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statistical errors for w are approximately &2%. These
errors, as seen from Table I, would not change appreci-
ably the values quoted above for e& and A. However,
the signi6cance of the consistency between the results
of the beam experiment and the present swarm experi-
ment is closely related to the validity of the electron
energy distribution function used in the analysis of the
swarm experiment. In support of the distribution func-
tion, we note that Howe" has shown that for Ar the
calculated distribution function gave values for the elec-
tron drift velocity which agree well with experiment.

The present method of analysis of the swarm data in
terms of a strongly peaked function for the cross sections
does not provide a unique assignment of the width of
the capture region, e.g., in Table I it is seen that a solu-
tion to Eq. (5) could be expressed in terms of the sum of
three strongly peaked functions taken at 6.3, 6.4, and
6.5 ev. This would, however, leave unchanged the peak
energy and the magnitude of the total cross-section
integral A. It is likely that the true width of the capture
region is less than that reported by Buchel'nikova.
Unfortunately, the potential energy curves" for H2O are

"K.L. Laidler, J. Chem. Phys. 22, 1NO (1954).

not well established; therefore, the width of the capture
region cannot be realistically estimated. "

A further consistency check using the electron energy
distribution functions in argon was made by comparing
the swarm results for electron capture in Ar-02 mixtures
reported in reference 7 with the beam experiment re-
ported in reference 6. Even though the check involved
only a small fraction of the total number of electrons in
the high-energy tail, both the magnitude and the de-
pendence of n (for Os) on E/P were in very good agree-
ment with the beam experiment.

In summary, we have found no evidence of internal
inconsistency between the swarm experiments and the
beam experiments for electron capture in both H20 and
02, provided that the swarm experiments are conducted
in mixtures with argon for which the electron energy
bistribution is established from independent considera-
tions. This suggests the swarm method as a means of
establishing the energy scale and absolute cross section
for various electron capture reactions, provided that the
swarm experiments are performed under conditions
where good information is available on the electron
energy distribution.

"A basis for estimating the width of capture regions has been
outlined by H. D. Hagstrum, Revs. Modern Phys. 23, 185 (1951).
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The effect of the polarization of the atomic core by the free electron on the free-electron wave function
and the effect of the exchange of the free electron with the bound orbitals on this wave function are treated
by perturbation theory. Polarization must be considered erst. Its eGect on the atomic charge cloud is
introduced through an expansion over the bound wave functions for the atom in terms of the free-electron
separation as a parameter. This parametric treatment of electron separation means we cannot accept the
solution at small separations from the nucleus although this is not a serious restriction. From this wave
function we obtain a polarized Coulomb potential from which a solution for the free-electron function may
be obtained using our old programs. Having solved the free-electron wave equation with the exchange
potential terms supposed zero, we use this solution to compute the exchange integrals. The equation
including these integrals is then solved to obtain approximate wave functions for free electrons containing
both exchange and polarization.

I. INTRODUCTION

"N a previous paper we have detailed the programs
~ - developed by us' for the determination of the wave
function for an electron in the field of a neutral atom
where the atom is supposed, to give rise only to a

*Based on work performed under the auspices of the U. S. Air
Force Ballistic Missiles Division.

f Consultant: 48 Maple Avenue, Centerville 59, Ohio.' R. G. Breene, Jr., and Maria C. Nardone, Phys. Rev. 115,93
(1959).

Coulomb potential. In that paper we deliberately
neglected the effects of (1) the polarization of the
atomic charge cloud by the free electron and (2) the
exchange of the free electron with the various bound
electrons in the atomic charge cloud. In what is to
follow we shall discuss the inclusion of these e6'ects.

In recent years several methods for the inclusion of
polarization and exchange have been used, and we
shall touch brieQy on a few of them. First we remark
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the work of Kivel and his associates. ' This author
included exchange by means of a method introduced by
Slater' for bound orbitals. This method hypothesizes a
charge-free sphere about the electron in question, the
charge from this region being redistributed. throughout
the system to e8ect the same energy change as would
the straightforward introduction of exchange. Kivel
found it necessary to adjust to other results for the
hitherto untried free-electron exchange case. This
same author introduced polarization through the
Buckingham potential whose parameters were obtained
by adjustment to conductivity experiments. Klein and
Brueckner4 determined the parameters in the Bucking-
ham polarization potential for oxygen by adjusting to
the binding energy of 0 .

