
PHYSICAL REVIEW VOLUME 123, NUMBER 5 SEPT EM BER 1, 1961

Theory of Long-Range Interatomic Forces. I. Dispersion Energies
between Unexcited Atoms*
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A general theory of second-order dispersion forces between atoms in nondegenerate ground states is 6rst
developed by using an irreducible tensor formalism and the theory of angular momentum. This forms the
basis for calculations of forces between excited systems, which are the subject of later publications.
Attention is given to the interaction of two noble gas atoms where it is assumed that each electron oscillates
with simple harmonic motion, and the interaction between two alkali atoms is calculated by considering
the electrons to be moving in a Coulomb field. The dominant terms of the dispersion energy between a
number of atoms and molecules are tabulated. The results indicate that the hitherto neglected dipole-
octupole contributions are in many cases larger than the quadrupole-quadrupole terms.

I. INTRODUCTION by combining the theory of angular momentum with
the formalism of irreducible tensors.HE calculation of interaction energies between

atoms in ground and excited states has become
of considerable interest. The recent advances in molecu-
lar beam techniques make it possible to determine the
energy curves over a large range of internuclear
separations. So far, however, precise experimental
data are only available in the short-range region where
the exchange forces are dominant. These experiments
also show that many of the empirical formulas which
describe the interaction energies between atoms or
mole cules are inadequate. The interaction energy
curves at large internuclear separations have not yet
been investigated systematically. One reason for the
scarcity of data in this region is the need for an
extremely small aperture and high resolution of the
detecting apparatus to test the long-range behavior of
the energy curves. Increasing interest in these problems,
however, promise that such difficulties are about to be
overcome. All the macroscopic measurements involving
viscosity, index of refraction, and transport coefficient
give only qualitative information around the Van der
Waals minimum, a region where the charge distributions
already overlap appreciably, and where the exchange
forces make a considerable contribution to the inter-
action energy. From the theoretical point of view,
this region is very diS.cult to investigate, and the
approximation methods needed to perform a reasonable
calculation very often obscure the basic concepts. The
interaction energies at large separations, on the other
hand, are mainly due to electrostatic interactions, and
they can be calculated exactly.

The present method is designed to generalize previous
approaches, thus enabling one to investigate the
interactions between atoms in higher excited states
and to determine the e6ects of spin-orbit coupling on
the interaction energies. ' This generalization is obtained
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'The second paper of this series deals mainly with 6rst-orde
interactions between atoms in excited states and the third on
considers the eGects of spin-orbit coupling.

II. CLASSICAL ELECTROSTATIC
INTERACTION ENERGY

The long-range interatomic forces are mainly
governed by the electrostatic interaction between the
charge distributions of the two atoms or molecules,
Margenau' has calculated this interaction energy by
expanding the potential between two sets of point
charges in a Taylor series. The terms in this series
correspond to different multipoles, the leading one being
the dipole-dipole term. Margenau has expanded the
electrostatic interaction energy up to the quadrupole-
quadrupolg term, and Belier' has extended this
approach up to the sixteenth pole.

A different approach to this problem has recently
been made by Rose' who expresses the complete inter-
action as a sum of coupling terms between the multipole
moments by making use of the algebra of irreducible
tensors. ' Ke shall use his results since they can be
very conveniently combined with the theory of angular
momentum. The interaction energy is written as a
double contraction of irreducible tensors to form the
scalar V. Specifically:

16m'e;e;
J. *(r~)Mb'(;)

i~.~ bp(2,a+ 1),L(2b+ 1)!!j
Xg,e(~)T.-(R). (1)

The vectors r; and I'; originate at the centers of the
two nonoverlapping charge distributions, and point to
the charges e; and e;, respectively. R extends from the
center of charge distribution A (described by the r;) to
the one in 8 (characterized by the r, ). 't!,~"(r) is a

r 'H. Margenau, Phys. Rev. 38, 747 (1931); Revs. Modern
Phys. 11, 1 (1939).

f ' R. Heller, J. Chem. Phys. 9, 156 (1941).
4 M. E. Rose, J. Math. Phys. 37, 215 (1958).
~ B. C. Carlson and G. S. Rushbrooke, Proc. Cambridge Phil.

e Soc. 46, 626 (1950). R. J. Buehler and J. O. Hirschfelder, Phys.
Rev. 83, 628 (1951);85, 149 (1952).
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regular solid spherical harmonic defined as

and T, (R) the irregular solid harmonic

T. (R)=R——'I; (R&'&).

r "& and R"' denote unit vectors in the direction of r
and R. The V' in (1) operates on R.

