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Lamb Shift in the Helium Atom~
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The calculation, first attempted by Kabir and Salpeter, of the mean excitation energy entering in the
Lamb shift of the helium ground state is redone by a quite di6'erent approach. Our answer, 1ngkpir„7= 4370,
+0.004, leaves theory and experiment on the ionization energy of helium in agreement within the experi-
mental uncertainty of &0.15 cm . Incidental results are given for the electrostatic polarizability of He
and H ground states and there is appended a new discussion of the construction of higher angular momen-
tum eigenfunctions for the three-body problem.

INTRODUCTION

'HE nonrelativistic part of the Lamb shift of an
atomic energy level was first described by Bethe'

in terms of the logarithm of the mean excitation energy

P„ l(pl pin&l'(E —Ep) lnlE„Epl-
lnkp= (1)

P„ l(ol1 l~&I (E.—E,

defined by a sum over excited states. Direct evaluation
of (1) is not diflicult for hydrogen, where all the states

I e& are known functions. However, the first application
to the helium atom by Kabir and Salpeter, ' yielded
the value

lnLkp(rye =4.39a0.2,

where the uncertainty arises from the difficulty of
constructing accurate excited state wave functions.
The magnitude of the shift of the ionization energy from

the helium ground state was thus' 1.34&0.2 cm—'.
Combined with the very accurate results of Pekeris4

on the nonrelativistic eigenvalue plus 0.'Z' corrections,
this yields for the He ionization energy

I(ol v I
~&I'

A.= kdk g
0 ~ &0—&n—&

(4)

N

(sum over all electrons).

The relation of (4) to (1) is simply

A=(v')E+-', Z4~p'(0) 1nl E/kpl, (E +~)—
where ( ) means expectation value in the state ltp
or lp) being studied, and

The electron Hamiltonian is

which most clearly represents the virtual photon
(energy k) emission and absorption which gives rise
to the Lamb shift. We shall henceforward use atomic
units (ap=e'=1), and V will be the current operator
for the general many-electron atom,

Jg, ——198 310.67&0.2 cm ',

to be compared with the latest experimental value'

(3a)
1 Z)&= & I

—-v,'—I+ p —.
2 r J,(;=tr,

(3b)J p: 198 310 82&0 15 cm

as a differential equation defining ft, we see that we
have for the sum over states simply

METHOD OF CALCULATING 1QAp

We focus our attention now on the sum over states
The rough magnitude of the Lamb shift in t»s two

I call it —J(k)j under the k integral in (4). Writing
electron atom is thus verified, but a more accurate
check is clearly needed and the difhculty lies entirely (Ep—H —k) lt t ——Vlf p (6)
in evaluating (1).

1nstead of attacking (1) directly we first retreat' to
an earlier formula in Bethe's' paper:

~ Supported in part by the U. S.Air Force through the Once of
Scientific Research.

t Present address: Department of Physics, University of
California, Berkeley, California.' H. A. Bethe, Phys. Rev. 72, 399 (1947).

s P. K. Kabir and E. E. Salpeter, Phys. Rev. 108, 1256 (19571.
3Included is an additional term contributed by J. Sucher,

Phys. Rev. 109, 1010 (1958).
C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959).

5 G. Herzberg, Proc. Roy. Soc. (I ondon) A248, 309 (1958).
' The method we shall use here is an outgrowth of earlier work;

C. Schwartz and J. J. Tiemann, Ann. Phys. 2, 178 (1959).

Thus we write

2sZlt p'(0) lnkp

—&(k) =Q,
l
v Iy,&.

