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Application of Nucleon-Nucleon Dispersion Relations to Nuclear Many-Body Problem*
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A method is given of obtaining the nucleon-nucleon scattering amplitude within nuclear matter, when
the nucleon-nucleon dispersion relations are known. This is attained by establishing the dispersion relation
for the scattering amplitude under the influence of the Pauli exclusion principle in intermediate states. With
this modified amplitude the binding energy of the nucleus is calculated using Brueckner's method. The
binding energy per nucleon turned out to be —13.2 Mev, if the contribution of the three-pion exchange
potential is adjusted to give the correct nuclear density. The implication of these results is discussed.

1. INTRODUCTION

KCENTI Y a new approach was found for the
treatment of nucleon-nucleon scattering, namely

the dispersion relations, ' which showed some success
for low-energy phenomena. ' The question then arises:
Is it possible to apply this technique to the nuclear
many-body problems) In the usual quantum mechanics
the many-nucleon problem can be treated in principle
by solving the Schrodinger equation if the nuclear forces
(including many-body forces) are known, but the exact
form of the nuclear potential has not yet been obtained.
In this paper we shall use a different approach and
calculate the binding energy of the nuclear matter using
the two-nucleon dispersion relations. In doing this the
many-body eGect is included in the simplest form, i.e.,
as the Pauli exclusion principle.

2. BRUECKNER'8 METHOD

As the simplest nucleus we consider the case of
nuclear matter which is an idealized nucleus of infinite
size, constant density, and no Coulomb forces. We use
Brueckner's method3 to calculate the binding energy of
nuclear matter. This method consists in taking into
account two-body correlations seriously and replacing
the potential by a two-body reaction matrix or forward
scattering amplitude.

Mathematically this is explained in the following way.
Let + be the exact wave function of nuclear matter and
C be the wave function of the free Fermi gas of nucleons
at the same density, i.e.,

ae=m, &os= I'"-oe', &=&o+ U,
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where H is the total Hamiltonian and Bo is its kinetic
energy part only. Eo represents the kinetic energy of
the free Fermi gas. The total energy E is

(4HV) (4 (Ho+ U)%) (4 F1')=&o+
(~+) (~~) (~~)

If the potential U is written as a sum of two-nucleon
interactions V,

U=2 2'~ l"i,
then the last term of Eq. (1) is

Within the range of V», the two-body correlation of
particles 1 and 2 is very important and if one neglects
correlations with other particles, 0' may be factorized as
%=(,»$24. . . C is of course factorized and with suitable
normalization,

(@l 12+) (412i 12/12) f(pl, p2),

where f(pr, p2) is the forward scattering amplitude of the
colliding particles p1 and p2. This amplitude however is
not equal to that of scattering in free space. Within
nuclear matter, the nuclear levels are filled up to the
Fermi momentum I'p and intermediate states below
this level are forbidden by the Pauli exclusion principle.
Thus, such processes as Fig. 1(a), which occur in free
space, are forbidden in nuclear matter if one or both
of the intermediate momenta coincides with one of the
already occupied states. The f in question is the am-
plitude with this exclusion eGect taken into account.
To distinguish this from the free scattering amplitude f,
we write it f~ with subscript 1V. The formula for the
binding energy is then given by

~=&o——,
' p fA (p, ,p ),

pz, yg eX

where the summation extends over all pairs in the
nucleus. Our problem is to calculate the forward scat-
tering amplitude

fear

At this point it will be worthwhile to make a comment
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p f P2 ~&0, can be expressed by the total cross section a.,

~(~) = (~/2)~(~),

(b)

F&G. 1. Typical Feynman diagrams.

