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ognized that they may be difficult to distinguish from
other effects, as for example, changes in mobility.

ACKNOWLEDGMENTS

The author has benefited from discussions with a
number of his colleagues, especially T. C. Harman,
W. H. Kleiner, and Laura M. Roth, on various topics

of solid-state physics relating to this work. Discussions
with Professor George Scatchard concerning the appli-
cability of the Debye-Huckel theory were very helpful.
Suggestions of Dr. J. M. Honig for improving the manu-
script were much appreciated. The computer program-
ming for Fig. 6 was ably carried out by Mrs. Nancy
Rawson.

PH YSI CAL REVIEW VOLU M E 123, NUMBER 5 SEPT EM BER 1, 1961

Solution of Schrodinger Equation for a Periodic Lattice

LEONARD EYGES
Lincoln Laboratory, * Massachusetts Inslitstte of Technology, Lexington, tlat assachNsetis

(Received April 20, 1961l

We present a new method for solving the problem of one electron
in a periodic potential; it is discussed in this paper mainly for
k=O, although it can be generalized to other k. The periodic po-
tential is considered to be generated by spherically symmetric
"atomic" potentials at each lattice site; this does not mean of
course that the total potential near a lattice site need be spherically
symmetric. The method has its origin in the observation that
(for k=0) the equation for C(K;), the Fourier coefficient of the
wave function, becomes just the momentum-space Schrodinger
equation when the lattice spacing becomes infinite. This latter
equation is separable into a radial part, and an angle-dependent
part expressible in spherical harmonics. This suggests that it would
be advantageous to expand the C(K;) for finite lattice spacing
similarly, into radial functions C&(E ), where IC is the magnitude
of the mth smallest reciprocal lattice vector, and into an angle-
dependent part expressible (for cubic lattices) by Kubic harmonics.
We do this and the Schrodinger equation for the system becomes
a set of homogeneous linear equations for the C~(E,„), with a
corresponding secular determinant for the eigenvalues.

We have tested the method numerically, as a function of lattice
spacing and potential strength, for S-like states, when the
"atomic" potentials are exponential ones, and the lattice is body-
centered cubic. In many cases it turns out that one can solve the
periodic potential case more easily and more accurately than orle
can solve for the isolated atom. This is because as the lattice
spacing gets large the successive E became more and more closely
spaced and this leads to larger and larger secular equations. The
wave functions as well as energies are given for most lattice spac-
ings to considerable accuracy (three to seven significant figures).

When the lattice spacing gets large and the equations approach
those for the isolated atom, we show how one can use the atomic
momentum space functions as variational functions, in the same
spirit as the usual tight-binding approximation (as applied for
k=0). The present method has the considerable advantage that
it bypasses the usual difficulties with that approximation —near-
neighbor approximations and calculation of overlap integrals-
and permits an easy and accurate evaluation of the variational
expression as a sum over the IE, .

I. INTRODUCTION AND THE BASIC EQUATIONS

HE one-electron band structure problem, i.e., the
problem of solving the Schrodinger equation for

an electron in a periodic lattice, is an old one with an
extensive literature. ' In this paper, we look. at some old
equations for this problem in a new light, and are led to
a new and accurate method for solving it. We are also
led to a new way of doing the "tight-binding" approxi-
mation which bypasses the multi-center integrals that
occur in the usual formulation of this method.

To begin, we consider a monatomic periodic lattice at
each lattice site of which there is an "atomic" potential;
this gives rise, of course, to a periodic space potential.
For simplicity, we shall assume that these "atomic"
potentials are spherically symmetric, although one can
generalize to potentials which are not spherically sym-

*Operated with support from the U. S. Army, Navy, and
Air Force.' For a review article with extensive references to the literature
see, for example: Joseph Callaway, in Solid-State Physics, edited
by F. Seitz and D. Turnbull (Academic Press, New York, 1958),
Vol. 7.

metric in a straightforward way. This assumption does
rot mean, of course, that an electron sees a spherically
symmetric tota/ potential, for near any lattice site it will
see the local "atomic" potential plus the tails of the
potentials that are at other sites. We choose an origin
of coordinates at one of the potentials and in this co-
ordinate system let r be a position vector to a point P in
space. The site of the ith potential is specified by a
vector tl; of the form

'tlar+t2a2+&sa'8

where a1, a&, a& are three basis vectors for the crystal
andi', i~, i3 are integers. At each lattice site, we set up a
coordinate system oriented similarly to the coordinate
system at the origin, and let r; be the position vector in
the ith system to the point P in space. Then obviously
we have

d,+r,= r.

As usual, we define the basis vectors b, of the reciprocal
lattice by

a,"b,=b;,



1674 LEONARD E YGES

and define a reciprocal lattice vector K, ,

K, = 2~(jibi+ jpb2+ j3b3).

There are two standard formulas' that have to do with
the reciprocal lattice which we quote here for future use.
First is the well-known equation

P, exp(ie d,) = (2m-)'Qg P; h(e —K;), (1)

where 6 is the usual Dirac delta function and Q~ is the
volume of the unit cell of the reciprocal lattice. Of
course, this has meaning only if it is used as a factor
in an int:egrand. The second formula is this. Suppose
for a given space lattice we wish to sum some function
F (K,) over the reciprocal lattice. If the lattice constant
of the space lattice is large, then the points of the re-
ciprocal lattice are very close and the summation can
be approximated by an integration

In this paper we mainly discuss the case k =0; we
intend to treat the general case in a later publication.

