Test of the ξ -Approximation in Some First-Forbidden $2^- \rightarrow 2^+$ β Transitions*

R. M. STEFFENT

Department of Physics, Purdue University, Lafayette, Indiana

(Received April 11, 1961)

The β - γ directional correlations of the first-forbidden nonunique $2^{-} \rightarrow 2^{+}$ β transitions of K⁴², Sb¹²², and Au¹⁹⁸ were investigated and compared with the predictions of the ξ approximation, whose range of applicability is discussed. Upper limits for the contribution of the tensor-type matrix element $\int B_{ij}$ to the β transitions were estimated on the basis of the modified B_{ij} approximation.

The anisotropy coefficient $A_2(W)$ in the β - γ directional correlation involving the 1.98-Mev β transition of K⁴² varies from $A_2(1.66) = -0.009 \pm 0.002$ to $A_2(4.60) = -0.049 \pm 0.002$, where W is in units of mc^2 . The energy dependence of $A_2(W)$ deviates from the predictions of the ξ approximation by about 40% over the measured energy range. A rough estimate of the upper limit for the contribution from the B_{ij} component is: $|C_A f B_{ij}|$ < $0.3(|V_0| + |Y_1|)$ (in the notation of Kotani).

'HE recent theoretical and experimental developments in beta decay have led to some clarification of the laws of the beta interaction. The results of β - ν directional correlation experiments showed conclusively that the vector (V) and axial vector (A) couplings give the main contributions ($> 90\%$) to β decay.^{1,2} Experiments on the β decay of the neutron³ lead to an accurate determination of the ratio of the axial vector coupling constant C_A to the vector coupling constant C_V : $C_A/C_V=\rho e^{i\phi}$, with $\rho^2=1.46\pm0.06$ and $\phi=\pi\pm0.14$, so that $C_A = -(1.21 \pm 0.03)C_V$. From measurements of the ft values of $0 \rightarrow 0$ transitions⁴ one obtains for the absolute value of C_V : $C_V = g = (1.41 \pm 0.01) \times 10^{-49}$ erg cm³ solute value of C_V : $C_V = g = (1.41 \pm 0.01) \times 10^{-49}$ erg cm
or $C_V = g = 2.97 \times 10^{-12}$ in units $\hbar = m = c = 1$. All avail able experimental facts point to the validity of the twocomponent neutrino theory, which implies that the odd coupling constants C_V' and C_A' are equal to the even coupling constants C_V and C_A , respectively. The actual results extracted from parity experiments⁵ are $C_A' = (1.0 \pm 0.2)C_A$ and $C_V' = (1.0 \pm 0.6)^{+1.5}C_V$.

We must recognize, however, that the values of the coupling constants given above are obtained on the basis of experiments designed to determine one or two of a total of 35 independent coupling constants. In evaluating those experiments many of the remaining

The anisotropy factor $A_2(W)$ of the $\beta-\gamma$ directional correlation involving the 1.40-Mev β transition of Sb¹²² varies from $A_2(1.96) = +0.035 \pm 0.003$ to $A_2(3.5) = +0.081 \pm 0.004$. The energy dependence of $A_2(W)$ is well represented by the factor $\lambda_2(Z,W)$ (W²-1)/W as predicted by the ξ approximation. The upper limit of the $\int B_{ij}$ contribution to this β transition is estimated as: $|C_A f B_{ij}| < 0.15 |Y_1|$ or $|C_A f B_{ij}| < 0.2 |V_0|$.

The anisotropy factor $A_2(W)$ of the Au¹⁹⁸ $\beta-\gamma$ directional correlation involving the 0.96-Mev β transition varies between $A_2(1.39) = +0.0076 \pm 0.0010$ and $A_2(2.78) = +0.0286 \pm 0.0010$, and its energy dependence agrees very well with the predictions of the ξ approximation. The upper limit for the $\int B_{ij}$ matrix element is estimated as: $|C_A f B_{ij}| < 0.1 |Y_1|$.

l. INTRODUCTION coupling constants are set equal to zero although experimental evidence only indicated that they are considerably smaller than the "main" coupling constants. An attempt to deduce the values of the 35 independent coupling constants from a simultaneous least-squares fit of all the experimental results (similar to the methods employed by Dumond and co-workers' to determine the atomic constants) gives a determination of the β coupling constants which is far from satisfactory. Thus the errors quoted above from the literature seem to be rather unrealistic. In the following, however, we follow the accepted custom and assume $C_A' = C_A$, $C_V' = C_V$, $C_T = C_S = C_P = C_T' = C_S' = 0$.

After the "clarification" of the interaction laws of β decay, it seems desirable now to study the matrix elements involved in beta transitions. Fxperimental data of the β -transition matrix elements may then be compared with calculations based on some specific nuclear models. Calculations of this kind require exact knowledge of the wave functions of the nuclear states involved, and only in a few selected cases is it possible, at present, to perform such β matrix element calculations with some degree of confidence. Nevertheless, an accumulation of experimental data concerning β matrix elements may provide a useful table of information for nuclear theorists.