It is seen that all the information about charge
distribution 2 is contained in 'tj, *(r,), and similarly
't fb& (r,) contains all the knowledge about charge
distribution B. The summation over n and P comes
from the contraction of the irreducible tensors and
corresponds physically to a coupling of the respective
systems.

The R dependence in (1) can be rewritten in the
following form:

(2a+1)L(2b+1)!!j (2a+1) (2b+1)

(2a+1) (2b+1) (a+b —n —P)!(a+b+n+P)!
X

47r(2a+2b+1) (a—n)!(a+n)! (b P—)!(b+P)!

&T.+b"(R) (4)

If the two coordinate systems with origins A and 13
are rotated so that their Z axes coincide with R, then

2a+2b+1 '*

T,+g +e(kR) =R ' b-' 6, p.

By substituting (5) and (4) into (1), we can write
the classical interaction energy between two non-
overlapping charge distributions as

( )'4ne; e,—(a+b)-!b
V=K 2 , 't! (r')'S~ (r ).

s, J mba'~, +, '+'P(2a+] ) (2b+ 1)(a—n)!(a+n)! (b n) !(—b+n) !]'

The phase factor (—)' which seems to destroy the
symmetry of the result with respect to systems A and
8 arises from the direction of R. This phase factor will

play an important role in the evaluation of resonance
matrix elements between two identical atoms. It will
be shown later tha, t the delta condition in (6) quantizes
the total angular momentum of the system along the
internuclear axis. As a consequence of this, all first-
order secular determinants are factorized into sub-
determinants which are distinguished by different
molecular designations.

III. DISPERSION ENERGIES BETWEEN ALKALIS
AND NOBLE GAS ATOMS

The forces arising from the mutual polarization of
the two atoms are usually calculated by perturbation
theory. For atoms in nondegenerate 5 states, the first
order perturbation vanishes, and at large internuclear
separations, the interaction is governed by the erst
term of the second order formula. The second order,
as well as all higher order perturbation approximations,
give results which can be expressed as an infinite
series in R . This series, however, diverges for all R
and many attempts have been made to remove the
divergence.

Brooks' has pointed out that Margenau's series
expansion is an asymptotic one and that the divergence
arises from the integration over portions of configuration
space in which the expansion of the electrostatic energy
is not valid. He obtains convergent results by arbitrarily
limiting the range of integration in the matrix elements.
In the case of the hydrogen molecule ion, there still
remains a substantial disagreement, however, between
the corrected perturbation calculation and the exact

' F. C. Brooks, Phys. Rev. 86, 92 (1952).

results of Hylleraas. ' Roe' attributes this difference to
the neglect of the exchange forces in Brooks' calculation.
Starting from the calculation of Roe who did not
expand the electrostatic interaction energy in a Taylor
series, Dalgarno and Lewis' have shown that the
divergence of the results is not due to the use of the
interaction energy in regions of space where it is not
valid. They claim that the divergence is a fundament;il
property of such series.

Despite these remarks the expansion of V in a
power series of R—' is a very convenient one, and we
shall show that some truncation methods will give
reliable results.

In the following derivations, we shall not include the
correction factors due to retardation effects, ' nor the
adiabatic coupling between electronic and nuclear
motion. It has been shown" that the nuclear-electronic
coupling is negligible for atoms in nondegenerate S
states.

A. Dispersion Energy between Two
Noble Gas Atoms

tA'e assume that the eigenvalue problem

{K.—E.)$.=0,

has been solved and that a true perturbation V is
applied on the system. The first-order perturbation
formula requires only the knowledge of the unperturbed
state function, whereas all higher order equations

7 E. A. Hylleraas, Z. Physik 71, 739 (1931).
G. M. Roe, Phys. Rev. 88, 659 (1952).

'A. Dalgarno and J. T. Lewis, Proc. Phys. Soc. (London) A69,
57 (1956).