The work that follows is motivated by the following
observation. We consider Eq. (8) for k=0. Now in
Appendix I it is shown that if we define the Fourier
transform w (e) of the atomic potential n (r,),

1
w'(e) = ~~v'(r) exp(ia r)dr,

(2')' ~

and evaluate it at o = K, , then it is essentially identical
to w(K, ).

w (K;)=w(K, )/(2n. )'Qp. (10)

Thus for k=0, Eq. (8) can be written

(2m)'Q~ P, C(K,)w'(K, —K;)
C(K,)=

g F(K;)-
I

F(K)dK.
(2~)3n, I

(2)

The total potential of the problem is V, (r), the crystal
potential. It is the sum of the "atomic" potentials,

If we now imagine the lattice to expand uniformly, the
points of the reciprocal lattice become closer and closer,
and we can replace the summation by an integration,
according to Eq. (2). Then Eq. (11) becomes (K, and
K; pass over to continuous variables K and K')

v. (r) =2' v'(r').

The Schrodinger equation is then

(7'+P)+ (r) = i'„(r)% (r),
where

(3)

C(K) =-
~C (K')w'(K —K') dK'

(0—&')
(12)

2m 2m 2fÃE
V.(r), '(.,)=—V.(.,), P=, (3)

A2
'

A'-
'

A2
'

and L~' is the energy. Since v, (r) is periodic in r, we can
expand it in Fourier series,

i, (r) =Q; w(K, ) exp(iK,"r). (6)

Moreover, we know by Bloch's theorem that the wave
function can be written in the form

O(r) =exp(ik r)P, C(K,) exp(iK; r). (7)

If we put (6) and (7) into (4), we get a standard equa-
tion for the coefficients C(K.;).

P—(K,+k)'jC(K ) =Q C(K )w(K,—K ). (8)

Equation (8) is our basic equation. It is really an
infinite homogeneous set of equations in an infinite
number of unknowns, If there were a single practical
method of solving them, or of evaluating the infinite
secular determinant that pertains to them, the problem
would be closed. Of course there is no such method; but
the point of this paper is that one can treat them much
more efficaciously than has been done heretofore.

2 When we write d; and I;, the subscripts i and j on these
vectors should be understood to stand for the triad of integers
i&, i2, i3 and j1, j2, j3. This is to be contrasted later with the nota-
tion E;, in which j stands for a single integer which labels the
magnitude of the jth smallest reciprocal lattice vector.

Now, Eq. (12) is simply the Schrodinger equation in
momentum space, and like the corresponding equation
in coordinate space, it. is separable if the potential v (r)
to which it pertains is spherically symmetric. The fact
of separability enormously simplifies the solution of the
equation, for it means that instead of considering one
equation in three variables, we can consider one at a
time an (infinite) set of equations, but each in one
variable.

One point of these remarks is that, however else one
treats Eq. (11), it now appears reasonable to expand
the C(K;) which occurs in it in spherical harmonics, for
we now know that at least in the limit of large separa-
tion, this leads to an exact separation of variables. %e
hope, of course, that even when the separation is not
large, and the equations are only "approximately
separable, " that even this approximate separability
makes the equat. ions easier to handle than they would
be if we simply tried to solve the single equation (11)
as a function of the vector variable K.

If we expand Eqs. (11) they become a set of homo-
geneous equations for the radial parts of the amplitudes
C(K,), evaluated at the different absolute magnitudes
of the reciprocal lattice vectors. The work of Sec. II is
devoted to solving these equations and to investigating

3 Actually, we shall deal with cubic lattices for which the ap-
propriate functions are not spherical harmonics, but Kubic
harmonics.
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the practical questions of convergence that arise. In
Sec. III we show how Eq. (11) can be used in a "tight-
binding" method which has appreciable advantages over
the usual method.

Before we proceed, there is one point that needs dis-
cussion. We are accustomed to expanding continuous
functions of angle in spherical harmonics and using the
orthogonality relations which are predicated on the fact
of continuous functions. Is there any difhculty in ex-
panding the C(K,), which are not continuous functions,
but are defined only at points of the reciprocal lattice?
In fact, there is not, as we can see by introducing the
basic equation (8) in a different way, a way which
justifies this kind of expansion, as well as one which is
interesting in its own right.

To discuss this, suppose we wanted to represent the
wave function%(r) not using Fourier series, but rather
writing the periodic part as a series of "orbital" func-
tions,

%(r) =exp(ik r)P;P(r, ).

We introduce the Fourier transorm p (3 ) of the "orbital"
function f(r;),

1 f

P(X)= ' f(r) exp(i0'r)dr, (14)
(2~)' "

in which, of course, X is a continuous variable. Now we
know from the theorem of Appendix I that if we set
K=K;

i.e., at the reciprocal lattice points, the function P(X)
coincides (except for a factor) with the Fourier coe%-
cients function C(K;). But this does not tell us how to
calculate the function P g ) at points other than recipro-
cal lattice ones. To do this, we must have some supple-
mentary formula which enables us to calculate P(X) at
all points, as a function of the continuous variable X.
We derive such a formula now.