on the exclusion principle in the intermediate states. It
is usually claimed that in doing a I'eynman-type cal-
culation, it is not necessary to take the exclusion prin-
ciple into account for intermediate states. This is true
because there are always diagrams which cancel the
eGect of neglecting the exclusion principle. We shall
compare two standpoints: (I) to consider the exclusion
principle in intermediate states; (II) to forget it. In
Fig. 1, the process (a) is omitted from standpoint (I)
while it should be included if one disregards the ex-
clusion principle. However, process (b) should also be
included in this case while it is actually neglected.
These two terms give identical contribution but of
opposite sign. The sum gives zero, so either standpoint
gives the identical answer if one always sums every
diagram. However, if one confines one's attention only
to the two-particle correlations, the diagram Fig. 1(a)
will be erroneously included in standpoint (II). In
other words, the Brueckner method Lstandpoint (I)]
automatically includes the effect of three-particle
processes and, in higher order, more-particle sects
while dealing with the two-particle problem, In general
the effect of e-particle processes including particle
exchange can be reduced to the effect of (m —1)-particle
processes with the exclusion principle.

The amplitude f~ can be obtained as a solution of the
Bethe-Goldstone equation. 4 In this paper, however, we
shall obtain f~ from the dispersion relation of two-
nucleon scattering.

3. DISPERSION RELATION FOR f~

The dispersion relation for the forward scattering
amplitude f(p,p') in free space is written as a function
of relative energy &o= (1/2m) (p —p')2. Thus

where v is the relative velocity. The integral over the
left-hand cut corresponds to the potential and is
denoted by —V(co). For the calculation of a(co) in this
region co&0, we consider the scattering of a particIe
with kinetic energy ar and momentum p„by a particle
at rest. Here ~ and p„are related, not by the usual
relation, but

(o)+m)'= PP —v.

If v)0, p„ is real for all values of real cv, and the
imaginary part a(co,v) can be calculated from the unitary
relation. Then we take analytic continuation in v and

1 t' a(o)', v)
V(co) = lim V(a), v) = —lim — ' d&o'. (4)

CO
—

GO

F~(p)= E f~(p,p'),
y' eN

rather than f&(p,p'), since what is needed in Eq. (2) is
the sum and not the individual f~'s. The F~ depends
only on p' and can be regarded as a function of the
energy

E=p'/2m.

It turns out that F&(E) has simpler analytic property
than the f~'s.

We use again the technique of continuation in the
mass variable v and introduce

F~(E,v)= 2 f~(p. ,p', v),
y'eN

(6)

where f~(p.,p', v) is the amplitude for forward scattering
of a particle with the energy-momentum relation

(E+m)'= PP —v,

by the particle p'. It is shown in the Appendix that
F~~(E,v) satisfies the dispersion relation

It can be shown in the perturbation expansion that the
above limit exists.

To write down the dispersion relation in nuclear
matter, it is more convenient to consider the sum

F~(E,v) =1/7r) A~(E')v)/(F' E)dE'. —

t" ~(~')
= —V(a))+— ' -d(u'.

X' ~p GO
—M

The left-hand cut can be written as a sum of individual

(3) contributions,

A~(E, v)= P a~(p„p', v), E(0.
To save the notation, we suppressed spin and isospin
indices. The imaginary part a(co), in the physical region

4 H. A. Bethe, Phys. Rev. 103, 1353 (1956);J. Goldstone, Proc.
Roy. Soc. (London) A235, 408 (1957).

y' sN

We approximate this aN by a, the absorptive part in
free space. This means that we neglect the effect of
exclusion in calculating the left-hand cut. With this
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P~(E)= —Z V(~.—.)
p' ~iV

00

+— t Arr(E')/(E' E)dE'. —(9)
'rq P

Arr(E), E)0 is related to the cross section. It is
zero if E is less than the Fermi energy Ep Pp'/2m-—
since no real scattering occurs (except for forward
scattering) due to the Pauli principle

Arr(E) = 0, 0(E(Ep.
If E&EI, real processes occur and

r
A+(E)=-,' p v, „.J P, ,„,d~(~„p), E)0, (10)

y' cN

where I' is the projection operator and

I'=1 if both of the final-state nucleons are out-

side the Fermi surface,

=0 if one or both of the final-state nucleons is

inside the Fermi surface. (11)

