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General methods are developed to calculate the matrix elements
between two arbitrary states and for any multipole order. The re-
sults are expressed in terms of generalized hypergeometric func-
tions. Some delta conditions in the formula for the electrostatic
potential allow substantial factorization of the secular determi-
nant. A device called the interaction diagram is introduced to
facilitate the ordering of the secular determinant and the classi-
fication of the resulting molecular states. The theory is first applied
to systems in which spin-orbit eRects are neglected. The energy
curves between an alkali atom in the ground state and an alkali

atom in the first and second excited states, two alkali atoms in the
first excited state, and an alkali atom in the first and another in the
second excited state are calculated. In the last case, where some
matrix elements consist of more than one multipole term, the
competition of multipoles leads to energy curves which have
maxima and minima in first order. It is also shown that for the
interaction between atoms in excited states the resonance forces
are less dominant while configuration interactions and the forces
obtained from simple product state functions become more and
more important.

I. INTRODUCTION
' 'N the calculation of the long-range interaction ener-
& ~ gies between atoms in nondegenerate 5 states' there
was no need to calculate the general first order off-
diagonal matrix element since the approximate second-
order formula of I-22' required only the knowledge of
one diagonal matrix element. If, on the other hand, we
are dealing with atoms which are excited or which are in
degenerate ground states, then the first-order matrix
elements generally do not vanish, and a more general
formalism is needed. Here again we perform a perturba-
tion calculation assuming that the unperturbed eigen-
value problem has been solved. Ke then inquire to what
extent the long-range interaction energies are affected
when we change the internal structure of one or both
atoms. One such change which we shall consider in this
paper is the excitation of the atoms. Another one is the
eGect of spin-orbit coupling which will be treated in
paper III of this series.

The theory of long-range interactions between atoms
in excited states differs in a number of ways from that
presented in I. At large internuclear separations the first
order interactions dominate over the second order dis-
persion forces, and configuration interactions result in a
number of distinct energy curves. In addition, if the two
atoms have a high enough excitation, the interaction
energy receives contributions from more than one
multipole. These multipoles very often compete, re-
sulting in pronounced maxima and minima which are
entirely electrostatic in nature.

Even for low excited states the secular determinants
become prohibitively large and the rearranging of the
primitive functions to factorize the determinant and to
form molecular subdeterminants is a tremendous task.
In order to avoid this we shall introduce a device called
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the interaction diagram which will allow us to find
immediately the number and size of the possible sub-
determinants.

Our aim is to find general methods to calculate the
first order matrix elements, to factorize the secular
determinants as much as possible, and to show the
importance of the different efkcts on some specific
examples.

II. FIRST-ORDER ELECTROSTATIC
MATRIX ELEMENTS

Since it is our purpose to develop a rather embracive
theory of the interaction between atoms in excited
states, we shall first calculate the general matrix element
between two arbitrary states of the system for an arbi-
trary multipole interaction. For the factors of the matrix
element which involve angles, the use of the theory of
angular momentum yields a closed form; for the radial
parts, however, the situation is more complicated since
we have to perform an integration over products of
Laguerre polynomials with arbitrary arguments and
indices.

The form of (I-1) for the electrostatic energy permits
the factorization of the first order matrix elements in the
following way:

16m'e'
(p'Ivip)= 2 2 | (V)T. (R)

c(2a+1)L (2, b+1)!!

where p' and p represent two states of the system, and q
stands for 3, m. The subscript 1 refers to atom 1, the
subscript 2 to atom 2; a and b denote the specific
multipole approximation and the summation over n and

P arises from the contraction of the irreducible tensors.
If we are using hydrogenic state functions with ad-

justable screening parameters Z~, the radial matrix
elements of (1) can be easily evaluated for special values
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of e', l' and e, /, %aller' and Van Vleck4 calculated the
diagonal matrix elements for all integral values of a
from +2 to —6. The general radial matrix element can
be evaluated using methods developed by Krdelyi, '
Mayr, ' and Buchholz. ' The details of the calculation are
given in the Appendix.

The remaining factors in (1) depend on the spatial
orientation of the two charge distributions, and can be
calculated using the theory of angular momentum. The
following derivations are based on the fact that the
spherical harmonics are irreducible tensors.