' H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948)."T.Y. Wu and A. B. Bhatia, J. Chem. Phys. 24, 48 (1956).
T. Y. Wu, ibid. 24, 444 (1956). A. Dalgarno and R. McCarroll,
Proc. Roy. Soc. (London) A237, 383 (1956); 239, 413 (1957).
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y= fe'jnhv. (10)

The 6rst-order contribution to the interaction energy
is zero since the electrostatic perturbation V does not
connect S states. The first nonvanishing terms come
from the second-order formula,

f (o] Vip') ['
gi&) —Q'

E0 Ep

It is not necessary to antisymmetrize the state functions
in (11) since the formula for V is only valid for non-
overlapping charge distributions.

The interaction energy is first computed by using

"P.M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 1663."The normalization factor in the square bracket of (8) depends,
of course, on the dednition of the Laguerre polynomials. There
has been considerable confusion in the use of these functions,
and a number of diferent de6nitions can be found in the literature.
The deffnition of I., (s) in reference 12 differs from the ones in
the references 14 and 15 by a factor of P(a+b+1). Equation (8}
will be used throughout this paper.' H. Buchholz, Die Eonfluente IIypergeometrische tiunktion
(Springer-Verlag, Berlin, 1953), p. 4, 135.

'~ A. Erdelyi, W. Magnus, F. Oberhettinger, and G. F. Tricomi,
Higher Transcendental Functions, Bateman Manuscript Project,
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. 1,
p. 248.

'~ H. Margenau, J. .Chem. Phys. 6, 896 (1938}.

involve summation over the discrete spectrum, as well
as an integration over the continuum.

Since only a small number of atomic wave functions
are known, it is assumed at this point that the state
functions can be represented by three-dimensional
harmonic oscillators with a single frequency. This
means that all excited states have an energy equal to
the ionization energy of the noble gas atom. Thus
atom 1 is characterized by one-electron state functions
igni/imi (r,) with frequency vi and likewise atom 2 by
l/'ez/sms(r, ) with frequency v&.

The normalized state function of the harmonic
oscillator in spherical polar coordinates is"

I (-', ~——,'/ ——,') --:

l/„i (r) = 2y& (yr')'*' exp( —-,'yr'-)
[I'(-', ri+-', /+1) )'

XL:.:.":(~—")V "-(0,~), (7)

where the I.aguerre polynomial L,s(s) is defined by"

Ll' (a+b+ 1)]'
L.'(s) = ,Fi(—a; b+1; z),

I'(a+1)I'(b+1)

iFi(—a; 9+1;z) being the Kummer confluent hyper-
geometric series. ""

I'( +),)r(P)
iFi(n;P; s)=P S.

~=a r (~)I'(P+)~)r (1+)t)

The argument y in (7) is related to the oscillator
strength f and polarizability n of the noble gas atom, "

product state functions of one-electron state functions.
The contributions of all the other electrons are then
added up to give the Gnal result.

Using (1) we can rewrite (11) as

16m'e'2' EE X e(&)T:(R)
,e (2a+1)L(2/+1)!!j

X(o
l
q/:*(r )q/se*(r ) l

p') . (»)
8,—E„

Since 'JJ "(ri) depends only on atom 1 and 'Jjs~*(rs)

only on atom 2, (12) can be factored:

16m'e'
'use(V)Y. (R)

, e (2a+1)L(2b+1)!!]

X (Ni/imi
~
ql. *(r,) ~

t'ai'/i'mi')

X(res/zm~
~

~J~'*(r ) ~

&z'/z'ms') . (13)

The matrix elements on the right of (13) are evaluated
as follows:

(ti/m
~

q/:*(r)
j
I'/'m')

= (—)-(~/("( I'/')(/m[ I.--(e, &) (/'m'), (14)

where ( /~tri~~n'/') is the radial matrix element of the
2 -pole interaction. The matrix element involving
angles can be readily evaluated by using the Clebsch-
Gordan series and introducing the Clebsch-Gordan or
%igner coeKcients C""
(/m~ V,—(O, y) ~/'m')

(2/'+1) (2a+1)
C (/'a/; m', n, m) C (/'a/; 000—)

4z. (2/+ 1)

(2/+1) (2a+1) &

C (/a/'; m, n, m') C(/a/', 000) (—)
4z (2/'+1)

= (—) (/'m'~ V, (O, io) ~/m). (15)

It should be noted that C(/'a/; m', —n, m) is zero unless
the conditions m'=m+cr and /'=/+a, /+a /. (/ —a~—
are satisfied. Furthermore C(/'a/; 000) is zero unless
/'+a+/ is even. This means that for given /' and / only
even or odd multipoles can give nonvanishing matrix
elements.