There is no difficulty, in principle, in calculating (10).
However, it is simpler if a suitable average is taken
and P is a function of p and p' only. P has the property
that

and
P= 1, if (p —p')s&)4Pp'

P=0, if (p —p')'«4P p'

approximation, the unphysical integral in (7) is'
0

1/ ~ A (E', )/(E' —E)dE'= —2 V (p, p', ).
y'cN

In this form it is possible to go to the limit v —+ —m'
as in Eq. (4) and we obtain. the sum of "two-body
potentials" U(co~ „).The neglected terms contain the
change of nuclear potential inside nuclear matter due
to many-body forces. This effect will be calculated in a
subsequent paper. It is expected that this neglect will
not change the result drastically.

For the physical region E)0, in (7), it may be possible
to take the limit p~ —rrs' since Air(E, p), E)0 is
defined for every ~ & —m'. Thus we have the dispersion
relation

then the result is very simple and we have'

P~(E) = 2 f~(~. .)—,
y'eX

r"-' ' ( ')
f~ (ro) = —V((g)+-

7I caP GO Q7

cop = 2Pp /m,

and Eq. (2) becomes

E=Eo sZ— f~(~p ')-

(13)

(14)

To determine the unknown constant f~(0), we compare
the above expression with the dispersion relation for
free scattering,

f(~)-f(o)—V(~)+ V(0)

re t." a(a)') ( cod+— i' der'+
~ ~, (16)

7I' Ir s Ql (M —Gr) Reed (re re) i
where the last term in the parentheses is present when
a bound state exists. The condition that in the high-
energy limit f& should be equal to f determines f~(0),
and

a((e')i (-)=~(0)-V(-)+V(0)+-
cop CO CO GO

Two points should be discussed before concluding
this section.

In (10) we put the cross section equal to that for the
free case, if the final state is allowed. Actually the scat-
tering matrix element, and therefore the cross section,
is changed due to the exclusion principle. Such a change
is certainly important for collisions of particles well
submerged in the Fermi sea and this is the object of
this paper. However, for high-energy collisions such
that a real final process is possible, the exclusion effect
may not be important. In the next section it is shown
that errors due to this effect are in fact small.

In the actual case of nucleon-nucleon scattering, the
cross section tends to a constant at high energy. In this
case the dispersion integral in Eq. (13)does not converge
and we have to make a subtraction,

co p a(ar')
f~(oi) = far(0) V(ce)+ V—(0)+- ~l dry'. (1&)

7l eaPr 4) GO GO

Suppose we put

(p p')'& 4Pp'—
P=O, (p —p')'&4Pp', . (12)

1 t."p a(co')
t Cg)

do)'+
I

——i. (17)
ro E roy)

5 When the absorptive part A~ is a sum of Lorentz-invariant
quantities a, the dispersion integral of A~ can be written as a sum
of dispersion integrals of a. The formula is

a((N —s)') I a((rr —x)')
-dip = Z I — dQp~

(I—a)' —(w —x)' "~ J (rr —x)'—(w —e)'
if a(y') =0, y) —P,

where u, v, m, and x are four-dimensional vectors, and I'= ay = —p,
s'=m', a= (m, o,o,o). See also reference 6.

To summarize, if the scattering amplitude in free

6 To derive (13), we use the formula

~ ~((p —p')') (u')
dp2 y ~ dp2

p'dV
Q p2 q2 p'eN J p2 (q p~) 2

if C(p2) =0, p2&PJ2.

This is the nonrelativistic version of the formula in reference 5.
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space is given by
1 t

"a((o')
f(cv) = —V((o)+—

il der',
7l ~ 0 CO M

the corresponding amplitude in nuclear matter is
obtained by omitting some part of the dispersion
integral if that process is excluded by the Pauli principle:

C. NUMERICAL RESULT

The Anal formula for the binding energy of nuclear
matter is given by (14). The binding energy per
particle is given by

E 3I'p' 1 p'~p

10m
1 p" a(co')

f~(M) = V(M)+ —
Ji dM .