In the calculation of the interaction energies between
alkalis we shall distinguish two cases. In the first, the
eGect of the spins of the two valence electrons is neg-
lected, whereas in the second, the spin and orbital
angular momentum are correctly coupled and the repre-
sentation is diagonal with respect to the spin-orbit
Hamiltonian Hi. , It is evident that this coupled repre-
sentation can be used only so long as the electrostatic
interaction V is a true perturbation. In other words, the
coupled representation is valid if V&&B~.,

On the other hand, in the uncoupled representation,
the state function of the system consists of simple
product state functions. The inclusion of the spin
functions does not change the interaction energy since V
is spin independent. The degeneracy of each energy
curve, however, is four times as great, since the spins of
the two valence electrons can combine to yield a singlet
and a triplet state.

The coupled representation and the relation betv een
the coupled and uncoupled representation is discussed in

paper III where, in addition, the transition region in
which V—Hi. , is investigated.

In the uncoupled representation, the result of the
integration over the spherical harmonics can be ex-
pressed in terms of the C coefficients. Using the notation
of (1) we have from (1-15)

= (l'm'( I', *(e,q) (lm)

(2l+1) (2a+1) l
=(—) C(lal', m, rr, m')—

4~ (2l'+1)
XC(lal', 000). (2)

If we substitute (2) into (1) we see that the total
matrix element becomes proportional to C(lralr', mr,—rr, mr')C(4M2", m2, —P, m2'). These C coefficients,
however, are zero unless the following conditions are
satisfied:

my @=mr ', m2 P=mr . —
' I. Wailer, Z. Physik 38, 635 (1926).
4 J. H. Van Vleck, Proc. Roy. Soc. (I.ondon) A143, 679 (1934).
5 A. Erdelyi, Math, Z. 40, 693 (1936).
K. Mayrp Ma'th Z 39) 597 (1935).

~ H. Ituchholz, Dze Eonjluemte IZy pergeo~etrische Function
iSpringer-Verlag, Berlin, 1953), pp. 135—144,

As long as we do not specify the direction of R with
respect to the two coordinate systems, the above rela-
tions are two separate conditions. If, however, we let R
coincide with the positive Z axis, we have from (1-5) the
additional condition: n= —P. Combining the three rela-
tions yields

ml+m2 ml +m2

which indicates that only states with the same total M
can combine. This procedure factors the secular de-
terminant into subdeterminants which can be classified

by the molecular designation A.

III. FACTORIZATION OF THE SECULAR
DETERMINANT

In the calculation of first-order interaction energies
between atoms in excited states, the main difFiculty
arises in the reduction of the secular determinant. The
energy levels obtained from the use of hydrogen-like
state functions are degenerate with respect to t and m,
and even low excited states yield very large secular
determinants. The application of group theory makes it
possible to factorize the determinants. One method has
already been outlined in the previous section where it
has been shown that suitable rotation of the coordinate
systems produces quantization about the internuclear
axis, and causes all matrix elements to vanish except
those which have the same total M. In the case of the
uncoupled representation, where the unperturbed state
is (nrn2)'-fold degenerate, the number of separate sub-
determinants is 2nr+2nr —3. One can show that these
representations are completely reducible; i.e., the secular
determinant can be diagonalized. Due to the limited
number of symmetry conditions, it is not possible to
achieve this reduction completely; the remaining sub-
determinants have to be solved in order to find the new
eigenvalues and eigenfunctions.

The exact root of the remaining subdeterminants
tends to mix the states, In many cases, the comparison
of the diagonal matrix element with the exact solution
shows that the configuration interaction not only
changes the internuclear dependence of the energy curve
but also its sign. Ke shall show that this "mixing" is
especially strong for Z states.

If the two interacting alkalis are identical, then an
additional symmetry operation. can be used to reduce
the secular determinants. The identity of the two atoms
implies that quantum mechanically we cannot specify
the individual states if the two states can be connected
in the spectroscopic sense. Here we have to write the
unperturbed state function of the system as follows

1
4 =—LA(IN. (11)+~0,(1)A(11)),

where f and ri denote the two states, and 0 can take on
the values +1 or —1. This resonance eRect introduces
multipoles of I.ow oI'dqI in thy inter@ction energy, thus
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appreciably changing the long-range behavior of the
energy curves.