The integration over the I aguerre polynomials yields

~7K. P. Wigner, Group Theory (Academic Press, Inc. , New
York, 1959), p. 189.

'8 M. E. Rose, Elementary Theory of Ang ulcr Momentum
(John Wiley k Sons, Inc. , New York, 1957), p. 62.
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(Iol'll'i') =
(2a+1)!! '

—i,a~+ —i, i
— (27)

for the radial part of the matrix element:

(16)

the dipole-quadrupole only triply excited states, etc.,
and thus no cross terms appear in the end result.

Finally, summing up all the contributions of the
other electrons, we Qnd for the dispersion energy
between two noble gas atoms

Combining (16) and (15), and making use of the delta
conditions of (16) in the evaluation of the C coe%cients,
we can rewrite (13) as

, 1(el I'IP') I'

p E Ep

(2y 1)
4 (2y2) 4

(—) +e4re2

a, b=1 e,P

X 'JJs'(~)T. (R)
-(2a+1)L(2b+1)!!]

1

fif2 (2a+1)!!(2b+1)!!
g(2) =

a, b n, P

(2a+1)!!(2b+1)!!

(2V1) (2V2)' where we have set

x, (»)
ahvt+bhv2

(—) +e4zre2
'JJ e(~)~. (R)

(2a+1)r (2b+1)!!j
-2

F~p Eyr
(17)

E E —2 hvar+ 2hv2 kv1 (zzl +2) hv2(N2 +2)
= —[ahvt+bhvsj.

The reason for taking the summation over the different
multipoles outside the square bracket is the following:
The dipole-dipole term of V connects only doubly
excited states with the ground state of the system;

So far we have not restricted ourselves to any
special direction of R. For the evaluation of (18),
however, it is more convenient to have R along the
positive Z axis of the aligned coordinate systems.
Substituting (4) and (5) into (18) yields

fifse'(2a 1)!!(2b ——1)!!(a+b)!(a+b)!g(2)—
4,4=1 u R"+"+'(2yi) (2y2)'(a —(1)!(a+(1)!(b—n)!(b+(2)! ahvi+bhv2

(19)

(45/8)e'fif2

(210/8) e'f1f,

(210/8)e'fif2
(20) S. Dispersion Energy between Two

Alkali Atoms
(3kvi+hv2) yi'y2R"

Specific evaluation of (19) gives for the first six terms up to quadrupole-quadrupole contributions. In the
last term of (21) we have included the dipole-octupole
and octupole-dipole interactions since they also vary

(hvt+hv2)yty2R' (hvi+2hv2)yiy22Rs as R ". These additional terms make it desirable to
augment the table in reference 2, which has often been

(315/8) e4f,f2 considered to contain all terms up to R ".To conform

+h ), R, (2h +2h ), »„with Margenau's notation, we write E(2) =C1R '
+C2R 2+C2R ".The coefficient C, now includes the
dipole-octupole, as well as the quadrupole-quadrupole
contributions. In Table I we have also included for

(kvt+3hv2)y, 'y2'R" completeness the coefficients for the dispersion energies
between alkali atoms.

The terms correspond, respectively, to dipole-
dipole, dipole-quadrupole, quadrupole-dipole, quad-
rupole-quadrupole, dipole-octupole, and octupole-di-
pole interaction. "

Margenau" has evaluated a similar expression
for two identical noble gas atoms. If we set in (20),
vq= v2= v, and yq=y2=y, then

2 e4f 2 (45/4)e4f' (735/8)e4f'

2hvy'R' 3hvy'R' 4hvy4R"
(21)

which agrees with the expression given by Margenau

"The first four terms of (20) agree with the ones given by
J. F. Hormg and J. 0, Hirschfelder, J. Chem. Phys. 20, 1812
(1952), except for their dipole-quadrupole term which should
read (45/8) hzu, u24v„v42/! e22P (v~+ 2v4) g.

The simple harmonic oscillator model is got very
useful for atoms with incomplete outer shells, since the
requirements that all electrons oscillate with the same
frequency is then very unrealistic. We, therefore,
change the previous approach by using hydrogenic
functions instead of oscillator functions. The central
potential is modified by introducing diGerent screening
parameters for diGerent orbitals. The effective nuclear
charge Z* which accounts for the screening by the
inner shells is determined by comparing the theoretical
expression for the energy with the experimental value.