We put Eqs. (3) and (13) into the Schrodinger equa-
tion (4) and get

(V'+P) fP, It (r;) expLik (r~+d, )1)
=LP& v (r )jfg;P(r;) expLik(r;+d, )j}. (15)

In this equation we sum over all values' of i. But it is
clear that this equation will be satisfied if we can satisfy
it for a single arbitrary lattice, i.e., site, if we can solve

(P+P) (It (r,) expPik (r~+ d,)j)
=Lg~ v (rg) jII (r;) expLik (r~+d;)]. (16)

If we transform Eq. (16) to momentum space, we get
the following equation for @(X):

=, t y(e)w (0 —X)LPg exp(ie dg)&de. (17)

This equation for @(2) bears a word of comment. On
the left-hand side we have g(X), a function of the con-
tinuous variable X. The function p(e) in the integrand
on the right-hand side is ostensibly also a function of
the continuous variable cr, but in reality this is not so.
For, using Eqs. (1) and (10) we see that the right-hand
side is nothing but

essentially the same as the right-hand side of Eq. (8).
Thus Eq. (17) has to be interpreted in the following way.
If in it we set 2= I;, and let K, run over all reciprocal
lattice vectors we get a homogeneous set of equations,
identical with Eqs. (8), and the energy eigenvalues are
determined by the vanishing of its (infinite) determi-
nant. Once these eigenvalues are determined, however,
and the function p(K;) is found we can, if we want to
write P(r) in the orbital description (13), get @ as a
function of the continuous variable 2 by using Eq. (17)
as a kind of interpolation formula.

II. SOLUTION OF THE EQUATIONS

A. General Discussion

In this section, we discuss in a general fashion the
direct solution' of Eq. (8) which for the case we con-
sider, k=-0, becomes

(P—EP)C(K,) =P;C(K,)w(K;—K;). (18)

We shall deal with a cubic space lattice; hence the
reciprocal lattice is also cubic. Then, as we have men-
tioned, the appropriate functions for expanding the
C(K;) are not spherical harmonics but Kubic harmonics.
This can be seen as follows. Let 8 be one of the rotation-
inversion operations of the cubic group. Then obviously
we can rewrite Eq. (18) as follows:

PC(K,) =%PC(K,)+Q, C(RK,)w(K, —RK,). (19)

Now operate with R on this equation, and get

pC(RK, ) =KpC(RK, )+Q; C(RK,)w(R(K;—I,)).
For spherically symmetric atomic potentials, m depends
only on the magnitude of I;—I;, hence we can replace
w(R(K; —I;)) in the last equation by w(K; —I;).We
see then that if C(K;) is a solution of Eq. (18) with a
given energy, C(RK,) is also a solution. In other words,
all the operators of the cubic group "commute with the
Hamiltonian. " Hence, the functions C(E;) must trans-
form as base functions for the irreducible representations
of the cubic group, i.e., as Kubic harmonics.

In Eq. (18) then, we can expand the C(K;) in Kubic
harmonics of a given "type. "' For our example, we shall

4 An attempt to solve Eq. (18) directly as a matrix equation,
but without breaking up the C(K;) into radial and angular parts
has been reported on briefly: P. A. Marcus and H. Schlosser,
Bull. Am. Phys. Soc. 4, 276 (1959).

~See Appendix III for a summary of notation for Kubic
harmonics.
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do this for n type. We would emphasize, however, that
any other type could be done as well and that the
procedure is basically the same. It may be, of course,
that the various convergence problems are worse with
other types, but in general the convergence properties
are satisfactory enough for the n type that even if they
should turn out, to be somewhat worse for other types,
they would still be adequate. Also the n type is espe-
cially interesting in that the lowest level of this type
goes over into the ground state of the isolated atom
when the lattice spacing goes to infinity.

Instead of choosing some special substance and an
approximate or phenomenological potential known only
numerically, it is much more useful for our purposes to
try to keep the work analytic as long as possible; this
facilitates both the exposition of the method and the
estimation of the errors in the approximations we make.
To this end, we have chosen the individual potential to
be an exponential one. This has the advantage that
the atomic case (for S states) can be solved exactly, and
the resultant wave functions and energies can be com-

pared with the band case; this yields an illuminating
comparison of the way the wave functions and energies
change as the lattice is formed by bringing up the indi-

vidual potentials from infinity.
We expand then the C(K;) in Kubic harmonics of

n type,

C(K,)=Q( C) (E,)H) ' &(Q,)) l'=0, 4, 6, , (20)

and put Eqs. (A.6) and (A.8) together to get an ex-

pansion for w(K, —K,) in Kubic harmonics:

(P E—P)Ci(E;)=P Q Cg (E;)w)(E;,E;)
X; l~m, 4,6. . .

tI a (y) — $2~ r t d— (26)

We consider a bcc lattice of lattice constant a, so the
reciprocal lattice is face centered, and treat the states
that become pure s states when u becomes infinite. When
a is infinite, Eqs. (25) can be "truncated" without
approximation, i.e., as we have pointed out before, they
break. up into a set of separated equations for the ampli-
tudes Co, C4, C6 and of course it is the equation for
Co which defines the s-state wave function. In the
present case, the equations are coupled, and we must
make the approximation of truncating them. We shall
begin as simply as possible by assuming that on the
right-hand side of Eq. (25) Co is large and all the other
C~ are small; we later check this assumption using the
approximate solution for Co that we derive, and find
that it is an excellent one. The equation for Co is then

(P EP)C,(E;)—
=Q wo(E', Eq)Co(Eq)g [Ho~ & (Qq)] ~ (27)

For the exponential potential we have from Appendix II

XQ o, Hg' '(Q, )H & '(Q;)). (25)

This is the basic set of homogeneous equations for the
amplitudes C& (E~).