For the calculation of the interaction energy between
alkalis in excited states, we again shall use hydrogen-like
state functions with adjustable effective nuclear charges
Z*. As mentioned in I, Z* is determined from the energy
spectrum of the separated atoms. Some care has to be
taken in the application of this method. It is not ex-
pected that Z* should remain constant at very small
internuclear separations where the charge distributions
overlap appreciably. Indeed, several authors' have
shown that the effective nuclear charge may vary con-
siderably in these regions. Hirschfelder and Linnett,
however, proved that in the case of B2 the nuclear
charge is approximately unity for R&3u, . Actually,
even at very large separations, Z* is slightly less than
one and it is assumed that the difference arises from the
mutual Van der Waals polarization of the two atoms.

If it were possible to remove all degeneracies of the
system before the perturbation V is applied, then the
secular determinants would be diagonal to begin with,
and the problem of factorization would not occur. This
primary removal of the degeneracies can often be
partially achieved by considering coupled representa-
tions. We shall show that the order of the sub-
determinants is considerably smaller if the electrostatic
perturbation is applied to a system which includes the
spin-orbit coupling correctly than to one for which the
spin sects are neglected. This method, however, is only
applicable as long as V(&ai., and thus cannot be used at
very small internuclear separations.

As shown in the previous section, a suitable rotation
of the coordinate systems quantizes the total angular
Inornentum of the system along the internuclear axis,
and the determinant

~
A

~

in the equation

(6)
factors as follows

The unit matrix in (6) occurs because all state functions
used here belong to orthonormal sets. The determinant
~A

~

extends over a particular degenerate state of the
system, and its order is (ts&ass)'. The 2tsr+2tss —3 sub-

8 H. J. Kopineck, Z. Naturforsch 7a, 22, 314 (1952). M. Wolfs-
berg, J. Chem. Phys. 21, 2166 (1953).' J. O. Hirschfelder and J. W. Linnett, J. Chem. Phys. 18, 130
(1950).
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FIG. 1. Interaction diagram of an alkali atom in the 6rst excited
state and an alkali atom in the second excited state.

determinants in (7) are distinguished by the molecular
designation A=X, II+, h~ etc. which correspond to
nfl, ——0, ~1, ~2. One can show by considering the
characters of the representation that the eigenvalues
obtained from the A+ subdeterminants are equal to the
ones of the A . Thus the electrostatic perturbation does
not produce any A-type doubling, and in the following
we shall omit the subscripts + and —.

In the following applications, the resulting energy
curves are distinguished by the molecular term symbol,
and in brackets we shall also give the orbital con6gura-
tion of the unperturbed states. It will turn out that
many states are hybrids, and there the complete orbital
configuration cannot be given. Since we are dealing here
with hydrogen-like atoms, we can also assign a total spin
to each function. At large internuclear separations, how-
ever, the singlet and triplet curves are degenerate, and
the notation is only useful at small separations where
the exchange forces remove the degeneracy.

An examination of the secular determinant shows that
a device which we call the interaction diagram is a very
convenient tool for analyzing the interactions. It per-
mits the determination of many properties of the re-
sulting molecular energy curves without calculation,
and it also facilitates greatly the classification of the
states.

In order to explain the features of the interaction
diagram more clearly, let us consider as an example the
interaction between an alkali atom in the first excited
state and another one in the second excited state. The
corresponding interaction diagram is given in Fig. 1.

The following general rules apply to the interaction
dlagl am:

1. Each point having integral coordinates represents
a certain state or states of the system.

2. The units of length on the axis l j and l2 depend on
the two interacting atoms.

3. The area bounded by a line connecting all points



PETER R. FoiXTANA

which belong to the same degenerate set is called the
configuration area.

4. A number of molecular term symbols can be as-
signed to each point. The point (i,j) where i and j stand
for the coordinates of the point in /~l2 space represents
i+j+1different molecular states. For i1 =i+j—k there
are k+1 such states provided k&2i or 2j, whichever is
smaller, and for A& j—i or i—j the number of molecular
states is 2i+1 or 2j+1, respectively (A&0; i, j, k=in-
tegers).

5. A point on a resonance line can exhibit that specific
resonance, and the resulting mirror point will also belong
to the configuration area, provided the units of the two
axes are the same. In the calculation of the allowed
multipoles and matrix elements, the point (i,j) is con-
nected with its mirror image (j,i). However, no new
states are formed when a mirror point coincides with a,

regular point.
6. The total number of molecular states and the order

of each molecular subdeterminant cari be obtained by
adding up all the term symbols of the points belonging
to the configuration area.

7. The possible multipoles connecting point (i,j) and
(k, l) can be written in the form (i+i—2nz) —(j+l—2e);
ns, e=o, 1, 2 . where the number in the two brackets
determine the two rnultipoles. This result can also be
obtained graphically from the diagram. For instance,
the point (0,1) can be connected with point (1,1) with
a dipole-quadrupole moment. From this result we see
that two points on one of the main axes cannot combine.