In allowed β transitions the matrix elements are solely determined by their ft values, if the β transitions are either pure Fermi transitions $(0 \rightarrow 0$, matrix element $f(1)$, or pure Gamow-Teller transitions $(\Delta I = \pm 1,$ matrix element $f \circ$). Mixed transitions ($\Delta I = 0$, not $(0 \rightarrow 0)$ require, in addition, the determination of the
mixing ratio $y = (C_V f 1)/(C_A f \sigma)$ of Fermi to Gamow-Teller component. Measurements of the $\beta-\gamma$ circular polarization correlation or of the angular distribution

^{*.}Work supported by the U. S. Atomic Energy Commission under contract.

 \dagger The analysis of the experimental data described in this paper was done while the author was a National Science Foundation Senior Postdoctoral Fellow at the Swiss Federal Institute of Technology, Zurich, Switzerland. '

¹ W. B. Herrmansfeldt, R. L. Burman, P. Stähelin, J. S. Allen, and T. H. Braid, Phys. Rev. Letters 1, 61 (1958).
² W. B. Herrmansfeldt, D. R. Maxson, P. Stähelin, and J. S. Allen, Phys. Rev. 107, 641 (1957).
³ M. T. 1, 100 (1958). '

⁴ R. K. Bardin, C. A. Barnes, W. A. Fowler, and P. A. Seeger
Phys. Rev. Letters 5, 323 (1960).
⁵ R. M. Steffen, Phys. Rev. 115, 980 (1959).

^s E. R.'Cohen, J. W. M. Dumond, T. W. Layton, and J. S. Rollett, Revs. Modern Phys. 27, 363 (1955).

of the radiation emitted from polarized nuclei allow us to determine this ratio. $5,7,8$

The situation is more complex for first-forbidder
transitions. Six matrix elements $(f_i \gamma_5, f \sigma \cdot r, f r, f i \alpha)$
 $f_i \gamma_5 \gamma_6 \cdots f_i \gamma_{n-1}$ transitions. Six matrix elements $(f_i\gamma_{5}, \mathcal{J}\sigma \cdot \mathbf{r}, f\mathbf{r}, f\mathbf{i}\alpha, f\mathbf{i}\sigma \times \mathbf{r}, f\mathbf{B}_{ii})$ may, in general, contribute to a β transition without spin change $(\Delta I=0)$, whereas four $(f \mathbf{r}, f \mathbf{i}\mathbf{\alpha}, f \mathbf{i}\mathbf{\sigma} \times \mathbf{r}, f \mathbf{B}_{ij})$ may contribute to a $\Delta I = \pm 1$ transition. Only the $\Delta I = \pm 2$ transition is unique, i.e., one matrix element (JB_{ij}) is involved, which may be determined from the ft value of the transition. The determination of matrix elements for first-forbidden transitions of the types $\Delta I=0$ and $\Delta I=\pm 1$ requires the combined evaluation of experimental data of different kinds, such as shape measurements, $\beta-\gamma$ angular correlation studies, etc., and is practically only possible in cases where the so-called ξ approximation fails. A few cases of this kind have been investigated, e.g., RaE,⁹ Sb¹²⁴,^{10,11} and Eu¹⁵².¹² The great majority of first forbidden transitions is well represented by the ξ approximation and only certain relationships between the different matrix elements can be established. A determination of the individual matrix elements in these cases would require measurements of very high precision in order to extract the information from higher order effects.

The purpose of this paper is to test the validity of the ξ approximation in some $2^- \rightarrow 2^+ \beta$ transitions of widely different Z (K⁴², Sb¹²², Au¹⁹⁸), by means of careful measurements of the β energy dependence of the $\beta-\gamma$ directional correlation. The results of the measurements indicate excellent agreement with the ξ approximation for Sb¹²² and Au¹⁹⁸; the agreement in the case of K^{42} is less satisfactory. From the degree of agreement with the ξ approximation upper limits of possible contributions from the f_{ij} matrix element component may be determined.

II. THE ϵ APPROXIMATION FOR NONUNIOUE FIRST-FORBIDDEN β TRANSITIONS

It is an experimental fact that most nonunique firstforbidden β transitions exhibit, within experimental error (a few percent), a statistical shape just as do the allowed β transitions. This was first explained by the allowed β transitions. This was first explained by Konopinski and Uhlenbeck,¹³ who expanded the beta transition probability in powers of $\mathbf{p} \cdot \mathbf{r}$ and $\mathbf{q} \cdot \mathbf{r}$, where p and q are the electron and neutrino momentum, respectively, and r is the radius vector. Actually this (multipole) expansion involves an expansion of the relativistic lepton wave functions in the Coulomb field of a nucleus of charge Ze. The various terms obtained in this expansion can be grouped such that their orders of magnitude form a series of descending powers of the parameter $\xi = \alpha Z/2R$ ($\alpha = e^2/\hbar c = 1/137$, R=nuclear radius). If $Z>20$, and if the maximum energy W_0 of the β transition is reasonably small: $\xi \gg W_0 - 1$, the term of highest power in ξ predominates over all other terms. Retaining only this term leads to the so-called ξ approximation, which corresponds to the physical situation where the Coulomb energy $2\xi = \alpha Z/R$ of the electron at. the nuclear surface is much larger than the kinetic energy W_0 -1 of the electron. In other words, the amount of distortion of the electron wave function by the Coulomb field of the nucleus is more significant than the next higher terms in the pr expansion. The error introduced by the ξ approximation is obviously of the order $(W_0-1)/\xi$.