For the numerical example we shall, for reasons dis-
cussed above, choose the exponential potential

w (K,—K,) =P )" P„Q,w(" (E,,E,)
XH, . '"&(Q.)H;, ~"&(Q;). (21) wo(E;,E;)=— 8~@,b2d3

[1+d'(E, E )']t 1—+d'-(E, +E )']
Using these expansions in (18), it becomes

(p —E,o)p& C& (E,)H& & &(Q~)

=2;Ei 2&" Z. Z. Cv(E)H~'"&(Q)
Xwi" ( E, , E) H",&'" (Q&;)Hp, '"& (Q,). (22)

Now we multiply Eq. (22) by H&& '(Q;) 1=0, 4, 6,
and we integrate over the solid angle of 0;, i.e., we can
consider for the moment, for the reasons given in Sec. I,
that 0; is a continuous variable. We get the fundamental
set of coupled equations,

(p —E,")C (E,)=Z;2 =o, , (E.,E,)
XCE (E,)H& ~ &(Q,)Hi" (Q.) (23)

In this equation the sum' over j can be considered to be
a sum over all the K, of a given magnitude (which sum

we denote by Pa, ) plus one over all the different
magnitudes of the K, (which sum we denote by Px;).
Symbolically

(24)

Finally then, we can write Eq. (23) as

'This is still a vector sum, of course. That is, j stands for the
triad of integers j1, j2, j3. see reference 2.

Now consider in Eq. (27) the sum over Q, . Since (Ho' ')'
is unity, the sum is, for a given magnitude E,, just the
number of lattice vectors with that magnitude. We call
this number e;.

e, =g(Ho~ &)'

=—number of lattice vectors with magnitude E,.

n, can be calculated in a straightforward way; we out-
line the calculation now. For a bcc lattice with basis
vectors a&, a&, a3 defined by

a&
———',a(—i+j+k), ao ———',a(i —j+k), ao ———,'a(i+j —k),

the basis vectors bi, bo, bo of the reciprocal lattice are

b&
——a—'(jyk), bo ——a—'(i+k), bo ——a—'(i+ j),

The volume Q~ of the unit cell of the reciprocal lattice
is then 2/a' and the magnitude of the reciprocal lattice
vector I; is

~
K,

~
=2&ory/a,

V'= (j&'+j p+ jp+j ij 2+j ij o+j 2j o)..
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and it becomes
(dl

(Pd' —x )Cs(x;) = —16m. (bd)'~ —
)

&a&

oo n, Cp(x;)
(29)

=r LI+(x,—x,)']t 1+(x,+x )']
For computation, it is convenient to write (29) in a

more symmetric form. To this end, we define a new
variable D, :

D,=Cs(x,)ge;, (30)

and find that (29) can be written in the standard form
for a linear eigenvalue problem

P a,;D,=hD, ,
j=l

(31)

where now H;; is symmetric

(n,u, )I
X +x,x,b;, ,

$1+(x,—x,)']Ll+ (x;+x;)']

X =Pd'.

Of course, Eq. (31) is formally of infinite order; to
solve it in practice, we must truncate it. The reason we
expect this to work is that, as we have mentioned, we
know the qualitative behavior of the function Cs(x,):
It resembles the momentum-space wave function for
an isolated atom, and as such, it becomes negligibly

We put in diferent integral values for j&, j2, j3 to find
the different magnitudes that the vector K; may have.
We call these magnitudes' E;, and label the smallest
value (ji——js——js——0) by j=1.This is simply for con-
venience later in computer programming. There are
twelve vectors for which y'=1 and hence for which

t K,
~

=242v./a; these correspond to (ji, js, js) having
values (0,0,1), (0, 0, —1) (0, 1, —1) plus cyclical permu-
tations of the numbers in parentheses. At least up to
j= 18, p' increases by integral steps so we can write for
the magnitudes E, that will be of interest to us

+;= (2v/o)L2(j —1)]', j=1, 2, 3, . . . (28)

The number of diGerent vectors associated with a given
magnitude E; can be counted up, with results which
follow.

j 1 2 3 4 5 6 7 8 9 10 ii 12 13 14 15 16 17 18

n;. 1 12 6 24 12 21 8 48 6 36 24 21 24 66 3 48 12 39

Now we return to Eq. (2'7). In it, we introduce
dimensionless varia, bles

small after some moderate value of x,. Because of
the factor gu;, D, decreases less rapidly for large x,, but
it decreases nonetheless and is also negligible for large
values of x;, which again suggests that we can neglect
the D; for large i.

Obviously, it would be very useful if one could esti-
mate in advance at just what point to truncate the
equations; this can be done by using the atomic mo-
mentum space function as a qualitative guide. For if it is
true that the atomic function resembles Cs(x~), we have
simply to look at the atomic function and find at what
value of x we can consider it as negligible for practical
purposes. Then, for a given lattice spacing, we ask how
many values of x, there are below this value, and this is
the order of the secular equation we must solve. '

A remarkable feature about this procedure is that it
often makes the periodic potential easier to solve than
the isolated atom. For whereas the allowed values of
x, in the atomic case are continuously distributed, for
the periodic lattice they are discrete. Moreover, succes-
sive x; become more widely separated as the lattice
spacing decreases, so that the smaller the lattice spacsng,
the fewer values of x, that we must cousufer We stat. e this
slightly differently: The periodic case differs from the
atomic case in two ways. The integral equation for the
atom becomes a set of linear equa, tions for the periodic
potential; this tends to make the periodic case easier to
solve. On the other hand, in the periodic potential, we
cannot in principle con6ne ourselves to only one value
of l, corresponding to a, single spherical harmonic, but.
must expand in Kubic harmonics of a given type in
each of which there appea, rs an infinite number of /

values. If, however, it should turn out in practice that
the values of the lattice spacing we are interested in are
such that the higher order partial waves are still negli-
gible, but at the same time we are led to a secular equa-
tion of reasonable order, then it will indeed be easier
to solve the periodic potential than the atomic one. This
is often so, as we shall see.