= lim (V')E'+2wZpp'(0) ]n&+~~ kdk J(k) (7)
K—+oo

1 0

We attempt to solve the differential Eq. (6) by
constructing the stationary expression

~(k) =28.
I
v lit.&+8.IE -IJ-klan &, (8)
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and then varying convenient functions Pt to get a,

"best" value. The exact value of w(k) is just J(k).'
The comparison with the earlier method may be

stated as follows. Whereas they carry out variation
(or some other approximate) calculations for each
excited state and then integrate over states according
to (1), we carry out one variational calculation for the
complete perturbed function for each value of the
photon energy and then integrate over k according to
(7). Rather then try to argue which method should be
better, we simply stress that they are two independent
methods, and proceed to the calculation.

LOW k VALUES

The ground state (approximate) wave function is
given in the Hylleraa, s form (for 5 states)

(Pl e fna~l m—
Si m n—fn—

)
Z, fn, n

where s=r,+rs, f= ri+rs, N=—rip, and regis either even
or odd for singlet or triplet states, respectively. The
perturbed functions lf i are od.d-parity I' states which
we can represent as'

Z ) 7NQ flf

(10)

where the ~ sign is chosen accordingly as e is even or
odd, for each spin state.

Variation of the coeKcient Cz „ in the stationary
expression (8) then leads to a system of simultaneous
linear equations, which are solved' by standard
techniques.

There is always raised, against variational calcula-
tions, the question of how can one tell how appropriate
the form of the trial function was and thus how good
the answer is. The best reply we can give is to carry
out repeated calculations, taking successively larger
numbers of parameters in some systematic way, and
then observe experimentally the convergence of the
computed answers. "

The 18-parameter function given by Kinoshita" was
used for Pp. By comparison of various measures of this
approximate lip with more accurate values given by
Pekeris we estimate its useful accuracy to be a few
parts in 104. In Table I are a few examples showing the
accuracy and convergence of w(k). At k=0 we should
have exactly w=3, and the small error (1.7/10') is
probably attributable to Pp. The resultant values are
seen to vary smoothly, allowing one to have confidence
in an extrapolation, and to guess the residual error.
Note that the convergence becomes poorer as k in-

TwnLE I. Results of calculation according to Eq. (8)
using 18-parameter function for p0.

No. of termsinp»

10
20
35
56
84

Extrapolated to ~

2.93420
2.99749
3.00018
3.00048

~(4)

0.85916
0.87528
0.87622
0.87636
0.87638

3.00051 0.87638

rp (15)

0.31150
0.32316
0.32506
0.32557
0.32569
0.32572
0.32573

m(50)

0.103874
0.109542
0.111062
0.111658
0.111889
0.111980
0.11204

creases. This will be discussed further in the next
section.

By a slight modification of the program [replacing
the operator V in (8) by r$ we were able to calculate
accurate values of the static polarizability (at k=0).
For the ground state of helium we And 0,=0.2050
&0.0001 A', to be compared with the most recent
measured value of 0.207+0.001," and for the negative
hydrogen ion o.=26.8&0.4 A'. Earlier calculations"
of the latter gave only about one half this value.

HIGH A.'VALUES

As k goes to infinity the integral kJ(k)dk diverges,
and while the divergence is subtracted out in our
desired answer (7), we cannot do this numerically.
The asymptotic behavior of Pi for large k is easily seen
from Eq. (6) and we set

lf, = —(1/k)Vpp+U, (11)

for k values larger than some k. Substituting into (8)
we have

27rz
J (k) = —-(~')— Pp'(0)+w (k), k & l~, (12)

k k'

where Cv is the stationary value of a new variational
problem.

2Z
w(k)= — 6 r. —U +(Ul&p —&—klU). (13)

k

The integral J'"kdk w(k) now converges, but not very
rapidly. If we attempt to continue the expansion for
k ~ po of Pi [from (6)7 or alternatively of J(k) [from
(4)), the next term in (12) is C/k, where C is infinite
for s electrons. Looking back at the explicit solution
for J(k) in the one-electron atom, ' we see that the next
terms in (12) go as k 1 and k ' ink.