The terms in the expansion which contain the param The certification which contains the partial radial parts are of the form $g_{3}^{\text{el}} \approx pr[1+3\xi(W-1)/p^2]$. The amplitudes of the $j=\frac{3}{2}$ waves are of the form $g_{\frac{3}{2}}^{\text{el}} \approx pr$ and do not contain ξ . The radial parts of the neutrino wave functions are of the form $f_{\frac{1}{2}}^{\nu} = 1/\sqrt{2}$ or $f_{\frac{1}{2}}^{\nu}$ meutrino wave functions are of the form $j_4 = 1/\sqrt{2}$ or $j_4 = \lfloor 1/(18)^{\frac{1}{2}} \rfloor qr$ for $j = \frac{1}{2}$, and $f_4^{\prime\prime} = \lfloor 1/(18)^{\frac{1}{2}} \rfloor qr$ for $j = \frac{3}{2}$. Thus the component of the lepton field, which carries away two units of angular momentum, and whose amplitude is proportional to the tensor matrix element $\mathcal{L}B_{ij}$ is described by combinations of electron and $\mathcal{L}B_{ij}$. neutrino waves (e.g., $g_3^{\text{el}} f_3^{\text{v}}$; $g_3^{\text{el}} f_3^{\text{v}} \rightarrow 0$) which do not contain ξ . Consequently, the contribution of the $\int B_{ij}$ matrix element is neglected in the ξ approximation. This implies that the validity of the ξ approximation also requires that the matrix element fB_{ij} of tensor rank $\lambda=2$ must be much smaller than ξ times the "normal" first-forbidden matrix elements of tensor rank $\lambda = 1$ and $\lambda = 0$.

On the basis of the ξ approximation the spectrum shape correction factor $C(W)$ becomes independent of the energy of the β particles and may be expressed as

$$
C^{(0)} = |V_0|^2 + |Y_1|^2, \tag{1}
$$

where the parameter V_0 is a linear combination of the first-forbidden nuclear matrix elements of tensor rank $\lambda=0$ (selection rules: $\Delta I=0$, $\Delta\pi=\mathrm{yes}$):

$$
V_0 = \xi \bigg(\Lambda C_A \int i\gamma_5 + C_A \int \sigma \cdot \mathbf{r} \bigg). \tag{2}
$$

The parameter Y_1 is a linear combination of the nuclear matrix elements of tensor rank $\lambda = 1$ (selection rules: $\Delta I=0, \pm 1, \Delta \pi = \mathrm{yes}$:

$$
Y_1 = \xi \bigg(-\Lambda' C_V \int i\alpha + C_V \int \mathbf{r} - C_A \int i\sigma \times \mathbf{r} \bigg). \tag{3}
$$

The numbers Λ and Λ' which indicate the relative contri-

⁷ F. Boehm and H. Wapstra, Phys. Rev. **109,** 456 (1958).
⁸ E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudsor

Phys. Rev. 108, 503 (1957). $9A$. I. Alikhanow, G. P. Eliseyev, and V. A. Luibimov, Nuclear Phys. 13, 541 (1959).

¹⁰ R. M. Steffen, Phys. Rev. Letters 4, 290, (1960).

¹¹ G. Hartwig and H. Schopper, Phys. Rev. Letters 4, 293

 $(1960).$

¹² J. W. Sunier, P. Debrunner, and P. Scherrer, Nuclear Phys.

^{19,} δ 2 (1960).

¹⁸ E. J. Konopinski and G. F. Uhlenbeck, Phys. Rev. 60, 308 $(1941).$

butions of the relativistic matrix elements as compared to the moment-type matrix elements, are of order unity. Theoretical predictions of $\Lambda = 1$ and $\Lambda = 2$ have been Theoretical predictions of $\Lambda = 1$ and $\Lambda = 2$ have been made.^{14,15} After the introduction of the parameters V_0 and Y_1 the requirements for the validity of the ξ approximation may be summarized as: $\xi \gg W_0 - 1$, approximation may be summarized as: $\xi \gg W_0 - 1$
 $|C_A f B_{ij}| \ll (|V_0| + |Y_1|)^{16}$ Generally, it can be shown that the expressions for all the observables (e.g., $\beta-\gamma$) circular polarization correlation, longitudinal polarization of the β particles, etc.) known from allowed β transitions are, within the validity of the ξ approximation, the same for first-forbidden transitions, if one replaces in the formulas for allowed transitions the Fermi to Gamow-Teller ratios $y = C_V \int 1/C_A \int \sigma$ by¹⁷