Thus the cases we must consider often divide con-
veniently into two. If the lattice spacing is small, the
reciprocal lattice spacing is large, and we are led to
secular equations of small order. When the spacing gets
large, we are led back to many points and secular equa-
tions of a high order. But for the latter case, the solu-
tions that we find are so closely approximated by the
atomic wave function itself that we can, as we point out
in Sec. III, use it as a variational function to good
accuracy. Of course, this division is not always so neat,
It will turn out that there are intermediate lattice
spacings for which the equations are of uncomfortably
high order, and yet the spacings are not quite large
enough that the atomic functions are a good approxima-
tion. For these, the treatment ca,n be modified so that
one can still solve with high accuracy using secular

r This assumes that Co(x,) resembles the atomic function closely
enough. This turns out to be so for most cases.
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FIG. 1. Wave functions C0(x;) for the "1S"state, the solutions
of Eq. (29) for bd = 1.916, for different values of the lattice spacing
parameter n =u/v2md. The solid line is the momentum space radial
1S wave function C (x) for the isolated atom. For the lattice, the
wave function is de6ned at points x; =E;d, where E; is one of the
allowed magnitudes of a reciprocal lattice vector. To show vividly
how' the spacing between successive x, decreases as the lattice
expands, with a consequent increase of the number of points that
one must consider, we indicate the allowed values of x; by the
vertical lines at the bottom of the graph, for the three different
lattice spacings. The dashed curve is the estimate from Eq. (32)
of C4(x) for a=1, which amplitude we assumed initially to be
negligible. Note that C4(x) is so small that we have plotted
10C4(x) to get it on the same graph with Co.

equations of reasonable order. This is discussed in
Sec. III.B and in the last section.

There is one Anal point that we must consider. We
have neglected C4(E;) in the above solution; it remains
to estimate it. This can be done, as we have remarked
before, by using Eq. (25) to roughly calculate C4 from
the (approximately) known Cs. From this equation we

get, setting 3=4 and keeping only the term with t'=0
on the right-hand side

(P—E)C4(IC ) =P Cp(IC&')'w4(E ' E&')g H4 (f2&').

If we use the expression for w4(IC;, E;) derived in
Appendix II, we get, in dimensionless variables

1024n-(bd)' f'd ~
' ~ x,4x,'

63(X—x') (aJ ~=i (1+x'+x')'
84 x,sx;s

XCs(xg)
~

1+— +
11 (1+x'+x')' )

From this expression we see that for given bd the magni-
tude of C4 is dominated by two different factors. First
is the factor (d/a)' on the right-hand side. When a be-
comes much larger than d, that is, when the lattice
spacing is such that near one site the tails of the po-
tentials at the other sites become negligible, then C4
becomes small. The other essential factor is the magni-
tude over the sum over j. This will be large if the
"overlap" of Cs(x, ) and xq4x, '/(1+x, s+x,')' is large.
Now for small x;, this last factor is very smelt, so that
if Cs(x,) drops rapidly to zero, the sum will be small.
This will tend to be the case for the ground state and
low excited states, but less so for the higher excitations
for which the Cs(x,) acquire more nodes and are more
extended functions.

B. Numerical Results

We shall discuss the solution of Eq. (29), for both
ground and excited states, as a function of the potential
strength parameter M and of lattice spacing. To do this
we have chosen three di6erent values of bd which suc-
cessively allow one, two, and three bound states for
the isolated atom.

We begin with the solution for bd=1.916, a value
which we choose because with it the wave function in
coordinate space involves a Bessel function of order
unity, and not the nonintegral order which occurs in
general. This choice simplifies the computation of the
ground-state momentum space wave function for the
isolated atom, which is useful to us in that it is the
solution of Eq. (29) in the limit of infinite lattice spac-
ing; hence it gives a qualitative idea of the behavior of
Cs(x;). We plot it in Fig. 1. In the same figure, we indi-
cate the different magnitudes of the reciprocal lattice
parameter x;=E,.d that must be considered for three
different values of the lattice spacing a. We see that for
the smallest lattice spacing, we need only consider four
or five values of x; before we come to a point where the
atomic function has dropped to a very small fraction of
its maximum value. This suggests, as we have men-
tioned, that in s'olving Eq. (29) we can truncate it and
drop all x; greater than some x~, thereby reducing the
secular determinant to one of the Sth order. We have
tried this, using the IBM 709 to And the eigenvalues
and eigenfunctions of Eq. (29) for different values of X,
to examine the convergence questions discussed above. '
The results are given in Table I.

We see that out expectations are confirmed. For the
smaller values of lattice spacing, we get good results by
truncating at relatively small 2V. In fact, one can do
even better than is indicated there: For small lattice
spacing one can often get 15 energies accurate to a
percent or so by taking only E= 2, and solving a quad-
ratic equation.