All these rules can be easily proved by considering the
degeneracies of the unperturbed state functions and by
remembering that the possible multipoles in the matrix
element Q'

~
V~/) are determined by the parity coefFi-

cients C(li'ali, 000) and C(l, 'bl„000) which vanish
unless a= li'+li, li'+li —2, and b= l~'+i~, li'+1~ 2, —

~ ~, respectively. In the case of two identical atoms
the resonance contributions are proportional to
C(l2'ali, 000)C(li'bl~, 000) and this product vanishes
unless the conditions a=l, '+li, l2'+l, —2, and
b=li'+l2, li+l2 —2, are satisfied.

Thus by using the interaction diagram we can obtain
the conditions for resonance, the number and order of
the molecular subdeterminants, the number of nonde-
generate energy curves and their general internuclear
dependence, the extent of configuration interactions,
and the possible multipoles in the secular determiriant.

If we apply all these rules to Fig. 1, we see that there
are 14, 4A, SII, and 10K states if resonance cannot exist,
and 24, 7A, 12II, and 14K states if resonance is possible.
V~e can also immediately conclude that without reso-
nance the 4 state interaction energy is made up of a,

quadrupole-quadrupole and a quadrupole-24 pole term.
The inclusion of resonance splits C into a g and a 0 state
and introduces additional dipole-dipole, dipole-octupole,
and octupole-octupole terms. The 6 states are much less
affected by the configuration interaction than the 2

states since they do not exterid through the whole con-
figuration area. The Z states, on the other hand, cover
the entire configuration area, and it is not surprising
that many of them are hybrids.

IIg (15,2Pi) =
3Z QZ Qg3

{'IIg,'II„}
(8)

(9)

Z+(1$,2S) = 0,

Z,+ (1S,280) =
3Z&~Z2*E.'

{&g + &g +} (10)

Z.+(1S,2Po) =
3Zj*Z2*E'

{lg + 3g +}

where C= 32 768/19 683. Zi* and Z2* are, respectively,
the effective nuclear charges of the ground state and
first excited state of the alkali atoms.

These results agree in the case of H —H with the
findings of Mulliken" but disagree with the results of
King and Van Vleck"

Secondly let us consider the intera. ction of an alkali
atom in the ground state with another one in the second
excited state. The corresponding interaction diagram is
given in Fig. 3. As in the last example, only resonance
eGects introduce nonzero first-order interaction energies.
In Fig. 3, the point (0,0) cannot be connected with any
other point of the configuration interaction region, and

' R. S. Mulliken, Bull. Am. Phys. Soc. 4, 173 (1959)."G. W. King and J. H. Van Vleck, Phys. Rev. 55, 1165 (1939).

Iv. RESONANCE INTERACTIONS OF NORMAL
AND EXCITED ATOMS

As a first application of the theory, let us calculate the
interaction energies between an alkali atom in its ground
state and another in the first excited state. From the
interaction diagram (Fig. 2) we conclude that the first
order interaction energy between two dissimilar atoms is
zero (the two points on the li axis cannot combine), and
that for similar atoms dipole resonance produces two
II states with different symmetries, two Z states, one of
which is a g and the other one a 0 state, and two de-
generate 5 states. The secular determinant is already
diagonal and the eigenfunctions are obtained from (5).

The di6erent energy curves are distinguished by the
molecular term symbols and the orbital configuration of
the separate atoms. Each of these curves corresponds to
a singlet and a triplet state of the molecular system. For
completeness the term symbols of these are also given in
curly brackets. The results are:
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d-line
her'

,r-r-line

q-line

d%g
4;line

r-r-line

.d-line

d-line

FIG. 2. Interaction diagram of an alkali atom in the ground state
and an alkali atom in the first excited state,

consequently these states are diagonal and degenerate.
In addition there are one A„one d„, two II„ two II„.,
two Z„and two Z„states. The possible multipoles of the
diagonal and o6-diagonal matrix elements are indicated
in the figure.