Seaton' introduced the effects of exchange and
polarization without an appeal to experiment for
parameter determination by first supposing the function
for the system, free electron plus bound atom, to be
of the form:

np

+= 2 ~f-(s ')p-(s),
n=1

in which the 6, is a specific antisymmetrizing operator;
the P„are the bound wave functions, and the ir„are
the free-electron wave functions. We remark that the
expansion in individual functions is truncated for
practicality, although the author compares the effects of
such truncation. The specific point of importance to
us in Seaton's further development is that he obtains
equations for the determination of the bound orbitals
with the polarization e6ect included i' them in what
we might consider zeroth order. Temkin later objected
to this truncation as leaving out important contribu-
tions to the wave function and suggested taking
polarization into account by a sum of the following
form:

0'= pp(1) [4'p(2 ' ', Z+1)+@t&'o(1, , Z+1)j,
wherein the chief concern is with the construction of
the function 4&&"). Here, too, the individual bound
orbitals are considered as polarized in zeroth order.

Mittleman and Watson' and I ippmann et a/. ' have
developed descriptions of the system, free electron plus
atom, which involve an expansion in terms of incoherent
scattering processes, the adiabatic case corresponding
to the first term in such an expansion. We shall only

2 P. Hammerling, W. W. Shine, and B. Kivel. J. Appl. Phys.
28, 760 (1957);S. C. Lin and 3.Kivel. Phys. Rev. 114,1026 (1959);
B. Kivel, Phys. Rev. 116, 1484 (1959); 116, 926 (1959).' J. C. Sister, Phys. Rev. 81, 385 (1951).

M. M. Klein and K. A. Brueckner, Phys. Rev. 111, 1115
(1958).

'M. J. Seaton, Phil. Trans. Roy. Soc. (London) A245, 469
(1953).' A. Temkin, Phys. Rev. 116, 358 (1959); 107, 1004 (1957).

7 M. H. Mittleman and K. M. Watson, Phys. Rev. 113, 198
(1959}.

s B. A. Lippmann, M. H. Mittleman, and K. M. Watson, Phys.
Rev. 116, 920 (1959).

consider the adiabatic case for the relatively slow
electrons of our interest. Finally, we mention the
review by Allen' of Hartree-Fock equations containing
a perturbing electric field. Additional work concerned
with zeroth-order solutions including polarization
eRects is described therein.

All the methods discussed above may well be superior
to the work which we shall discuss, but they will not
suit our purpose. Basically, our intent is to include the
e8ects of polarization and exchange through modifica-
tion of our atomic and free-electron wave functions
rather than through recalculation. In what follows
we detail our method of doing this.

z
+„(p)— ~ II 4'-"'p. ,

[(Z+1) t]'

wherein I' is the permutation. operator; f; are the
bound orbitals, and p, is the free electron wave function.
Our first-order wave function will be

@(I)— ,2 ~.~ II 4'-"'v. ,
L(Z+1)~j* "

where it is to be remarked that we expand only over
those states arising from di6'erent bound orbitals. To
this we add the further restriction on Eq. (2), namely,
only those 0 „' ' are included for which but one orbital
is different from the set of ground-state orbitals. For
our purposes this will pose 1)o serious restriction.

The Coulomb~&Hamiltonian for the system in atomic
units is

Z+1 s 1 g
H= PH„+Q —+g

&»=& r;,. ~=& ri., z+z

1 Z
H = ——V"——

C'4

2 r'

(3a)

(3b)

The first two terms in the Hamiltonian of Eq. (3a)
are, according to our viewpoint, of zeroth order. The
third term will be broken up into terms of zeroth and
first order at a later stage in the development.

We wish to make use of the atomic wave functions
available from our earlier programs. "This means we

L. C. Allen, Phys. Rev. 118, 167 (1960)."R. G. Breene, Jr., Phys. Rev. 111, 1111 (1958); 113, 809
(1959); 119, 1615 (1960).

II. INCLUSION OF POLARIZATION
AND EKCHANGE

In a general way the means of our inclusion of the
effects of polarization will be ordinary perturbation
theory, while the inclusion of exchange will appeal to
an iterative procedure. We begin with the form of our
wave function which is to describe a system composed of
a neutral atom of Z electrons and the free electron. We
choose an antisymmetric product as follows:
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must require that
z

H f&(0i+ P —Lr (0)f (oi 0
~»-1 r;;

previously':

H, q,+ Q «p, Li —&"'q, =O.
,=, J

(Sa)

where:
P=P(0)+QPO) =I' (Oi+L (o)+QLo&

%=%&''+M "
(Sb)

(Sc)