The programming for this was done by Mrs. Virginia Johnson,
to whom I am much indebted for her help. Her program incorpo-
rated a matrix diagonalization subroutine due to Fred Quelle:
Programming Note No. 16, Solid-State and Molecular Theory
Group, Massachusetts Institute of Technology (unpublished}.
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TABLE I. The two lowest "energy" eigenv';t, lues 'A=2ml&d /h of
Eq. (29) for s-like states for a bcc lattice of lattice constant u,
at each lattice point of which there is an exponential potential
v (r) = —b'e "'". In the limit a—+ ~, i.e., for the isolated exponen-
tial potential, X= —-„'. The results as a function of,V are those
obtained by truncating the formally infinite secular equation at
that value of E. The lattice spacings a are given by a=nv22rd,
and bd = 1.916.

I I I I
f

I I I I
f

I I I I
f

I I I I

70—

60

50
X

o 40
Cl

30
X

o 20

a State' 6 9 12 15

"1S" —2.124024 —2.124056 —2.124064 —2.124066
"2S" 2.47449 2.47388 2.47375 2.47372

0.1
2.0 4,03.0"iS" —0.68568 —0.68611 —0.68623

"2S" 0.80590 0.80276 0.80198
—0.68626

0.80176

—0.37474
0.3196

-0.2868
0.1463

10

0'
2 000 1 —0.37085 —0.37356 —0.37448

"2S" 0.3301 0.3227 0.3204
)0 I I I I I I I I I t I I I I j I I I I

0 1.0 2.0 3,0 4.0
X ANO Xi"1S" —0.273100 «2 ~» 0 16]

—0.2854
0.1477

—0.2819
0.1515

FIG. 2. Wave functions Cp(x;) for the "25"state for bd= 3.5001
for different values of n =o/Vls-d. The solid line is the momentum
space radial wave function C, (g) for the 2S state of the isolated
atom. In the inset, we replot on a semilogarithmic scale the nega-
tive of the tails of the wave functions shown on the main graph,
to show how closely these tails coincide over a large range of the
variable. The wave functions are not normalized.

Isolated atom: —0.2500
This state not bound for isolated atom

1S
2S

' The quotation marks around the 1Sand 2S mean that, strictly speaking,
these are not pure S states, except in the limit when u becomes infinite.

The wave functions Cp(x, ) that we find are plotted in
Fig. 1. We would expect that for large values of x,,
which of course correspond to small spatial distances,
the Cp(x;) would closely approximate to the atomic
functions. As the figure shows, this turns out to be
strikingly true. It is only when the energy differs by a
factor of almost ten from that for the isolated atom, that
the tails of the wave functions fail to fall closely on the
atomic function. For the other cases it is only for the
first few reciprocal lattice points that the function Cp(x;)
divers from the atomic one. Potentially, this agreement
makes Eq. (29) even easier to solve than we have indi-
cated, for it is clear that for most lattice spacings only
the first few values of the Cp(x, ) are truly unknown. It
might well be that a method could be devised that

exploits this fact, although we have not pursued it any
further.

It remains only to estimate C4(x;). We do this for
o.=1, which we expect will lead to the largest values of
C4, and hence provide us with an upper bound for the
other cases. For Cp(x;) normalized to unity at x,=0, we
get from Eq. (32), using the parameters pertinent to
this case,

13.2x,4

C4(x;) =-
(x;s+2.12) (5+x,s) P

This function is plotted (for convenience as a continuous
function of x,) in Fig. 1, where we see it is very small
indeed compared with Co.

We now consider a stronger potential, M=3.5001, for
which value the isolated atom has tao bound states.
Similarly to the last section, we study how the energies
and the wave functions of these states change as the
lattice is built up from atomic potentials. We have again
solved the truncated Eq. (29), this time for values of 1V

equal to 10, 14, 18. The results are given in Table II.
Table II is like Table I and is self-explanatory, so we

shall concentrate on discussing the wave function. More-
over, the results for the 15wave function as compared to
the atomic function are so similar to those for the pre-
vious case, bd=1.916, that we omit them here and give
instead the results for the 25 state. In Fig. 2 then, we
plot the atomic wave function C,(x) and the corre-
sponding functions Cp(x~) for various values of e, the
lattice parameter spacing. As expected, for large 0. the
Cp(x') agree fairly closely everywhere with the atomic
function evaluated at the appropriate points, but as a
gets smaller, they begin to di6er appreciably for small
values of x;. On the other hand, for large values of the

TAaLE II. Results for bd =3.5001. Other parameters and
notation are the same as in Table I.

State 10

—56.180585 —56.180586 —56.180586
5.53320 5.53316 5.53315

29.2382 29.2381 29.2381

"1S"
t i2SJP
I $3Srr

0.500

—7.20613 —7.20631 —7.20634
1.3438 —1.3457 —1.3460
6.0847 6.0799 6.0794

"1S"
it2Srr
t I3SJ t

1.00

—3.2782
1.2366

+ 2.0032

tt 1Sri
i( 2SPP
I t3Sii

—3.2954
1.2479
1.9620

—3.2928
1.2462

+ 1.9677
1.50

—2.9673—0.55864
0.87105

—3.0437—0.57818
0.79620

4 t 1S)r
t t2Sfs
4 t3Sst

—3.0620—0.58286
0.77875

2.00

Energy of isolated atom: —3.0625
Energy of isolated atom: —0.2500
Not a bound state for isolated atom

1S
2S
3S

SOLUTION OF SCHRODINGER EQUATION
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TABLE III. Results for bd= 5.500. Other parameters and
notation are the same as in Table I.