The method for obtaining the dispersion energy is
analogous to the one described in Sec. A. However, in
this case one has to sum over all excited states of both
atoms and it turns out that the partial sums converge
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TABLE I. Interaction constants of dispersion energies between similar ground-state atoms and molecules.

He
Ne
A
Kr
Xe
H2
N2
02
C02
CH4
NH3
C12
HCl
HBr
HI
Li
Na
K
Rb
Cs

hv
(ev)

24.5
25.7
17.5
14.7
12.2

~14.5
15.8
13.6
15.5
14.1
11.7
12.7
13.4
12.1
10.5
1.85
2.10
1.61
1.57
1.41

O.X10"
(cm')

0.207'
0.39
1.63
2.46
4.0
0.81
1.74
1.57
2.86
2.58
2.24
4.60
2.63
3.58
5.4

15b
18b
29b
29b
36b

1.1
2.37
4.58
4.90
5.61

4.61
3.11
5.70
4.60
2.72
6.55
4.25
4.71
5.30

~0 75'
0.975~
0.987"
0.996~

~0.98

—C1X10~
(erg —cm')

1.26
4.70

55.9
107
236

11.4
57.5
40.3

152
113

71
323
111
186
368
500
817

1630
1590
2200

—C2X 10"
(erg —cm')

2.02
6.90

121
274
708
31.1

119
96.0

411
310
236

1000
321
595

1367
6430

11 000
26 700
25 200
39 500

—C3X10"
(erg —cm'o)

3.96
12.4

320
860

2622
104
302
280

1361
1044
967

3795
1131
2329
6221

101 200
181 500
537 800
489 800
870 200

a L. Essen, Proc. Phys. Soc. (London) B66, 189 (1953).' G. Stephenson, Nature 167, 156 (1951).
b G. E. Chamberlain and J. C. Zorn, Bull. Am. Phys. Soc. 5, 241 (1960).
d G. Stephenson, Proc. Phys. Soc. (London) A64, 458 (1951).

E&'& = (o i
V'

i o)/ez, (22)

where o stands for n111m1, e~t2m~, the quantum numbers
of the ground-state system, e2 is an appropriate average
energy, and

V'= (16zr'e')' Q Q —'tJI:*(rr)'tiz'*(rz)
—.'- e (2a+1)r (2&+1) n

1
X W.e(~)Y'(R)

, d, v, z (2c+1)L(2d+1) l~]

X'JJ.'*(rl) JJd (rz) JJd (V)Y ~(R) . (23)

Substitution of (23) into (22) yields

(o
~
V

~
0) (16zr e )

yg(V)Y:(R) Pd'(V)Y. (R)x p
, d, ~, z (2a+1)t (2b+1) t tj(2c+1)L(2d+1) tie

X(~,t, ~r+ ~n,i,)(n,r, ~.~d~n, t,)(t,m,
[t
V V;"~r,m, )

rather slowly to the correct value. This indicates that
the continuous spectra of the two atoms contribute
appreciably to the dispersion energy. It is possible to
eliminate this sum by using an approximate second-
order formula. The first-order matrix element (0~ V~o)
is zero and the lowest order nonvanishing terms are
given by

(—)
(ooi v:"v, *choo)=

4m
(27)

A similar equation holds for the second matrix element.
So far we did not need to know the exact form of the

atomic functions. In spherical polar coordinates we
have for the normalized hydrogenic state function

I' e—l( )
4-~-(r)= V'

2nLr(n+i+1) j

rule for spherical harmonics:

(2a+1) (2c+1) '*

V:*V:"=(—)~ 2
4zr(2k, +1)

XC(ackr', —n, —y)C(ackr', 00)Var &. (25)
Thus

(r,m,
~
V V, *~t,m, )

1
= (—)"Z —L(2a+1) (2c+1)1'

» 47r

XC(ackr, n, y—)C(ackr, 00—)

XC(lrkrlr, mr, —n —p)C(l, k,l, ; 00). (26)

Since in our case 11=m1=0, the sum rule and 6 condi-
tion of the C coe%cients require that —0.—y=0,
k&

——0, and a=c. These conditions simplify (26) ap-
preciably. By using the explicit expression for the
C coefficients, we get

X (t,m,
~
V, 'Vd *

~
t,m,). (24)

The factors of the matrix elements in (24) which
involve angles can be calculated by using the coupling

X (~r)'e ""L=~- "+'(v~) Vi"(0,~),

m=1 2 . l=e—1 e—2, —l&m&l,

where p stands for 2me'Z*/A' n

(28)
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(2a+2)!
(10ir' (10)=

2(2Z,*/a.)s.
(29)

where a, is the Bohr radius.