Equation (Sa) separates into zeroth-, first-, and
higher-order terms in the normal fashion for all portion
of H. However, after removing our defining Eq. (4)
from the zeroth-order result we are left with a term
containing a bound orbital as follows:

where we suppose our analytic wave functions solutions
to Eq. (4). The Schrodinger equation is set up and we
multiply through on the lef t by g,=ized;0&'& and integrate
to obtain

t I4,"'I'Iv. f'
d+.0(oi+ «p, o(oi

j=1 6 rje

z, t p o"'(l)4'o"'(~)
I ~.l'«p. o(oi

;=i .I r28

t P4'o'"
«p, (9a).

rie

We now multiply the third term in Eq. (3a) on the
right by 0'Oio' and on the left by g'+, o&"'q „where the
product is taken over j= 1 to Z and the prime indicates
that the ith bound orbital has been left out of the
product. The result is

z
«p. —dr/, p'Oi .

&i, z+i + &~, zyi
(6)

We ignore the first and third terms in Eq. (9) as of
higher order, and erst consider the second term. If we
again restrict ourselves to some distance from the
nucleus, then a classical path" may be assumed:

If Eq. (4) is to be maintained, we must either (1)
relegate this second term to first order or (2) declare it
zero. It appears reasonable to consider the third term
on the right of Eq. (3a) of mixed order for the following
reasons: (1) We suppose the polarizing effect of the
free electron on the neutral atom to be a perturbation
which it certainly is both in type and magnitude of
effect. This polarization must come from this third
term, and hence we are justified. in looking to this
term for the first-order portion of the Hamiltonian. (2)
On the other hand, if we treat this term as first-order
insofar as the free electron is concerned we will have a
completely unperturbed free electron described by a
plane wave in zeroth order. This will not be very
helpful, so we ask that a part of this third term in
Eq. (3a) be of zeroth order.

The result of our considerations of the previous
paragraph is the relegation of the second term in Eq.
(6) to the first order. Therefore we obtain the following
zeroth-order equation.

z
H, (p, g I @,. (o)[H (g (0)+.g,(o))]p,d P, im

r„ri, ~

Now Eq. (9a) becomes

t eA'

ri. ~ r;,
(9b)

Hcpe+ J rie

z t p,g,o

«v. &.'"v.= Z '
— «v. , (1o)

rie

and the equations for the bound orbitals and free-
electron wave functions are still coupled through the
second term. We treat this as follows:

First we obtain the wave functions for the bound
orbitals perturbed by the first term in Eq. (9b). These
wave functions will contain the free-electron separation
from the nucleus as a parameter. In addition, they will
reQect the polarization of the neutral atom's charge
cloud by the free electron. They will be used in the
solution of the following equation:

+ Z dry. =&."'v' (7)
r;, g+1

We now make the following approximations: (1) The
o8-diagonal elements of H, are of higher order and (2)
the overlap of the bound and free wave functions are
of higher order. The first is probably of little importance,
and the second at most will restrict us to large separa-
tions from the nucleus. The result is the zeroth-order
equation for the free electron which we have applied

an obvious adaptation of Eq. (8) wherein Eq. (Sc) has
replaced the bound orbitals appearing in Eq. (8). The
assumption that the right side is zero allows us to
consider only the e6ects of polarization on the free
electron. The solution thus found is used in the evalua-
tion of the integral on the right of Eq. (9). The entire
equation is then solved for q, , The result should now
contain the effects of both polarization and exchange.

"R. G. Breene, Jr., P'ecyclopedia of Physics, edited by S. Fliigge
(Springer-Verlag, Berlin, 1961), Vol. 27, p. 37.



I NCLUSION OF POLARI ZATION AN D EXCHANGE 1721

III. POLARIZATION OF OKYGEN

We now consider the wave function for a free electron
in the presence of neutral oxygen as an example of our
program for the inclusion of polarization. We refer to
our earlier oxygen-electron calculations. '

We suppose the 0 atom in its 'P ground state, and we
must 6rst obtain the atomic wave function for this
state perturbed by the free electron. We take the
first term in Eq. (9b) as the perturbing Hamiltonian
and appeal to the familiar I,egendre expansion. As
justi6ed by our earlier work, we cut off this expansion
after the first term. Ordinary perturbation theory then
yields for the atomic wave function:

Z
V(0) = ——+ (&4'~s'/&) Vco i+ (~s'Hs4"/&)

r

X — dr+ (64sHss's/8) dr
~ei

+2(Hss's+Hss's)54hs/8, (14a)

g sg 2+g 2H 12++ 2H ~2

I.et us note that for some determinant "j":
(14b)

may obtain our Coulomb potential for the free electron
from it as

@,,—g, ,+,(o)+(s,, p @ (s)

jv.(o) gi, (o)