0.500

State

"1S"
t $2S77
5 43S77
"4S77

10

—138.7275—10.0708
23.4124
32.1528

—138.7275
10.0712
23.4108
32.1513

—138.7275
10.0713
23.4107
32.1512

1.000

($1S77
t l2S77
t l3S77
l 44S7 7

18.211 —18.21.5 —18.216—10.178 —10.213 —10.218
+ 0.10512 + 0.005789 — 0.007512

7.1985 7.1594 7.1544

1.500

"1S"
4 (2S77
t $3S77
4 (4S77

11.68
4.732
1.611
2.963

11.95
4.868
1.923
2.685

12.02
4.908
1.998
2.596

1S
2S
3S
4S

Energy of isolated atom: —11.98
Energy of isolated atom: — 3.84
Energy of isolated atom: — 0.616
Not a bound state for isolated atom

x; the tails of the functions remain strikingly similar.
This cannot be seen readily on the linear plot which it is
necessary to use for the 2S function (which changes
sign), so we have plotted these separately on a semi-
logarithmic scale. We see that even for lattice spacings
which correspond to energies almost ten times that of
the isolated atom, the tails of the wave functions diKer
at most by a few percent over a range in which the func-
tion itself changes by a factor of 50. A rough calculation
of the amplitude C4 analogous to that for bd=1.916

-30—

-16—

I

0.50 1.0 1.50
l

2.0 CO

FIG. 3. "Energy" eigenvalues X=2mL&d'/k~ of the 6rst four"s"states as functions of the lattice spacing parameter a= a/V2~d
for bd= 5.500. The atonnc energies (o —+ ~) are also indicated.

indicates that for the values of o. we consider it is negli-
gible for our purposes.

Finally, we give results in Table III for the solution
of Eq. (29) for bd=5. 5000, a value which allows three
bound 5 states for the isolated atom.

The results are similar to the previous cases, but
there is one new feature. The eigenvalues for the 35
state for n=1 converge less well than the others. This
seems to be connected with the fact that the eigenvalue
is quite close to zero.

We represent these results graphically in Fig. 3, where
we plot energy versus n,' in these graphs we have used
more points than given in Table III. It is interesting to
plot the results for the wave functions as well, and we
do this in Fig. 4. The 15 and 25 functions are similar
to those we have presented previously, so for clarity we
present only the 3$ and 4S functions.

From Table III we see that for the larger values
of rr and higher states (e.g. , the 35 and 45 states for
rr= 1.500) we begin to run into poor convergence as a
function of &V. We would like to present a proposal here
which may overcome this difficulty, and enable us to
increase the accuracy for the states for which we have
already calculated, and also to calculate still higher
states.

This proposal is based on the fact, which was quite
unexpected, that all the oscillations in the functions Co
occur for the first few E; after that they are smooth,
monotonically decreasing functions. Now as we have
observed, the points E get closer and closer together
as m gets larger, so that after some moderate E we gain
accuracy very slowly by increasing S. That is, to in-
crease the accuracy appreciably we must calculate
accurately the long tails of the wave functions, and when
sV gets large a given increase in the number of points
takes us relatively less far out on the tails.

The point we wish to make is that it is really un-
necessary to suffer this disadvantage that successive x,
get closer and closer for large i. For in order to define
the shape of the tails to good accuracy we do not really
need the x; spaced so closely. If we had values of x;
which are not successive ones, but are such that there
is moderate variation of the function between them,
then we could find the intermediate values of x; by
interpolation. This idea, as applied to Eq. (29), suggests
that we do not consider all possible x, as the unknowns
in this equation. Rather, it suggests that we first con-
sider enough values of ~ to take us past the nodes of the
function we seek, and then for larger i we consider as
unknowns not slccessA e x, but a selected set which are
farther apart, but not so far that we cannot interpolate
satisfactorily between them. Having done this we must
write the sum on the right-hand side in terms of the
chosen set of x; and their interpolated values, and doing
this we are led back to a homogeneous set of equations
with a square matrix, which we must solve numerically,

In calculating these eigenvalues we have again assumed C4 is
negligible,
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but whose solution will define the wave function out to
long distances in momentum space.

P;C'(K,)
(33)

If C(K,) is not the exact eigenfunction, then the above
expresssion for P has variational properties, " i.e., if we
put into it a C(K,) correct to "first order" then the
value of P we calculate is good to "second order. "This
property follows essentially from the fact that the
numerator in Eq. (33) is symmetric with respect to the
interchange of i and j; this fact is obvious if we write
the first term in the form

P, P; C(K;)C(K,)(K;+k) (K;+k)8;;.
The double sum in Eq. (33) can be simplified consider-
ably if we break up the sum over K; in the manner ex-
pressed by Eq. (24), and use a theorem about the
product of two Kubic harmonics summed over the
reciprocal lattice. Ke derive this theorem now.

Consider the sum cT defined by

III. A VARIATIONAL METHOD —"TIGHT BINDING"

As we have seen, when the lattice spacing gets large
and the reciprocal lattice points get close, the order of
secular equation that must be solved gets impractically
large. On the other hand, in this limit the eigenvalues and
eigenfunctions approach the atomic ones; it is then an
obvious course to try to exploit this, and to use the
atomic functions as trial or variational functions. This
is not a new idea, of course; it is essentially the well-
known "tight-binding" approximation, as applied for
k=0. But we shall see that, in practice, the present
formalism has appreciable advantages over the con-
ventional scheme.