The reason for this strange behavior is that while we

try to expand in inverse powers of k for k ~ , there is

For the case when fp is the lowest state w(k) is actually a
lower bound for the exact J(k).

See Appendix I.
Actual computations were carried out on high speed electronic

digital computers (IBM 704, 709).I This point of view we have taken, implicitly, from Pekeris."T.Kinoshita, Phys. Rev. 105, 1490 (1957).

~This value from L. Essen, Proc. Phys. Soc. (London) 866,
189 (1953), is just slightly outside agreeing with our value.
Recently, however, Johnston, Oudemans, and Cole, J. Chem.
Phys. 33, 1310 (1960), gave a more accurate measurement of
o.=0.2068&0.0002 A3 which seems to be in de6nite disagreement
with our calculation.

"See E. G. Wikner and T. P. Das, Phys. Rev. 107, 497 (1957).
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a singularity in the defining equation (6) at r=0. The
differential equation for U is

(E II —k) U—=
k '=&r,3

(14)

where p= (2k)&.
For the constant we take +(Z/k')ties so that the

r—' singularity in U is cancelled; yet the extra added
term goes to zero exponentially fast as k —+ ~ for all
r) 0. Furthermore, (15) has no r ' term (for r ~ 0) and
it can easily be seen that combining with the term
extracted in (11), the entire function t'ai goes as r' as
r —+ 0, which is just the way a p-wave should behave.
Substituting

into (13) and looking at the leading terms as k —+ ~,
we 6nd

Zs N
1 dtt p, (r)

w(k) —g — i pdp e ""+const, (17)
k3 «» 4z r2 ~0

where p;(r) =j'dQ; J'dt)~, ~ipse' is the radial one-electron
density. By performing the obvious partial integrations
in (17), we finally find

Z2 N

tt)(k) —P p, (0)L(2k)'*—Z lnk+C],k3;, (18)

where the two strange terms appear simply with the
same coeflicient as the k ' term in (12). By proceeding
somewhat farther we have determined the coe%cient
C of all k ' terms:

C= 2Z(-,'ln2 ——',—0.5'772 )

and we must now write down an asymptotic solution
for large k which is also well behaved at small r. As
r; —+0 the important terms on the left-hand side of
(14) are —,'V',s—k; and so we add to the obvious particular
solution of (14) (for k —+ eo) an approximate solution
of the homogeneous equation (for k ~ co, r ~ 0):

Z
U ——Q —tps+const p e—)""(1+fir,), (15)

k+oo k2«y ~3 «=1 f 3

TABLE II. Results of calculations according to (13) using
18-parameter function for p0. Numbers in parentheses represent
uncertainty in last digit given due to internal inconsistency of
the numerical solution.

No. of
parameters

12
24
36
48

17 (50)/4

4.48M(0)
4.8355(O)

4.8370(0)

~(300)j4
2.4207 (0)
2.6010(0)

2.6045 (0)

Gl (3000)/4

0.9880(i)
0.95 (5}
0.94 (6)

We have checked these results against the expansion
of the exact formula for J(k) for the one-electron atom, '
and we shall use the results as follows for helium.

Variational calculations for tt) according to (13) are
carried out up to some very large value of k, call it E,
at which (18), (19) become su anciently accurate.
Taking note of the functions involved in the preceding
analysis, we use as a basis for the trial function U the
following:

U' —p Q r lr r m lr n~ ', a'ir—1+Art)~—(1~ 2) (20)

where we use terms both with )),=1 and P =2(2k)t/E'.
Some results are shown in Table II.

The value tt)(50) when put in Eq. (13) gives J(50)
=0.11205 which agrees excellently with the value
shown in Table I. The values at k=300 are also seen
to converge nicely, apparently accurate to better than
one part in 10'. The numbers shown at k=3000 are
rather typical of the poor results obtained at very high
k values. Here the results at 36 and 48 parameters
are poorer than those at 24 parameters (remember we
are computing a lower bound). Apparently at very
large k the matrix involved in the solution of the
linear equations

Ax= b,

( A, matrix; x, b, vectors) is somewhat singular, so
that numerical round-o8 errors accumulate in the
solution for x. The internal consistency is measured by
the difference between

U=x b,
and

V=xAx,
and this discrepancy is shown in Table II along with
the quoted values of

m =2U —U.