The perturbed atomic wave function is

where

QBB CBB
+'z=(isa") '+ Hs4+rv+ Hss +v, (12a)

A4

where the sum is to be carried only over the reasonably
close lying levels. Our 'P ground state is, of course, a
single eighth-order determinant. Under the aegis of
the perturbing Hamiltonian it will combine with none
of the determinants representative of oxygen with three
2p and one 3s electrons. It will combine with two of
the determinants corresponding to oxygen with three 2p
electrons and one 3p electron, namely,

'krv[( —1+0+1+)(1 )j 0'v[( —1 0+1+)(1+)j.

dr —2V( (i)+2Vs (i)+3Vs (8+Vs (i) (15)
~ei

since the integrals in Eq. (14) correspond to sums over
the individual orbital integrals. Now we make the
approximation that the effective nuclear charges for
the 1s and 2s electrons are the same for all
considered. This assumption and Eq. (15) yield, for
Eq. (14a):

8
V= +2Vi, ("+2—V—s.("+8 '[464'As'Vs (')

g
+3+ sH &2V (4)+3+ 2H 12V (s)+g 2H ~2V (4)

+g4'Hss's V,„(')+264hs (H„"+Hss's) ]. (16)

VI,&" and V2, &') may be obtained from reference 1.
JIB,' may readily be evaluated as

and where

~BB
2

(sss'+ Hss"+ Hss"=1,
2 Q 2

8 1
H=

I 'j/ei

(12b)
IIBi—

where

Z4~ZII'
ZI2, I

2+6 — & o r&
~so

e "dr, (17a)—
~0 ~)

is now understood to depend on the free-electron
separation R with the result:

4'sg ——((64hs)i/A)+s~(')+ (hsHs4'/A 64)% iv
y(~~»'/~sA)ev, (13a)

(13b)

Z= sZis+ sZii. (17b)

ZsF 24
Vs„("')= —

I
Zssrs+6Zssr+18Zs+ —I+-, (18)

24 r) r

Finally, the remaining portion of the potential may
be worked out as

This is our perturbed atomic wave function, and we and

v (i)
3y

where

2 ( 4H+10 ) —(2Hs 48H+270)——Z, i'r'+
I

Iz "'+I Iz srs
(2H' —30H+ 135) 81 ( 27 ) ( 81 )

( 2H' —36H+ 180 ) 1
+ I

--——— —-- IZ»r+ (H' —16H+75) —-e-«~«+- (19a)j r

H =30Zii/(3Zs+2Zii). (19b)
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TABLE I. The s-wave phase shifts, in radians. The second column
lists the phase shifts computed by us in reference 1. The third
column gives the Klein and Brueckner results. The last column
gives the results computed here for the polarized core.

k
(atonnc
units)

0.1
0.3

(from
reference 1)

4.033
4.250

(Klein-
Brueckner)

6.128
5.798

(Computed
here)

6.1587
5.8822

FIG. 1. Potentials for the free electron in the presence of an
oxygen atom. No. 1: the Coulomb potential; No. 2: the Coulomb
potential for the atom polarized by the free electron; No. 3:
the potential including polarization and exchange for the electron
spin down; No. 4: the potential for the electron spin up.

The substitution of Eqs. (17), (18), and (19) into
Eq. (16) will, of course, yield the potential. Subsequent
to such substitution one has the Coulomb potential
produced by the atomic charge cloud distorted by the
free-electron proximity.

Figure 1 allows a comparison of this polarized
potential with the earlier Coulomb potential. When this
potential is used in Eq. (8) the existing IBM 704
programs may be used to obtain the free-electron wave
function. The methods of normalization of the machine
solution are those of our earlier work. In Fig. 2 the
effect of polarization inclusion is indicated. Only the
s wave is considered here. The result is compared with
the work of Klein and Brueckner. 4 In recalling the
Klein and Brueckner work let us remark that we have
obtained their polarization result with no normalization
or reference to experiment. Their scattering results
were evidently quite good, so that the agreement of
our phase shifts with theirs (see Table I) is encouraging.

IV. EXCHANGE OF THE OXYGEN PROBLEM

Equation (10) would seem to indicate that exchange
may be considered either after or before the incorpora-
tion of polarization in the calculation. Such is not the
case. Because the Coulomb functions for the free
electron allow excessive overlap with the bound orbitals,
the exchange potentials resultivg therefrom are un-
fortunately large. The result is a meaningless, rapidly
oscillating function for the free electron. These diK-
culties are naturally overcome when exchange is
introduced after inclusion of polarization.