In the case of the II and Z states, the resulting energy
curve can always be obtained by solving the remaining
2)(2 secular determinants. Uery often, however, it is
convenient to state the result as a power series of R '.
This can be accomplished by setting

n P y 8 e

+ + + + +
E4 R' E' E'

q-line

pqp

&1X

I''r(-". 3. Interaction diagram of an alkali atom in the ground state
and an alkali atom in the second excited state.

and then substituting this expression into the secular
determinant. The expansion of the secular determinant
leads to a polynomial in the constants, m, P, p,
These unknowns can be determined by setting the
coefficient of a given power of R ' equal to zero and then
solving the partially decoupled equations by starting
with the one which has been obtained from the lowest
power of R '. These expansions converge very rapidly
for R) 15u,. One can also prove that all such series ex-
pressing first order interaction energies contain only odd
powers of E. '. In many cases, the error Inade by using
a three term expansion is less t:han 0.1% for R) 15a,.

The interaction energies between two similar alkali
atoms, one of which is in the ground state and the other
in the second excited state are given below.

19 683
6,(1S,3D )= —A„(1S,3D,) =

32 768Zg~'Z2*'E'

{'3„'6}

with

+1 Cl

IIg(1S,3Dg) = —II (1S,3D~) =—+—+
E.' E.'

{'ll„,'ll, )

59 049 59 049

(13)

+1
131 072Zg*Z2*' 65 5367'*'Z2*' 131 072Z&*'Z2*

4 782 969 1 594 323 11 160 261 1 594 323 4 782 969
61=

2 097 152Zg*Z2*' 524 288Zg*'Z2*' 1 048 576Zg*'Z2*' 524 288Zg*'Z2*' 2 097 152Zg*'Z2*

O'2 72 &2

IIg(1S,3Pg) = —II (1S,3Pg) = + + +
R' E' E~

{'II0,'II )
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729
lX2 =

8192Z *Z *

59 049 59 049 59 049

and e2= —er.

with

72=
131 072Z]*Z2 ' 65 536Zy 'Zg*' 131 072Zy*'Zg*

Zg+(15,3DO) = —Z„+(15,3DO) =—+—+E' R'
{'Z+'Z +) {'Z +'Z+)

(15)

177 147 295 245 177 147

and

73=
262 144Zy*Z2* 131 072Zy* Zg* 262 144Zy* Z2*

43 046 721 14 348 907 100 442 349

16 777 216Zy*Z2*' 4 194 304Zy*'Z2*' 8 388 608Zy*'Z2*'

14 348 907 43 046 721

Q4 p4 64

gg+(1S,3PO) = —Z +(1S,3PO) = + + +
R' R' R'

4 194 304Z *4Z *' 16 777 216Z *'Z,*

(16)

{lg + 3g +j

with

{lg + 3g +j

4096Z,*Z,*

177 147 177 147 177 147

and e4= —e3.

p4
262 144Zi*Z2* 131 072ZI, *Z2* 262 144ZI* Z2*

to

1O"

C

O
D

ol 1P

~a

-e
IO

O
~W

C7

One interesting fact can be noted from these results.
In the secular determinant, the highest pern1issible
multipole is a quadrupole-quadrupole term. The first
and third term in the y's of the II and Z states, however,
arise from dipole-octupole and octupole-dipole contribu-
tions. As a matter of fact, all the multipoles which have
the same internuclear dependence are represented in the
terms of (13)—(16).

Figure 4 shows the repulsive II and Z energy curves
for H —H from E=5a, to R=40a, . The upper two
curves are due to dipole resonance and the two lower
ones arise from quadrupole resonance. The eGect of the
con6guration interaction can be investigated by corn-

10

5 10 15 20 25 30 35 40
1nternucleor Seporotion in oo Units

FIG. 4. Repulsive interaction energy curves between a hydrogen
atom in the ground state and a hydrogen atom in the second
excited state. The dashed curves are obtained from diagonal
matrix.

d-line

ling»'
(gp)

r-r-line

..~~, g%,3E'
$4~147,)

d~ line

&i~&&i&&

FIG. 5. Interaction
diagram of two alkali
atoms in the erst ex-
cited state.
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paring the dashed lines which are obtained from the
diagonal matrix elements with the full lines. The indi-
cated range does not imply that long-range force calcula-
tions are still valid at R=5a,.

V. INTERACTION ENERGIES BETWEEN ATOMS
IN EXCITED STATES

So far we have encountered only resonance interac-
tions and the effect of conhguration mixing has played a
minor role. If both atoms are in excited states, then the
first order interaction energies between dissimilar atoms
do not vanish and configuration interactions will be
quite important. We shall also describe a new eGect
which can arise only if the system satisfies the condition:
ll+lp) 3. In those cases, the individual matrix elements
will contain more than one multipole, and we shall

show that this "competition of multipoles" can lead to
maxima and minima in the energy curves.