N I'. ~ r~. N p dsp, (y)
dr lnr

Q p, (0) ~g1=1r,sr, s a=i J11

= 2Z(As ln2+ —',—0.5772 )+
Z p'(0)

&(finite part of
«=1 f«3

(19)

In spite of the growing errors (which presumably
could be overcome by more elaborate computing
techniques), we will still be able to get a very accurate
final value, since the contribution to the Anal integral is
getting smaller as k increases and we have the series
(18) as a guide.

The value of the constant C computed with the 18
parameter function is 5.18 and the other constants are
(V') =—6.12573, 4ttip(0) =Q; p;(0) =45.4971.
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1.5
4.0
7.5

17.5

m exact

0.83058224
0.39507764
0.23055
0.10621

m computed

0.8305816
0.3950658
0.230499
0.106091

Fractional
error

1/10'
1/40 000
1/5000
1/1000

TABLE III. Results of test calculation for hydrogen 15 state. since we do not have many points (at each k), the
extrapolation is a crude guess and the uncertainty is
taken as the lull amount of this extrapolation. We then
get ""kdk w(k) =0.7942,

4~s(O)

4.0
31.5

200
1000
4999.5

k~9 exact

2,321245
1.253407
0.61970+0.00005
0.31003
0.14800

k'z computed

2.321245
1.253407
0.61970
0.30942
0.14729

Fractional
error

&1/10'
&1/10'
&1/104

1/500
1/200

with an uncertainty &0.0005 from the extrapolation
at each k value and another uncertainty of &0.0002
from the numerical integration.

For k&1000 we use the asymptotic formula:

4 D
=—(2k) l —2 Ink+5. 18+ +

krP(0) k' gk
RESULTS

and by comparison with the above expansion for
hydrogen with k ~ k/4, namely,

Table III shows computed results for hydrogen. In
our programs the e'/rts term was deleted and the 1s'
state was used for Po. The "exact" values shown in
this table are gotten either by explicit evaluation of the
integral representation of J(k) given in reference 6 or
from the asymptotic expansion of that integral (for
Z= 1):

(2k) &—2 ink+4. 93—19.2//k+
we set D= —20&3. Then

t" kdkG(k) =0.3578—0.0553+0.0127
"tooo M'(0)4S 7r2

Co(k) = (2k) &—ink+ (3 ln2 —1)—
k' (2k) &

+ (—0.0017+0.0003)+

=0.3135~0.0007,

For helium, with the results of calculations at
35 points from k=0 to k=50 we have numerically
integrated

245.204~ 0.017—50X6.12573
(lnko), io= — — —— —+ln50

45.4971oo

kdk J(k) =245.153,
+0.7942+0.0007+0.3135+0.00074p

2 ink [9/2 —6 ln2 —f (3)j+ + . where we have added an uncertainty of &0.0004 to
k k cover the unknown following terms of this series. Our

final calculated value is now

and if we add the increment from extrapolating each
calculated value (to ~ number of parameters) we get
JpM ——245.204&0.017, where we have taken the un-
certainty as one-third of the extrapolation.

For the high k values we have used calculated values
of vo from k=50 to k=1000 shown in Table IV. Here,

TABLE IV. Computed results and extrapolated values for
S/4 for high k values using 18-parameter fo for helium 1S. The
numbers 24, 36, 48 are the number of parameters used in the
variational calculation.

=3.6772&0.0018.

