)' —E']
32m

1

M(+ —— t dx F)P)(x) F2P)~,(x)—
2(3+1) ~

Pi i(x) —P(+i(x)

23+1
ol

M(4.—— n[A (i+ (W—2)2)A i']
2(l+1)
—P[A (+4' —(W+2)2) A )+i')

(4 9)

1 (W+2)2) (W' —2)2') [W'—(M' —E')]
(qk)'64vr

162r (qk)' '

W' (W—2)2) [W' —(M' —E')]
82r [(W+M)' —E')(qk)' '

W (W—2)2) (W' —424') [(W—M)' —E']
(qk)''y

[(W— ) (A '—A, ')
2l+1

+n'(A(2+A (4)+n" (xA, '+xA, ')

The dynamical singularities in Az' arise due to the

+(A( 22 —A(+22)+(A( i4—A(+24)) vanishing of the denominators in Eqs. (3.3a), (3.3b), and
(3.2). The first term in Eqs. (3.3a) and (3.3b), gives rise
to physical cuts in the regions W&m+p, and W&
—(2)2+t4). The meaning of the latter can be understood

+~ (A(+i +A(+i )+~ (~A&+& +~A&+2 ) ~ (4 10) by the symmetry relations'.

~1
dx P, (x)A;,

—1

I+ j.
xA (' —— A(+)'+ A( i'.

2l+1 21+1

(4.11) Mi+( —W) = [(3+2)M((+2) (W)
t+1

+E()+i) (W)), (4.13a)

(4 12) &~(—W) = [M()+4)-—t& ()+i)-(W)] (4 13b)
1
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which reduces to a circle of radius m' centered around
the origin, if we put M'=m'+E'.

In A2, we get a term of the form

gre ( 1 1

E'—3 5 m' —s M2 u —I

(pa+m) which can be put in the form

(m' —s) (E'—t)
or

gye

(m' —s) (M' —u)

or their linear combination. The cuts due to the
vanishing of 3P—I have already been discussed. The
vanishing of E —t gives rise to the following singu-
larities:

—(M' —E') &s &0,
—~ &s& —(M' —E'),

Fzc. 3. The position of the dynamical singularities in the s plane
of the partial-wave amplitude. The branch cuts are indicated by
heavy lines.

and a circle of radius (M' —E') centered around the
origin. These dynamical singularities are sketched in
Fig. 3.

The use of these results are under investigation and
will be the subject matter of a second paper.

The second term in Eqs. (3.3a) and (3.3b) does not
give rise to any singularity.

I.et us now continue the enumeration of these
singularities in the s=S" plane. These singularities
come from the vanishing of the denominators in Eq.
(3.2). Let us 6rst consider the denominator containing
the variable N. Then
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APPENDIX
The first term gives the following branch cuts:
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Fellowship awarded by the Dr. Kali Muhammad Trust
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+ du'

~

. (4.14) mission are gratefully acknowledged.J &„~~&2 ~
~

u' —(m'+E' —2e~co —2kqx)

—(M2 —E') &s &0,
—~ &s & —(M' —E').

The second term gives the branch cuts

2M'm'+ (M' m' E')2mE —4m'K-'—
0&s&

2 (2mE+M'+ E')'(P),

u,2(u', s)Pi(x)dx

~ (,+M)~ ~ gu' —(m'+E' —2eg&u —2kqx)

Changing the variables to

s =Q sP E
—~ &s&I'.

we have
3= —2

lycee

2kgs&

In addition s also becomes complex in a small region
which is very close to the real axis and can be approxi-
mated as being coincident with the real axis. Finally
there are singularities due to the vanishing of t' —t.
This gives two cuts:

»t (M+m)M —E'j(-P')— &s&0, —~ &s& —P',

1 p"
I

@' aP(s', s)Pi(—(x+2&i(u)/2kq)dz
ds'

)

Q= —(2 —2kq),

Q' = —(2eg(u+2kq),

a'= (@+M)'—m' —K'.

and a curve

(M2 m2 E2)Lx2+y2 m2 (M2 —E2)j
XL (x—m')'+y' j+E'(x'+ y' —m')' =0

Let Q&Q'. Then Q&s&Q' and u'&s'& ~. Therefore a
singularity occurs, when

a'&Q', Q& ~ or ~ &Q&a'.
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Now
—[Q2—(M' —m' —E')Q —2M'm'] +[Q—(M' —m' —E')][(Q+2mE) (Q—2mE) ]'

2 (Q+M'+E')

In the range
2mE&Q( ~,

Changing the variables, we have

s is real, and we get two cuts,

0&s&P, and —~ &s&P.

In the range
a'&Q(2mK,

s is complex. But this region is small and close to the
real axis and can be taken as coincident with the real
axis.

II
a,3 (t',s)I' ( (x)dx

dt'
& („yz)s &, t' (E'—2k—(o+2kqx)

i-@' a,'(s', s)Pi((s+2k(u)/2kq)ds

Q = —(2k~+ 2kq),

Q' = —(2kco —2kq),

a'= p'+2pE.

Let Q(Q'. Then, as before, a singularity occurs when

oo )Q)a .

Now

—[Q'—(M'+m' K')Q —2m'E'—]&Q( [Q—(M'+m' E'+2M—m) ][Q (M'+—m' —E'—2Mm) ])l

2(Q+E')

When
(M'+nP —E'+2Mm) (Q& ~,

s is complex, and we get a curve

s is real, and we get two cuts,

—P'&s&0 —~ &s& —P'.

(M' m' K') [x—'+y—' m'(M' I0—')]—
X[(x m2) 2+y2]+K2 (x2+y2 m4)2 —0

When
a'& Q & (M'+m' K'+—2Mm)

Similar considerations show that the vanishing of M' —n
and E'—t gives the singularities as given in the text.