$$
y' = V_0 / Y_1. \tag{4}
$$

The $\beta-\gamma$ directional correlation is isotropic for allowed transitions, if higher order terms (e.g., cross terms of allowed matrix elements with second-forbidden matrix elements, Gell-Mann terms, etc.) are neglected. Thus the above-mentioned substitution is not applicable for β - γ directional correlations. In fact, the computation of the β - γ directional correlation of first-forbidden transitions requires consideration of terms in the γ expansion which are of higher order (in pr), than the leading terms used in the ξ approximation of the shape and of the $\beta-\gamma$ circular polarization correlation. As a result, the first-forbidden $\beta-\gamma$ directional correlation depends not only on $y' = V_0/Y_1$, but also on the matrix element $ratios^{18-20}$:

$$
\mathbf{r} = C_V \int \mathbf{r} / Y_1,
$$

\n
$$
s = C_A \int i\mathbf{\sigma} \times \mathbf{r} / Y_1,
$$
 (5)
\n
$$
t = C_A \int B_{ij} / Y_1,
$$

which are of the order $1/\xi$.

The directional correlation between a β particle emitted in a first-forbidden β transition and the following γ ray according to the decay scheme $I_0(\beta)I_1(\gamma)I_2$, is given by

$$
W_{\beta\gamma}(\theta) = 1 + A_2(W) P_2(\cos\theta), \tag{6}
$$

$$
_{\rm where}
$$

$$
A_2(W) = A_2^{\beta}(W)A_2^{\gamma}.
$$
 (7)

- T. Kotani and M. Ross, Phys. Rev. 113, 622 (1959). ¹⁸ T. Kotani and M. Ross, Progr. Theoret. Phys. (Kyoto) 20,
-
- 643 (1958).
¹⁹ M. Morita and R. S. Morita, Phys. Rev. **109**, 2048 (1958).
²⁰ K. Alder, B. Stech, and A. Winther, Phys. Rev. **107**, 728
(1957).

The factor A_2^{γ} characterizes the γ transition. For a γ transition of pure multipolarity L, the factor A_2^{γ} is identical with the F coefficient defined by Rose and Biedenharn²¹

$$
A_2^{\gamma} = F_2(LLI_2I_1). \tag{8}
$$

The F coefficients $F_2(LL'I_2I_1)$ are tabulated in reference 20. The factor $A_2^{\beta}(W)$ characterizes the β transition of the $\beta-\gamma$ cascade. It may be expressed in the following $form¹⁷$:

$$
A_2^{\beta}(W) = \lambda_2(Z, W) (p^2/W) M (I_0, I_1).
$$
 (9)

The factor $\lambda_2(Z, W)$ which takes into account effects of the Coulomb field of the order $\alpha ZW/p$ is practically energy independent and close to unity. Values of energy independent and close to unity. Values of $\lambda_2(Z,W)$ are tabulated elsewhere.¹⁷ The factor $M(I_0,I_1)$ depends on the nuclear matrix elements involved in the β transition, and, in general, on the energy of the β particles. If the ξ approximation is applicable, $M(I_0,I_1)$ is independent of the β energy and contains the matrix element parameters y' , r , s , and t :

$$
M(I_0,I_1)
$$

=
$$
\frac{{\binom{2}{3}}^{\frac{1}{2}}g_{02}(2)y't - {\binom{2}{3}}^{\frac{1}{2}}g_{11}(2)(s-2r) - g_{12}(2)t}{1+y'^2}.
$$
 (10)

The factors $g_{\lambda\lambda'}(n)$ contain the "geometrical" part of the β transition; they describe the rotational invariant part of the system nucleus plus radiation field:

$$
g_{\lambda\lambda'}(n) = (-1)^{I_1 - I_0} W(I_1 I_1 \lambda \lambda'; n I_0) (2I_1 + 1)^{\frac{1}{2}}.
$$
 (11)

The number $W(I_1I_1\lambda\lambda'; nI_0)$ is a Racah coefficient. It is noteworthy that, within the framework of the ξ approximation, the anisotropy factor $A_2^{\beta}(W)$ is proportional to $\lambda_2(Z, W) p^2/W$. The coefficients $g_{\lambda\lambda'}(n)$ are roughly of order of magnitude ¹ and it is easily seen from the definitions of r , s , and t , that the order of magnitude of $M(I_0,I_1)$ is $1/\xi$.

III. DEVIATIONS FROM THE ξ APPROXIMATION

The ξ approximation as discussed above applies to a first-forbidden nonunique beta transition $(\Delta I=0, \pm 1)$ in which the nuclear matrix elements are of "normal" relative magnitude such that $|C_A f B_{ij}| \ll (|V_0| + |Y_1|).$ The ξ approximation cannot be used if the normally dominant terms in the pr expansion are reduced such that the next higher order terms must be taken into account. Three reasons may be responsible for the reduction of the main term: (a) In β transitions of low-Z nuclei and large maximum β energy the condition $\xi \gg W_0 - 1$ does not hold. (b) The matrix elements of tensor rank $\lambda = 0$ and $\lambda = 1$ are greatly reduced by virtue of selection rule effects (j selection rule,²² K forbidden-

¹⁴ T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952).
¹⁵ D. L. Pursey, Phil. Mag. 42, 1193 (1951).
¹⁶ The form of this expression does not imply that V_0 and Y_1 appear in the form $|V_0| + |Y_1|$. It merely ind must be much smaller than the larger of the two parameters $|V_0|$ and $|Y_1|$.