The interaction between two alkali atoms in erst
excited states will be treated first. In this case there is
no real resonance. From Fig. 5 we note that all the
resonance points coincide with regular points, and this
implies that the introduction of resonance does not
produce new points, and this leaves the configuration
area unaltered. In terms of the secular determinant, this
means that depending on the approach we group the
primitive set of eigenfunctions di6erently without intro-
ducing new states.

In the following results the term symbols apply to
the interaction between similar atoms, but the formula
also can be used to determine the interaction energy
between dissimilar atoms by distinguishing the two
effective nuclear charges.

216
6p(2Pl, 2Pl) =

Z *2Z *2R'

(lg 3+ }
ll„(2Pp,2Pl) =0,

('ll „,'Ilp}

(17)

II„(2S,2Pl) =
Z *Z *R3

( ii„, rr, }
(19)

II, (2Pp, 2Pl) =

('ll p, pll „}

15 552216

ii 664
+ + + —+", (2o)

Zg3gg3 Z~4gg2 Z~sg~ R7

15 552

324 324 1 11 664

Zg*Z2*' g *V' *' Zi*'Z2* R' Zi*Z2*' Zg*'Z2*'

IIp(2S,2Pl) =—
('ll p,pll, .}

9 648 324 1

g QZ QR3 g Qg Q3 g +2Z Q2 Z +3Z Q R5

324

15 55211 664 15 552 7776 ii 664
+ + + + + —+.", (21)

p}pg +5 Z gag pt34 Z +3Z +3 Z +4Z g2 Z gsg g

Z +(2S,2Pp) =—
(lg + 3g +}

Z„(2Pl,2P l)=0,

(lg —3g —}
Z,+(2S,2S) =0,

(lg + 3+ +}

Z,*Z *R3
(22)

(23)

97218 1944 972 1
Z3+(2S,2Pp) = — + +

g gg QR3 g ptpg g3 g +2Z +2 g +3Z g R5
(lg + 3+ +}

262 440 1 189 728 1 854 576 1 189 728 262 440 1
+ + —+, (25)

g QZ gQ Z PI32Z g4 Z Pt:3Z g3 Z +4Z Q2 g +5Z
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9+6
Zp+(2Pp, 2Pp) = +

Z QZ QjP
fig + 3+ +}

486+243+6 1620+486/6 486+243/6 1

Z QZ Q3 Z, *3Z,' E5

'131 220+53 581.5+6 594 864+243 486+6 927 288+375 921/6

Z +2Z g4 Z *SZ *3

594 864+243 486+6 131 220+53 581.5+6 1—+ (26)
E7Z +4Z

fig +3+ +}

—131 220+53 581.5+6 —594 864+243 486+6 —927 288+375 921+6

9/6 486—243/6 1620—486+6 486—243/6,
,

1
Z,+(2Pi, 2P i)= — + + +

Zl Z Zl

Z QZ Z +2Z pip4 Z *3Z *3

Z +4Z

—594 864+243 486+6 —131 220+53 581.5+6 1—+ (27)
E.7

ln Figs. 6 and 7 we have plotted all nonzero energy
curves between two hydrogen atoms in first excited
states. Figure 6 also shows how the inclusion of exchange
effects splits the singlet and triplet curves. The nu-
merical values of the '6, and '6, state have been taken
from the work of Iinder and Hirschfelder. "The dashed
curves are obtained from diagonal matrix elements, and
the d placed behind the corresponding term symbol char-
acterizes these energy curves. The eAect of configuration

IO

interaction is clear from a comparison of the two sets of
curves. The II (2S,2Pi) curve is not at all affected by
configuration interaction, and the II,(25,2Pi)d differs
only slightly from the exact one. On the other hand, the
exact energy curve of the II, (2Pi, 2Pp) state is repulsive;
whereas the corresponding diagonal element shows an
attractive potential.

Linder and Hirschfelder" have also calculated the
electrostatic interaction energies between two hydrogen
atoms in erst excited states. Their 6 and II state
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F&0 6. Repulsive interaction energy curves between two hydrogen
atoms in first excited states.

~B. Linder and J. 0. Hirschfelder, J. Chem. Phys. 28, 197
(1958).