We need now only assess the accuracy of the 18-
parameter function used for the ground state. By
comparing various integrals over this wave function
with values either known theoretically or given more
accurately by Pekeris, we give an additional uncertainty
of 5 parts in 10'. Then adding In2 to convert back to
rydberg units:

ln[ko/ry j=4.370&0.004.

30
50
65
80

100
140
200
300
470
700

1000
1400

w/4
(24)

5.61499
4.83553

3.86751

2.60098

1.60050

w/4
(36)

4.45690
4.16765

3.44498
3.03055

2.18711
1,86311

1.3815

Hl/4
(48)

5.61661
4.83704

3.86924

2.60448

1.60841

w/4
extrapolated

5.6171~0.0005
4.8375~0.0005
4.4579~0.0010
4.1687w0.0010
3.8698&0.0006
3.4465~0.0015
3.0325~0.0019
2.6056&0.0012
2.1899~0.0028
1.8669&0.0038
1.6110&0.0026
1.3875~0.0060

Previous calculations have given

4.39+0.2 (Kabir and Salpeter)

4.37+0.03 (Dalgarno and Stewart)"

4.389+0.010 (Zaidi)"

Combining with Pekeris' results we have for the
ionization energy of He, Josh=198 310.685~0.005 cm '
and the experimental value J, p

= 198 310 82&0 15.
"A. Dalgarno and A. L. Stewart, Proc. Phys. Soc. (London)

A76, 49 (1960).
'5 M. Zaidi (private communication).
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One might add a further theoretical uncertainty of
not more than &0.005 to cover as yet uncalculated
terms.

The Lamb shift in helium is verified within about
10%, which is the present experimental uncertainty.
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APPENDIX I. REPRESENTATION OF ANGULAR
MOMENTUM STATES

Breit" has given a general analysis of the angular
momentum eigenstates for 2 particles in a central field
and has written down the functions for I' states. How-
ever his method seems rather awkward when applied
to states of higher L and we give here an alternative
approach.

A state of 2 particles coupled to a total angular
momentum I., s component 3f may be written as

+(r&,r2, L,M) = g P(l&, l9 L M) f~gi2(rp, r2), (A.1)
l1l2

where

lp(ly, l2)L)M) = p I lanky(1) vl2m2(2) (l]rrlyl2nz2
I
LM)

f0 1 VSSE (A.2)

is the vector-coupled state with specified / values for
particles 1 and 2. The sum in (A.1) is too extensive and
we wish to reduce it by extracting functions of the
scalar

fy2= l'y —r2

to be combined with the f(r~, r~).
We make use of the following formula:

rg re(lg, l2)LM) =C+~g (lg+1, /g+1) LM)

+C+ p(lg+1, l2 —1, LM)

+C ~p(l, 1, l2+1, LM)—
+C P(lg —1) lg —1, LM). (A.3)

It is obvious that these 4 terms give the complete
reduction, remembering the selection rules for the
vector r, (Dlq +1), and for the ——scalar

rq r2(AL=BM=O).

Formulas for the coeKcients C may easily be written
down, but for our construction we need note only the
following obvious property: Any coefFicient C will
vanish unless both the original state, P(l~, l2,L), and

"G. Erat, Phys. Rev. 35, 569 (1930).

the state it multiplies, P(l&', 12',L) exist; i.e., CWO only if

We want to use (A.3) to reduce the terms with largest
/ values to terms with lower / values, introducing
r~ r2. Thus, we will be able to rewrite the original
expansion (A. 1) in the form

%(r~,r 2L, M) = P P(l~, l~,L,M)Figl2(r~, r~, ra~), (A.4)
f Lt, l2)

involving only a small set of values {l&,l2} for which
the reduction cannot be carried further. From the
rules above, we see that the irreducible pairs {1~,4}
are those values which satisfy

(A): lg+l2 ——L, or (8): lg+lg ——L,+1,

with the added restriction
I
l~ —

l&I &L.
Thus, there are only (2L+1) angular functions

needed (for each M); this agrees with Breit's result.
Furthermore, we can easily classify the states according
to their parity, which is just (—1)"(—1)"; and the
two classes (A) and (B) are clearly distinct. A still
further simplification occurs when we symmetrize the
wave function, since

p(lq l2 LM) = (—1)"+" ~g (l2 lq LM).