²¹ L. C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25, ⁷²⁹ (1953}. "R. W. King and D. C. Peaslee, Phys. Rev, 94, ¹²⁸⁴ (1954)

and C. E. Johnson and R. W. King, Bull. Arn. Phys. Soc. 4, 58 (1959).

ness,²³ etc.). (c) Mutual cancellation of the $\lambda = 0$ and $\lambda = 1$ matrix elements causes the usually dominant terms to vanish, e.g., RaE. The contribution of the $\int B_{ij}$ matrix element ($\lambda = 2$), which may be little or not at all affected by these selection rules and cancellations, may then become more important or may even predominate. First-forbidden β transitions of this kind are characterized by their large ft values (log $ft \approx 9-12$). In these cases higher order terms in the pr expansion must be considered. The shape factor is then of the form'4

$$
C^{(1)}(W) = k + akW + (bk/W) + ckW^2.
$$
 (12)

The coefficients k , ak , bk , and ck contain the nuclear matrix elements but are independent of the β energy. Exact expressions for k , ak , bk , and ck have been given by Kotani.²⁴ Also, if $C_A f B_{ij}$ contributes significantly, the energy dependence of $A_2^{\beta}(W)$ is not simply given by $\lambda_2 p^2/W$. It is, in general, a complicated function of the energy W and of the various matrix elements which contribute to the β transition. In a first approximation, transitions of this kind may be analyzed on the basis of the so-called "modified B_{ij} approximation, which of the so-called "modified B_{ij} approximation, which was suggested by Matumoto *et al.*²⁵ Within the frame work of this approximation, which presupposes

$$
C_A \int B_{ij} \approx (|V_0| + |Y_1|), \quad \text{but} \quad r \ll 1, \quad s \ll 1,
$$

the anisotropy factor for a $2-(\beta-2)^2+(\gamma)0$ $\beta-\gamma$ cascade is given by

 $A_2{}^{\beta\gamma}(W)$

$$
= \lambda_2 \frac{p^2}{W} \frac{(1/56)^{\frac{1}{2}}t - (1/21)^{\frac{1}{2}}y't - (\lambda_1/\lambda_2)(1/112)t^2W}{1 + y'^2 + \frac{1}{12}[(W_0 - W)^2 + \lambda_1(W^2 - 1)]t^2}.
$$
 (13)

FIG. 1. Vacuum chamber and scintillation detector arrangement used for β - γ directional correlation investigations.

"G.Alaga, K. Alder, A. Bohr, and B. Mottelson, Kgl. Danske Videnskab. Selskab, Mat. fys. Medd. 29, No. 9 (1955), and G. Alaga, Phys. Rev. **100**, 432 (1955).
²⁴ T. Kotani, Phys. Rev. **114**, 795 (1959).

²⁵ Z. Matumoto, M. Morita, and M. Yamada, Bull. Kobayas
Inst. Phys. Research 5, 210 (1955).

A precise measurement of $A_2(W)$ as a function of the β -energy W may make it possible to estimate the relative magnitude of t in a given nonunique β transition, and the magnitude, or at least an upper limit, of the $\int B_{ij}$ matrix element may be determined. If only the $\int B_{ij}$ component contributes significantly to the β transition, the anisotropy factor is

$$
A_2(W) = -\lambda_2(3/28)\frac{p^2}{(W_0 - W)^2 + \lambda_1 p^2},\tag{14}
$$

which assumes the relatively modest value of $A_2(W_0)$ $=$ -0.107 at the maximum β energy W_0 . It may be interesting to note that the corresponding values of $A_2(W_0)$ for $1^-(\beta)2^+(\gamma)0^+$ and $3^-(\beta)2^+(\gamma)0^+$ transitions are considerable larger: $+0.251$, and -0.287 , respectively. Therefore a possible f_{ij} contribution shows up less conspicuously in the directional correlation of a $2^-(\beta)2^+(\gamma)0^+$ cascade than in either a $3^-(\beta)2^+(\gamma)0^+$ or a $1-(\beta)2+(\gamma)0^+$ cascade.

IV. APPARATUS AND EXPERIMENTAL PROCEDURE

The $\beta-\gamma$ directional correlation measurements described below were performed with the aid of the vacuum chamber and the scintillation counter arrangement shown in Fig. 1. The details of the arrangement have shown in Fig. 1. The details of the arrangement have
been described before.²⁶ The thickness of the Pilot B plastic scintillator disk of the β counter was chosen such that it exceeded the range of the most energetic electrons emitted by the source under investigation.