FIG. 7. Attractive interaction energy curves between two
hydrogen atoms in first excited states. The dashed curves are
obtained from diagonal matrix elements.
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energies agree with (17)—(21) if we set Zi*——Z2*——1.The
last four Z-state energies (24)—(27), however, differ from
the ones in reference 12.The main discrepancy lies in the
fact that the Z,+(25,2S) energy has an R ' dependence
in their series expansion and is zero in our case. This
difference, moreover, a6ects all other energies which
arise from the same secular determinant.

Some information about the origin of this discrepancy
can be obtained by calculating the trace of that par-
ticular molecular sub-determinant and the one of the
total secular determinant. From (24)—(27) we get 18/R'
+1296/R' for the trace in the first case, and by adding
up the energies of all the states of the degenerate set, we
obtain zero for the secular determinant. In reference 12,
on the other hand, the sum of the energies of the four Z
states gives 18/R'+1395/R' and the trace of the secular
determinant is not zero.

All the matrix elements in the previous calculations
contain only one multipole since the number of pos-
sible multipoles is determined from the C coe%cient
C(lal'; 000) which vanishes unless a=l+P, . ~l—l'~

and the sum l+a+/' is even. To illustrate the new
feature of the competition of multipoles let us consider
the states of a system consisting of one hydrogen atom
in the first excited state and another one in the second
excited state. From the interaction diagram in Fig. 1
which describes this case, we see that the C molecular
subdeterminant is diagonal and made up of a 4, and
C sta, te.

The state functions for this case are obtained from
(5). We can always write the interaction energy in the
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F&G. 8. The effect of the competition of multipoles on the
energies of two 4 states formed by a hydrogen atom in the 6rst
excited state and a hydrogen atom in the second excited state. The
dashed curve represents the nonresonance contribution.

form
E~»= E~p~Ep) (28)

where we have separated the contributions due to reso-
nance (E„) from those which can be obtained by using
the simple product state functions (E„„).In our example
the plus sign in (28) yields the C „state and the minus
»gn the 4, state. Here E „is made up of a quadrupole-
quadrupole and a quadrupole-24 pole term, and E,
consists of a dipole-dipole, dipole-octupole, octupole-
dipole, and octupole-octupole term. Specifically:

c (2Pi,3D2)=

{lg) 3@ )

1.29600 X10' 1 09350X10' 9.01737 3.11640X10' 3.11640X10' 2.69257 X10'

Z 1 Z2 E Z1 Z2 8 Z1 Z2 8 Zl Z2 + Zl Z2 8 Z 1 Z2

1.29600X10
e, (2Pi,3Dg) =

Z 82Z +2+5
{'@0'C' )

Z,*3Z '~R7Z1*'Z2*E5

1 093~OX 10' 9 01737 3.11640X10' 3.11640X10' 2 69257 X10'-+ +Z „Z,4E, Z,Z,R, Z,Z „g, (30)

In Fig. 8 we have plotted the interaction energies of
these two states for Z1*——Z2*= 1 together with E„„,the
corresponding nonresonance contribution (dashed line).
It is seen that due to the shorter range of the higher
multipoles there is a pronounced competition between
the multipoles at an internuclear separation of about
10a,. The 4 „curve shows a distinct maximum which for
the C, state is much less pronounced and shifted to
higher internuclear separations. Other states will be

attractive at large R and become repulsive at shorter
separations. This could lead to bound states resulting
entirely from electrostatic interactions. The inclusion of
exchange forces will, of course, modify these energy
curves to some extent, but since the maxima and
minima occur at rather large internuclear separations,
they very possibly may remain in a more complete
calculation.

APPENDIX. EVALUATION OF THE RADIAL MATRIX ELEMENT

From (I-7) we see that the radial matrix element in (1) has the form

r (~'—l') r (~—l)
(~'l'I "I~~) = (v')'+" (v)'+"

4~'NLr (e'+ l'+1)r (m+/+1))'

rl'+l+a+2g —f(v'+v)/21~1, (, 2&'+&(p'r)1 ( i2&+&(pg)dr (A 1)
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where y'=2me'(Z')*/As»t'. This integration can be carried out most easily using (I-8) which defines the Laguerre
polynomials in terms of the Kummer conRuent hypergeometric functions.