These two properties (parity and exchange symmetry)
are quite complicated in Breit's description.

Examples: I.=0.
We have only 3&=32=0, even parity,

+("&')=F(ri, r2 r12)~P(r2 rl r12)

and we will write F(r2, r~, rq2) =F(r~,r2, r~2).

I=i,
Odd parity: (l&,4) = (0,1),(1,0);
Even parity: (l~, l2) = (1,1).

Using Cartesian vector notation Dnstead of r
7'g (8,$)j, we can write

4(' 'F0) = rgF& r2F

4'("F')=riXr2LFWFj.

The above results are given by Breit, but we can
proceed easily to higher I..

I.=2,

Even parity: (l&,12)= (0,2), (2,0), (1,1);
Odd parity: (l&, l&) = (1,2), (2,1);

4('3D') ={r, ,r,}'P~{r, ,r,}'F+{r, ,r, )'LQ~G)
0 ("D')= {r&,r&Xr2}'PA{re 12Xrg}'F,

where we have written {a,b}' for the symmetric
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secor}d-rank tensor. I'or future reference we write
down one more:

+( ~ ) {rl {r2 r2) }I {r2 {r1rl) ) +
+{rl,rl, rl}'G—{r2 f2 12}'G.

The general angular momentum functions here
written down (somewhat symbolically) in Cartesian
vector form can be constructed for example from the
harmonic polynomials of a,n arbitrary vector, $ as
follows:

&i~(()= ('l'. -8'2, 2 2),

P(/„ /2, L=/, +/2, M)

=(., V,) (» V,) a...(q),

P(/2, /2, L=/l+/2 —1, M)
= (rl Vq)" '(r2 Vl)" '(r~Xr2 Vl)lfr~(()

(A.5)

(A.6)

APPENDIX II. EVALUATION OF INTEGRALS

Using wave functions of the type (10) we take
derivatives in Cartesian form as follows:

With functions of the type (20), we have
r1 8 r1—f2

Vl= —— +
rl ~rl r12 r12

and we average over cos012 as follows:

r12
1 t'/+2 )

ir '+' 'r '-'— (/& —1)
(/+2)»«! s )

The remaining integrals are of the general form.

r

J»(a,b)= ' dr e I'"r' ' dse "'s' ' (b&1)
~0 r

(—/2/v)" (222+b —1)!
J„,(a,b)= +2—'—

m=2 (222+ g) 222!

which can be tabulated according to simple recursion
formulas proceeding from small values of a, b (for given
/2, v). However, this is not always satisfactory. When,
for example, p,&(v, large cancellations may occur in
this way and we must instead start from the series,

r1—r2
Vl (~8 ~t)+ ~u,

r] I
for the largest values of u (at each b) and then iterate
downward from (a,b) to (a—1, b 1), etc. —

If on the other hand, p))v, we can start with the
single term,r2

V2= —(&,+&g)+
r2 Q (&—1) (J"(o,b=~)= »I 1+-

I
—Z -(

P~ E 23 .=i s E/2+v)Then after taking inner products of vectors and
re-expressing scalars as rl= (s—t)/2, r2 (s+t)/2, and-—

and iterate safely to lower values of a and b (&a).
r1 ~ r2= ~ js2~t2 —2N2j, we do the integrals over the

For b& a+1, the upward iteration

8 8
ds udN d t (s' t') = —dv d2

J2 J2 (42r)2 J J

yielding rational functions.

1 (b—2)!
J„,(a,b) = — +(b a 1)J„„(u,b—1—)—

~ (I+~)' '

is always safe.