The coincidence electronics (Fig. 2), which was of the usual fast-slow type, had four beta-energy selection channels $(\beta_1, \beta_2, \beta_3, \text{ and } \beta_4)$ and two gamma energy selection channels $(\gamma_1$ and $\gamma_2)$ which permitted to measure 8 coincidence events $(\beta_1\gamma_1, \beta_2\gamma_1, \beta_3\gamma_1, \beta_4\gamma_1, \beta_1\gamma_2, \beta_2\gamma_2,$ $\beta_3\gamma_2$, $\beta_4\gamma_2$) simultaneously. The simultaneous registration of the coincidence pairs $\beta_1 \gamma_1$ and $\beta_1 \gamma_2$ made it possible to correct accurately for the presence of competing $\beta-\gamma$ cascades. Assume a decay scheme as shown in Fig. 3. If the β channel *i* accepts β particles of an

²⁶ R. M. Steffen, Phys. Rev. 118, 763 (1960).

energy which is smaller than the maximum energy of the spectrum β' , the measured coincidence rate $\beta_{i} \gamma_{i}$ contains also contributions from the β' spectrum.²⁷ A contains also contributions from the β' spectrum.²⁷ A simultaneous measurement of $\beta_i\gamma_2$ determines the $\beta'-\gamma_2$ directional correlation, from which the $\beta' - \gamma_1$ directional correlation can be calculated, if the spins I_1 and I'_1 and the multipolarity of the gamma radiation γ_2 which is not observed in the $\beta_i \gamma_1$ measurement, are known. The correction applied in this manner is relatively free from errors as it is determined under the same conditions as the main measurement.

The nuclides chosen for the investigation of the energy dependence of the $\beta-\gamma$ directional correlation were K^{42} , Sb¹²², and Au¹⁹⁸. They were produced by exposing the separated stable isotopes K^{41} (98%) and Sb^{121} (97%) and the naturally pure isotope Au¹⁹⁷ to the 10¹³ n/cm^2 sec neutron flux in the Argonne CP5 reactor.

The K^{42} and Sb^{122} sources were prepared by evaporation on an aluminized Mylar foil of $800-\mu$ g/cm² thickness. The foils were supported by a very thin aluminum ring of 2-in. diameter. The thicknesses of the K^{42} and Sb¹²² sources were approximately 200 μ g/cm². The details of the β - γ directional correlation measurement on Au¹⁹⁸ have been described previously.²⁶ The Au on Au¹⁹⁸ have been described previously.²⁶ The Au¹⁹⁸ measurements are included here for comparison purposes only.

The coincidence data were corrected for chance coincidences, γ - γ coincidences and competing β - γ coincidences due to lower energy β branches. The corrected betagamma coincidence data measured at a particular 8 energy W and at different angles θ were fitted by a least-squares fit to a function of the form [see Eq. (6)]:

$$
W_{\beta\gamma}''(\theta,W) = A_0''(W) + A_2''(W)P_2(\cos\theta),
$$

and the experimental anisotropy factor $A_2'(W)$ $=A_2''(W)/A_0''(W)$ was determined. The "true" anisotropy factor $A_2(W)$ was then computed taking into account finite solid angle and finite source size corrections. The corrections for backscattering of the electrons

FIG. 3. Decay scheme with several β - γ cascades.

²⁷ For simplicity we assume that the two γ channels respond only to γ_1 and γ_2 , respectively.

FIG. 4. Experimental anisotropy factor $A_2(W)$ of the K⁴² β - γ directional correlation involving the first-forbidden nonunique 1.98-Mev β transition (β_2 in the decay scheme) as function of β energy \dot{W}

in the β detector were considered and were found to be rather small in the energy ranges involved in the present experiments.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The experimentally determined anisotropy factors $A_2(W)$ of the $\beta-\gamma$ directional correlations of K⁴², Sb¹²², and Au¹⁹⁸ as a function of the β energy are shown in Figs. 4-6. If the ξ approximation is valid the anisotropy factors $A_2(W)$ should be proportional to $\lambda_2(Z,W)p^2/W$; thus $R(W) = A_2(W)\overline{[\lambda_2(Z,W)p^2/W]}$ is expected to be independent of the β energy W. Figures 7 and 8 show the behavior of $R(W)$ for the $\beta-\gamma$ directional correlations of K^{42} , Sb¹²², and Au¹⁹⁸.

K^{42}

The curve of $R(W)$ decreases slowly with increasing β energy W (solid line in Fig. 7). The deviation from a horizontal straight line (dashed curve) is of the order of 40% over the energy range measured. The deviation, however, is about as large as expected from the application of the ξ approximation to this β decay: $(W_0-1)/\xi$ ≈ 0.6 . It is interesting to note that the shape factor

Fro. 5. Experimental anisotropy factor $A_2(W)$ of the Sb¹²² $\beta \gamma$ directional correlation involving the first-forbidden nonunique
1.40-Mev β transition (β_2 in the decay scheme) as function of β energy W .