/
(19) t 3k k'

X (
1— + ik'dk, (21)

4PF 16Pp'J
If one subtraction is necessary, the formula is given by
(17). In either case

1
t

~a(co')
f~(~) =f(~)

/
7l L P M CO

where A is the mass number, f~» and f~„„are the

(20) amplitudes for unpolarized pp and pl scattering, respec-

tively, and

4~ 27r f' 3/ 1 ~ I' '"' a.-(~')+a-(~')
f~»(~)+/»-(~) = (4a—3+—~ai+2a)+

m m 4~ 2 E&a+ (p'/2m) (p'/2m) ) ~ " co'(co' —ro)

t'" v'( 0» +0„) 1 p ~ v'(cr»+o„„) 2m 1 1

2lr "~p M'(co' —M) 2%- ~ p ss R—f3
—

Goy

The notation is as follows: a3 is the triplet ep scattering
length; a, , the singlet Np scattering length; a, the
singlet pp scattering length; f, the pion-nucleon coupling
constant; p, the pion mass; o-» and 0.„,the total cross
section for unpolarized pp and vp scattering, respec-
tively; R, the deuteron radius; r3, the triplet effective
range; and 8, the binding energy of the deuteron.

The potential (the integral over the unphysical
region) can be obtained if the scattering amplitudes f»
and f„„are known as functions of energy. The phase
shifts for proton-proton scattering are fairly well known,
but not much is known about the phase shifts for
neutron-proton scattering so it is not possible to deter-
mine V(co) in this way.

The absorptive part a(co) in the unphysical region
has been calculated for two-pion exchange in the region'

—9p'/2m ((o(—2p'/m.

For ~( 9p'/2m, wh—ere three-pion exchange takes
place, it is extremely difncult to calculate a(~). We
make the approximation

-( )+ .-( )—
J

d(d
GO CO GO

~
—9p'/2m a +a

dM'—= —V3 '(0), (23)
/2r —00

which is justified because 9p'/2m=90 Mev is fairly
larger than the average energy (cu), —40 Mev. The
constant V3 '(0) is an arbitrary parameter and will be
determined later. If a»(ca)+a„„(~) are assumed
constant for a&( —9p'/2m and equal to a»( —9p'/2m)
+a„( 9p'/2m) (t—his is consistent with the value for

V, '(0) =4.7/p', (determined value)

and in this case

(25)

E/A = —13.2 Mev, (theory).

The experimental value is

E/A = —15 Mev, (experiments).

(26)

Before concluding this section we compare f~ with

f at co) ur p and see if they differ very much. The results
are shown in Table I.' We see that the amplitude, and
therefore the cross section at ~)cop, is not very much
changed by the Pauli principle. Even if a» and a„„are

TABLE I. Values of f~ and f for co&or~.

1.3M+

0.75
0.99

0.85
1,0

1.0
1.0

' From the formula {22),we have the result f~{co~)=ln~. This
is due to the choice of a sharp step function {12).Actually P is
a smooth function and such an infinity does not occur.

co( —2m where u can be related to nucleon-antinucleon
cross section), we obtain

V3 '(0) = 2/p' (interpolated value). (24)

The energy per nucleon E/A thus calculated by Eq.
(21) is a function of Pp or the density of nuclear matter.
We look for the minimum of E/A by varying PF to
obtain the stable nuclear matter. The minimum position
depends on the value of V3 '(0) and we choose it so

that the minimum occurs at the observed value I'p ——2p.
This happens when
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zero for cov(&o(4arv, the change in E/A is about +1.S
Mev. The actual change will be very much smaller than
1 Mev which is negligible in our discussion. Also we
can see that the result is insensitive to the shape of P
which we approximated by a step function (12).