F (n' l'—)F (~ l)—
(I't'I» lnt) = h')'+" (V)'+"

4»t'»t/F (»t'+t'+ 1)F (»t+t+ 1)$s-

( —2l' —2) (—2l—2q
XI'(»t'+l'+1) F (I+t+1)F(l'+i+a+3) (—)-'+.—l'-'~

&I'—l'-1) &~-t—1)

( ~+y) —l' l o —S——( 2y 2y
Fs( l'+i+a+3; —I'+t'+1, »t+t—+1;»'+2, 2t+2;, l. (A-2)&2) 'v'+y'~'+v)

F2, the generalized hypergeometric function of two variables is a special case of the Lauricella hypergeometric
function I~"

with

(n, mr+t»t, + hatt„) (pr, tttr) (p„,ttt„)
F A(n pl' 'po 71' ' ' rn &1' ' ' ~n) + mI. . .+ mN

(yr, ntr) (y,»»t„) (1,mr) (1,m„)
(A-3)

F (—2l —1)(—2l —2~ n—l—1

(I—l—1) F(n —t)F(—n —l) F(2t+2)F(n —t)

F (»t+t+1)

()~,k) =F() +k)/F() ).
The binomial coeKcients in (A-2) can be written in the following way

(A-5)

The last relation in (A-5) can be proved using the duplication formula for gamma functions. A similar equation
holds for the binomial coeScient of the primed quantum numbers.

Substitution. of (A-5) into (A-2) yields

(ts l [r.
] Nt) =

(v')'+"(v)'+"F(»t'+t'+ )F(»t+t+ ) *'

t v'+vi ' ' ' F(t'+t+a+3)

4n'nF (e'—t')F (m —l) ( 2 ) F(2l'+2)F(2l+2)

( 2y' 2y
XFs~ l'+i+a+3; —rt'+t'+1, —ts+t+1; 2l'+2, 2l+2;, ~. (A-6)

v'+v v'+v

Finally, by eliminating the y s and making use of (A-3), we get for the radial matrix element

(»t'll ~r'~ll)=2'+'+'a o

(Z8& ) s+sl' (Zo ) s+sl

E n') (Ze~ g8 )
—l'—l—a—3

F(n'+t'+1) F (»t+t+1)F (»t' —l') F (»t—l)
~

+—
~I)

( )&+"F(t'+t+ a+—(+rt+3)xp
te oF(»t' —, =t' —()F(tt—l—rt)F(2l'+/+2)F(2t+rt+2)F($+1)F(st+1)

2ttz*' q ~ ( 2ts'Z*
/. (A-»

E»tz*'+»t'Z*) (tsZ*'+n'Z+)

In the calculation of erst order interaction energies between nonidentical atoms, only those matrix elements are
needed which satisfy the conditions: »t'=»t and Z*'=Z*. In this case, the double sum in (A-7) degenerates into a
single sum as can be shown by making use of the following equation'

(n,m) (p,~) (p', ~)
Fs(n; P,P', y,y'; x,y)= P x"'y &Fr(n+rw, P+»tt; y+»»t; x)&Fr(n+m, P'+»ts; p'+»rt; y), (A-8)

~=o (y,rtt) (y', t»t) (1,»»t)

"P. Appell, J. de Math. 3eme series, VIII, 173 (1882). P. Appell and M. J. Kampe de Feriet, Fonotions Hypergeometriqnes et

HyPersPherigges; Polynomes d'Hermite (Gauthier-Villars, Paris, 1926). J. Horn, Math. Ann. 105, 381 (1931).
A. Erdelyi, W. Magnus, F. Oberhettinger, and G. F. Triconi, Higher TrtJnsceedentul Factions, Bateman Manuscript Project,

(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. 1, p. 243.
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where 2F& is the Gauss conQuent hypergeometric function. "
(n,n)(P, n)

zFi(~,P; V; s)=Z
o=(y,n)(1,n)

From (A-6) we see that for p'=&, we have x=y=1 and one can show that"

(A-9)

(A-10)

The result can be simpli6ed by using the following relations between gamma functions:

r(—a+b)/r( —a) = (—)'I (a+1)/r(a —b+1).
Combining (A-10) with (A-8) and making use of (A-11), we get

(A-11)

(nl'~r ~nl),. (-)'+'n'-'a, r(n-l')r(n-l)
2~+'Z*' r (n+l'+1) r (n+l+1)

r(l'+i+ a+3+/)r(1 l'+o+—2)r(t' l+o+—2)xp- (A-12)
&=o r (n —l' —~)r (n —l—~)r (—n+l'+a+3+ ))r (—n+l+a+3+p)r (/+1)

"Reference 14, p. 248.
"Reference 7, p. 6.