Fic. 6. Experimental anisotropy factor $A_2(W)$ of the Au¹⁹⁸ $\beta-\gamma$ directional correlation involving the first-forbidden nonunique 0.96-Mev β transitions (β_1 in the decay scheme) as function of β energy \dot{W} .

of the 1.98-Mev β spectrum of K^{42} also seems to show a slight deviation from the constant value²⁸ expected for a β transition described by the ξ approximation. The deviation of the shape factor from a constant value over the same energy range as measured in the $\beta-\gamma$ directional correlation, however, is less than 10% .

The ft value of the 1.98-Mev β transition of K⁴², $ft= 10^{7.5}$ sec, is of the magnitude expected for a first forbidden $2^- \rightarrow 2^+$ transition and does not indicate the presence of selection rule or cancellation effects.

A rough estimate of the upper limit of the f_{ij} contribution to the 1.98-Mev transition of K^{42} may be obtained by applying the expressions of the modified B_{ij} approximation [Eq. (13)] to the measured energy dependence of $A_2(W)$. Such an analysis of the data yields $|C_A f B_{ij}| < 0.3(|Y_1| + |V_0|)$. A more accurate upper $\lim_{y \to A} \int \frac{\partial u}{\partial y} \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial u}{$ were accurately known.

In principle y' may be computed from the $\beta-\gamma$ circular polarization correlation anisotropy A_1 which has been determined by Daniel.²⁹ The measured anisotropy factor determined by Daniel.²⁹ The measured anisotropy factor

Fro. 7. The experimental ratio $R(W) = A_2(W) / (\lambda_2 p^2/W)$ for the K⁴² $\beta \sim \gamma$ directional correlation. The solid line (experimental curve) shows a deviation of approximately 40% from a constant value (dashed line).

A. V. Pohm, R. C. Waddell, and E. N. Jensen, Phys. Rev. 101, 1315 (1956).

²⁹ H. Daniel (private communication).

FIG. 8. The experimental ratio $R(W) = A_2(W) / (\lambda_2 p^2/W)$ for the Sb¹²² and Au¹⁹⁸ β - γ directional correlations. Here $R(W)$ is independent of W over the measured energy range in agreement with the predictions of the ξ approximation.

 $A_1 = 0.10 + 0.05$ corresponds to values of $\gamma' = +0.1 \pm 0.1$ or $y' = -6.0 \pm 1.5$, if the expressions of the ξ approximations are used. The application of the ξ approximation to the 1.98-Mev transition of K^{42} , however, seems to be hardly justified, since the basic condition, $\epsilon \gg W_0 - 1$, is not fulfilled in this case.

More information on the matrix elements contributing to the K^{42} β decay could be obtained by investigating the β energy dependence and angular distribution of the circularly polarized 1.51-Mev γ radiation following the 1.98-Mev β transition.

Sb^{122}

The β - γ directional correlation anisotropy $A_2(W)$ of the 1.40-Mev β transition of Sb¹²² is shown in Fig. 5. The measured energy dependence of $A_2(W)$ agrees well with the predictions of the ξ approximation (Fig. 8). In fact the agreement is better than expected within the limitations of the ξ approximation. $R(W)$ is constant within less than 10% over the measured energy range although the condition for the applicability of the ξ approximation, $\xi \gg W_0 - 1$, is not too well satisfied in this case: $\xi = 10, W_0 - 1 = 2.74.$

The measured shape^{30,31} of the 1.40-Mev β spectrum also agrees within experimental error with the statistical shape as predicted by the ξ approximation.

The satisfactory agreement of the $\beta-\gamma$ directional correlation with the ξ approximation justifies the evaluation of other experimental data on the 1.40-Mey β transition of Sb^{122} within the framework of the ξ approximation. The $\beta-\gamma$ circular polarization correlation has been studied by Deutsch and Lipnik.³² From the measured β - γ circular polarization correlation anisotropy, $A_1 = -0.033 \pm 0.033$, the following two values of y' are extracted: $y' = +0.25$ and $y' > 12$, the first one being the more probable.

The ft value of the 1.40-Mev β transition of Sb¹²²,

³⁰ B. Farrelly, L. Koerts, N. Benczer. R. van Lieshout, and C. S. Wu, Phys. Rev. 99, 1440 (1955).
Wu, Phys. Rev. 99, 1440 (1955).
³¹ M. J. Glaubmann, Phys. Rev. 98, 645 (1955).
³² J. P. Deutsch and P. Lipnik, J. phy

 $ft = 10^{7.6}$ sec, has the expected value for a first-forbidden $2^{-} \rightarrow 2^{+} \beta$ transition.

An estimate of the upper limit of the $\int B_{ij}$ contribution, on the basis of the modified B_{ij} approximation and the measured energy dependence of the β - γ directional correlation, yields $C_A f B_{ij} < 0.15 |Y_1|$ if $Y' = 0.25$, and C_A B_{ij} < 0.2 | V_0 , if y' > 12.

The small contribution of the $\int B_{ij}$ component to the 1.40-Mev γ transition of Sb¹²² is somewhat surprising in view of the fact that in the β decay of its sister nucleus $Sb¹²⁴$, the B_{ij} matrix element represents the main contribution to the nonunique first-forbidden 2.3-Mev and bution to the nonunique first-forbidden 2.3-Mev and
1.6-Mev β transitions.^{10,11,33–35} There is evidence that the large $\int B_{ij}$ contribution to the Sb¹²⁴ β transitions is a result of the j selection rule. One might have expected that the same selection rule effect is also operative in Sb^{122} , which differs by only two neutrons from Sb^{124} .