The right side of Eq. (10) may be written as

(20a)

where we indicate a summing over all bound orbitals
of the same spin as the free electron. There are, of
course, two possibilities for Eq. (20a), one for a free
electron spin up and the other for a free electron spin
down.

f' Rt Xp
p

Es Xp
V = 2~'*

~ dr+27t'* dr, (20b)J, p r&

( 7r't ' P f&E.2~+0
v, =v +

f)2
(20c)

Equations (20b) and (20c) have been. evaluated for
a neutral oxygen atom in its 'I' ground state. We
evaluate Eqs. (20) first with the polarized free-electron
functions and the unpolarized bound functions and
solve Eq. (10) using an IBM 704 program for the
purpose.

The normalization of the solutions resulting from
Eqs. (20b) and (20c) is somewhat more of a problem
than the simple appeal to an asymptotic solution as
was possible for the polarization case. The equation for
the free-electron wave function takes the following form
a few units of length from the nucleus:

dXp ( 8 'N)
+( &'—-+—IXp

——0.
dr' E r r') (21)

FIG. 2. YVave functions for the free electron in the presence of
oxygen polarized by the free electron. No. 1:The wave function
for the k value zero; No. 2: the wave function for the k value 0.1;
No. 3: the wave function for the k value 0.3; No. 4: the Klein-
Brueckner wave function for k value zero,

In the Appendix we describe the derivation. of tlute

function obtained as the solution of Eq. (21) and used
by us foI normalization of the machinq solution, Thjs
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The solution of this equation is given in Whittaker
and Watson" as

—,'+m —«
M (s)=s'*+~e 1' 1+ s

1!(2m+1)

(-', +m —«) (2+m —«)
s'+ . . (A.4)

2!(2m+1) (2m+2)

Since s= 2', args= &n/2. Kummer's first formula is

s—l— M„, (z)=(—s)—:"M.
, (—s), (A.5)

Fxo. 3. Wave functions for the free electron in the presence of
oxygen: No. 1: The wave function for the Coulomb potential;
No. 2: the wave function for the Coulomb potential arising from
the atomic core polarized by the free electron; No. 3: the wave
function including polarization for the spin-up electron; No. 4:
the wave function including polarization for the spin-down
electron.

and for args=vr/2 this becomes

!s!—'*me &'+m" ~'M x, m

e[—&H- &] &
— '/2&M (—s) (A 6)

Thus, for either argument we get

result is

XQ=
I'(2il+1)

e'"I'I'( ', +i l -«) ( p—) —:

!
—

! c'o(p),
E2

( s) M (s)e—(m+$&wi

2
(A.7a)

args= ——; M „, (s)=M„, (s)e~ l& ' (A.7b)
2

gA;g —A;2
Cp ——Q A,p&; Ao ——1; A;=, (22b)

Lj(j—I)+~j
and, of course, has the required asymptotic form.

In Fig. 3 we display the wave function for (1) the
free electron with polarization, (2) the free electron
with polarization spin up, and (3) the free electron
with polarization spin down.
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APPENDIX

Consequently we can use the Yost, Wheeler, and
Breit" solution:

1 e '""I'(-,'+if —«)
Xp= —— e—& 'I'"+'&M„„(e). (A.g)

2 I'(2il+ 1)

I.et us rewrite this as

e'""I'(-,'+il —«) (p ) '*

!
—

! e '~' ''""&(1+ ). (A.9)
i2)I' (2il+1)

In order to re-express this equation as a series of
real terms, we apply Fuchs' theorem to Eq. (3a)
to obtain

The wave equation for the free electron with exchange
takes the following form a few units from the nucleus:

gA, g
—A, 2

4O= P A,p", AD=1; A,=, (A.10a)
Lj(j-1)+e]'

dXO f a eP
+! k' ——+—!&t.'o ——0.

dr' & r r' )
(A.1) e'"121'(-', +i)—«) (p) l

!
—

I c'0(p) (A.10b)
I'(2il+1)

We make the substitutions:
Equations (A.10) were used for the exchange normal-

ization.
with the result:

d Xp 1 K 4
—5$

+ ——+-+
4 s s'

Xp ——0. (A.3)

"E.T. Whittaker and G. N. Watson, Course of 3fodern Analysis
(Cambridge University Press, New Vork, 1927), 4th ed. , p. 337.

'3 F. L. Yost, J. A. Wheeler, and G. Breit, Phys. Rev. 49, 174
(1936).