S. DISCUSSIONS

In Sec. 3 we derived a formula to obtain the scattering
amplitude inside nuclear matter when the free-particle
dispersion relations are known. In applying it to the
calculation of nuclear binding energy, we had to intro-
duce an undetermined parameter Va '(0) due to our
lack of knowledge about the three-pion exchange
potential, but this parameter could be determined if
more information on proton-neutron scattering phase
shifts were obtained. If this parameter is adjusted so
as to give the correct nuclear density, then the value
determined by Eq. (25) is somewhat larger than the
interpolated value (24). This is consistent with the fact
obtained from the electromagnetic form factors of
nucleons that the three-pion intermediate state will be
important. Also this corresponds to the results of the
current nucleon-nucleon scattering theory that a very
large repulsive core is necessary at a short internucleon
distance. Once this parameter was determined, the
binding energy per nucleon turned out to be in reason-
able agreement with the observed value. This calculated
value, however, cannot be taken too seriously for several
reasons.

First, the eGect of renormalization of one-body prop-
agator or the change of eBective mass inside nuclear
matter is not considered here. Bethe' estimated this
effect to be about 5 Mev per nucleon for the binding
energy.

Second, we have made approximations for the spectral
function both on the right-hand and the left-hand cut.
On the right-hand cut we have neglected the change of
cross sections due to the Pauli principle. This correction
is calculable in successive approximation by means of

~ nonforward dispersion relations or partial wave am-

plitude dispersion relations, which we did not attempt
in this paper. It is the authors feeling that this cor-
rection is not very important.

More important is the correction on the left-hand
cut or the change of nuclear potential inside of nuclear
matter, which we neglected. A part of such a change
was calculated by Fujita and Miyazawa, ' who found a
change of about ten percent both in the strength and
the range of the potential. Drell and Walecka" esti-
mated the quenching of the anomalous magnetic
moment inside the nucleus and it turned out to be 7'%%uo.

H. A. Bethe (private communication).' J. Fujita and H. Miyazawa, Progr. Theoret. Phys. (Kyoto),
17, 360 (1957).

'0 S. D. Drell and J. D. Walecka, Phys. Rev. 120, 1069 (1960).

These indicate that a change of several percent is also
expected for V(&u). Since the binding energy is a result
of the cancellation between a large potential and a
large kinetic energy, a change of a few percent in the
potential may result in a change as much as a factor of
two for the binding energy. This point will be inves-
tigated in a subsequent paper.

and the denominator never vanishes except on the real
axis. When we sum over all contributions to get Ii~,
the superficial branch points po

——&iv'vanishes, sinceF~
is an even function of p. F& (E) has branch cuts only on
the real axis. The position of the branch is determined
from individual graph. The right-hand cut starts from

xo(pv'+m')' —(xp'+ v) ipv 3m'+ v

to the right; and the left-hand cut starts from

g~ (pv2+ gz2) ~+ (@12+v) ~pv yyz2 v ~2

po ) S]—

to the left.
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APPENDIX

Derivation of Eq. ('7)

In this Appendix we use the relativistic perturbation
theory of Feynman. Due to the exclusion principle in
the intermediate states, the usual proof of the disper-
sion relation fails for f~. For this rea, son it is convenient
to adopt the standpoint (II) discussed in Sec. 2. Then
every diagram of a scattering with exclusion principle
is equivalent to a sum of diagrams of many-particle
collisions without exclusion principle. Thus the f~(p, p )
can be expressed as a sum off(p, qi, q2, ) corresponding
to Feynman diagrams with external mom enta p,
p'(=qi), q~, . We introduce mass variable v and put

p 2 p2 v

It can be shown that if v) 0, f(p, qi, qi, ) as a function
of po (with fixed direction of p) does not have any
singularities except on the real axis and a possible cut
starting from po ——&iv'. This comes from the fact that
f is a product of terms of the form