With (28) the evaluation of the radial matrix element
in (24) gives

As in Sec. A, it is mor'e convenient to let the inter-
nuclear distance R coincide with the Z axis. Further-
more, the final result takes on a particularly simple
form if atomic units are used. Substitution of (4), (5),
(27), and (29) into (24) yields for the dispersion
energy between two alkali atoms in their ground
states"

2(a+b)!(2a+2)!(2b+2)! 1
jV(si =

b~ , (2R)s'+ss+s(2a+ 1)(2b+ 1)(a—n)!(aper)! (b—cr) !(b+n)! (Zi*)'~(Zs*)ssLZi"'+Zs*s j
(30)

If in (30) we let Zi* ——Zs*——1, then we get for the
dispersion energy between two hydrogen atoms

6 135 3937.5
gv (2)—

R' R'
(a.u.) (31a)

6.4 146 4350
E is' = — — — —,(a.u. ) (31b)

E.' E.' E"

TABLE II. Comparison of theoretical and experimental
values for alkali polarizabilities.

Ll
Na
K
Rb
Cs

a theoretical
(cin')

(21 a 3)X10 '4

(16.5W2.5) X 10 '4

(28 ~ 4)&&10-24
(29 a 4)X10~4
(36 ~ 5) X10~'

o. experimental
(cm3)

(15a2 7)X10 '4

(18&3.2) X10 "
(29~5.2) y 10-24

(29&52)X10 '4

(36~6.5)X10-24

"P.Fontana, Bull. Am. Phys. Soc. 4, 318 (1959).
s' A. Dalgarno and J. T. Lewis, Proc. Phys. Soc. (London) A69,

57 (1956).
ss L. Panling and J. Y. Beach, Phys. Rev. 47, 686 (1935).
2' J. O. Hirschfelder and J. W. Linnett, J. Chem. Phys, 18, 130

(1950).

The last term in (31) includes dipole-octupole, as well
as quadrupole-quadrupole terms. " Comparison with
other results again shows that the sum of the co-
efficients of the dipole-octupole and octupole-dipole
contributions is larger than the quadrupole-quadrupole
tel m.

Hirschfelder and Linnett" have shown that for R&3a,
the effective nuclear charges are slightly less than one.
Setting Zi*=Zs*=0.99, Eq. (30) yields

which compares favorably with the variational calcu-
lation of Hirschfelder and Lowdin. '4

Some care has to be taken in the use of (30). As
already mentioned, this series diverges for all E's, and
one has to find means to cut the series off so that the
inclusion of the last result still improves the result.
Dalgarno and Lewis" have outlined a truncation
method which is quite useful.

Furthermore, a more precise calculation must also
take into account the contributions of the higher order
perturbations. For instance the third-order perturbation
introduces terms of odd power of E. ', the lowest one
being E. ".

The usefulness of (30) depends also on the accuracy
with which the effective nuclear charges Z* can be
determined. The comparison of the theoretical expres-
sion for the energy with the corresponding experimental
value has already been mentioned. Another method is
the use of experimentally determined polarizabilities e.
Recently Chamberlain and Zorn" measured o. for all
the alkalis by molecular beam methods.

An approximate calculation based on hydrogen-like
state functions and effective nuclear charges determined
from optical spectra compares with the experimental
values as shown in Table II." The agreement is
gratifying.

One can show by using methods which will be more
fully described in the third paper, that the inclusion
of spin does not alter the final result for the interaction
energy between two alkali atoms in their ground states.

~ J. O. Hirschfelder and P. O. Lowdin, Molecular Phys. 2, 229
(1959).

25 G. E. Chamberlain and J. C. Zorn, Bull. Am. Phys. Soc. 5,
241 (196O).' J. C. Zorn and P. R. Fontana, Bu11. Am. Phys. Soc. 5, 242
(1960).