 $Au¹⁹⁸$

The energy dependence of the $\beta-\gamma$ directional correlation involving the 0.96-Mev β transition of Au¹⁹⁸ agrees very well with the predictions of the ξ approximation. The quantity $R(W)$ is independent of the energy W within less than 8% over the energy range from $W = 1.3$ to $W = 2.9$ (Fig. 8). In addition the shape of the 0.96-Mev β spectrum is well represented by the ξ

 38 R. M. Steffen, Phys. Rev. (to be published).
 34 P. Alexander and R. M. Steffen, Phys. Rev. (to be published).
 35 H. Paul, Phys. Rev. 121, 1175 (1961).

approximation.³⁶ The good agreement with the ξ approximation is to be expected for Au¹⁹⁸, since the parameter ξ for $Z=80$ ($\xi=15$) is considerably larger than $W_0 - 1 = 1.9$.

The parameters V_0 and Y_1 are approximately equal in magnitude but of opposite sign in the 0.96-Mev β in magnitude but of opposite sign in the 0.96-Mev β
transition of Au¹⁹⁸: $y' = -1.0_{-0.6}^{+0.8,26}$ An analysis of the β - γ directional correlation data on the basis of the modified B_{ii} approximation yields an estimate of the upper limit of the $\int B_{ij}$ contribution to the 0.96 Mev β transition of Au¹⁹⁸: $|C_A f B_{ij}| < 0.1 |Y_1|$.

The small (if any) contribution of the fB_{ii} matrix element to the 0.96-Mev β transition of Au¹⁹⁸ is consistent with the ft value, $ft=10^{7.5}$ sec, of the β transition.

ACKNOWLEDGMENTS

The author would like to express his appreciation to the National Science Foundation for their support during part of this work. The author is indebted to Professor K. Alder of the University of Basel (Switzerland), and to Professor H. D. Jensen of the University of Heidelberg for many illuminating discussions. He also wishes to express his thanks to Dr. Deutsch and Dr. Lipkin of the Université de Louvain and to Dr. Daniel of the Max-Planck Institut für Kernphysik (Heidelberg) for communicating their $\beta-\gamma$ circular polarization correlation results prior to publication.

3s A. H. Wapstra, Nuclear Phys. 9, 519 (1958/59).

PHYSICAL REVIEW VOLUME 123, NUMBER ⁵ SEPTEMBER 1, 1961

Magnetic Moments of 69-min Ag¹⁰⁴ and 27-min Ag^{104m+}

O. AMES, A. M. BERNSTEIN, M. H. BRENNAN,* AND D. R. HAMILTON Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received April 21, 1961)

The hyperfine structure separations of 69-min Ag¹⁰⁴ and of 27-min Ag¹⁰⁴^m have been measured using the atomic beam magnetic resonance method. The results are: $\Delta \nu_{I=5}$ (69-min Ag¹⁰⁴) = 33 500₋₁₀₀₀⁺²⁰⁰⁰ Mc/sec, $\Delta v_{I-2}(27$ -min Ag^{104*m*}) = 35 000 ± 2000 Mc/sec. The sign of the nuclear magnetic dipole moment has been found to be positive for both states, and by use of the Fermi-Segre formula one obtains $\mu_I(I=5)=+4.0$ -0,1^{+0.2} nm, $\mu_I(I=2)=+3.7\pm0.2$ nm. Nuclear configurations which give these moments are discussed and we comment on the difference between Ag¹⁰⁴ which shows a 2^+ , 5^+ angular momentum recoupling doublet and Ag¹⁰⁶ and Ag¹¹⁰ which show a 1^+ , 6⁺ doublet.

I. INTRODUCTION

 $'N$ a previous paper¹ we described work performe \blacksquare at this laboratory to find the correct assignments of spins, half-lives, and γ rays to the neutron-deficient silver isotopes with mass numbers 102, 103, and 104.

The isotope Ag¹⁰⁴ was studied in the most detail and was found to have a ground state with $I=5$ and a half-life of 69 min. In addition, Ag^{104} has a low-lying isomeric state with $I=2$ and a half-life of 27 min.

We have measured the nuclear magnet dipole moment of the $I=5$ and $I=2$ states in Ag¹⁰⁴ by the atomic-beam magnetic-resonance method. The large values of the zero-field hyperfine structure separations made it necessary to perform these measurements by observing multiple-quantum transitions, and made

t This work was supported by the U. S. Atomic Energy Com-

mission and the Higgins Scientiic Trust Fund. * Present address, Department of Physics, University of

Sydney, Sydney, Australia.
- ¹ O. Ames, A. M. Bernstein, M. H. Brennan, R. A. Haberstrol
and D. R. Hamilton, Phys. Rev. **118**, 1599 (1960).