The equation we need for the variational formalism is
derived directly from Eq. (8). Actually, it is as easy to
write down for general k, so we shall do that, although
in this paper we shall only apply it for k=0. Equation
(8) shows that if C(K,) is an eigenfunction, we can
calculate P from"

P; C'(K,) (K,+k)'+P, P, C(K,)C(K,)tt)(K,—K,)

0 0 0 0 0 0 0 0 tt 0

vari
1

0
D

D

I

1.0
I I

2.0 5.0
X'

l

D P$
o 4$

I

4.0 5.0

FIG. 4. The wave functions Ct(r;) for the 3S and 4S
states for bd =5.5000 and +=1.50.

~=go, Ht, ("&(Q,)H, ...("'&(Q;).

Instead of writing 0- as a sum over 0;, we observe that
it is proportional to a sum over the group operations, a
representative one of which we call G. Thus

o. ~ Qg fGHt, (")(Q,)]LGHv, . ("') (Q,)].
But we know that G operating on H», generates a linear
combination of Kubic harmonics of the same order
and type

GHt, (t) =Pt G„(~)H&,(t)

GHt. ..(~') =Pt, G, (")Ht, (~')

so we can write

zt zt Hit'"'Hl t'" ' Zg G.t'"'G" t'" '

But according to one of the basic orthogonality relations
of group theory, this last sum over G vanishes unless
v= v'. the sum o- is identically zero unless both Kubic
harmonics that enter into it are of the same type.

We apply these results (now we set k= 0) to the 5-like
states we have discussed in the previous sections. The
variational wave function is then just the atomic mo-
mentum space radial wave function C,(E), evaluated
at appropriate E,. If we put this into '(33) and use the
expansions (A.6) and (A.S) we get

P=$Q C,'(E,)EPts~+Q Q Q Q'C, (E;)C,(E,)Q wt(E;, E;)Q Ht, (")(Q;)Ht,(")(Q,)]/Q C '(Ef)ts, . (34)
K; XX;0;0; lO

Now the sum over Q, of Ht, '"&(Q„) Lwhich we can consider to be the sum over Q; of the product
Ht, (")(Q,)H(&( &(Q,)] is, from the theorem above, zero unless the type v is the type tr. But tr-type harmonics only
occur for /=0, 4, 6, ~ so this breaks up the sum over l and we can write

P=[+ C.'(E,)E,srt~+P Q C.(E~)C.(E;) Q tt)t(E, ,E;)Ht(")(Q;)Ht( )(Q;)]/Q C.'(E,)tt;.
l=0,4,6, ~ ~-

(35)

It is interesting to compare this formula for the energy with the analogous one for the atomic s state for which

"Equation (33) is, of course, just the momentum space counterpart of E=J'4'~H+dr/f 4*4'dr, and can be directly derived from
this last equation using the formulas of Sec. I.
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C,(E) is the solution. The latter is

00 ~GO GO

P= ' C '(K)K'dK+ C (E)c (E')wo~(E K')K'K"dKdK'
0 ~o

J~ C,'(E)E'dE'.
0

(36)

To give an idea of the accuracy to be had from Eq.
(35) we have applied it to the 1S states for bd= 1.916,
for which we have the "exact" results of Table I. Using
the atomic function plotted in Fig. 1, we get for n = 1.000
the value Pd'= —2.119, to compare with the exact result
—2.124. For o.= 1.500 the variational result is —0.6812
and the exact one —0.6863.

The above treatment runs into di%culty when the
unperturbed atomic state is degenerate, since it is then
not clear which of the unperturbed degenerate functions
to use as a variational function. To resolve this, it is
useful to regard this calculation in another way, not as
a variational one but as a perturbation one. To do this,
we write the Schrodinger equation (12) for the isolated
atom as a matrix equation for a (continuous) matrix
H, (K,K') and a column vector C(K):

where
H. (K,K') C(K') =pC(K),

H.(K K')=K K'b(K —K')+u (K—K')

H„=H.+ (H, —H.).
When the lattice spacing gets large, (H„—H,) gets
small, and we can consider it as a perturbation on the
unperturbed Hamiltonian H, . Of course, the variational
calculation done above is, from this point of view, simply
first-order perturbation theory as applied to H~ —H, .

This observation makes it clear how to handle the
degenerate case. An atomic eigenfunction of energy E0,

Ci(K) I'i (Qi,)

is (2l+1)-fold degenerate. This degeneracy is split up,
at least partially, in the crystal, and to calculate how
it is we must solve the secular equation for the perturba-
tion theory of degenerate states. For this case it becomes

ia.,—(J.',—Z)b. , i
=0,

where a typical matrix element is

H„,„=Q;Q; Ci(E;)Fi„(Q,)
XH~(K;, K;)Ci (E,) V( *(Qg).

"There is a possible formal objection here in that the C(K) for
the atom and the C(K;} for the periodic potential are not in the
same Hilbert space, but this causes no real difliculty.

and the subscript a stands for atomic. Similarly, we can
write the equation for the periodic potential as

H, (K„K,)c(K;)=pc(K;),
where

H„(K;,K;)= K; K,b(K,—K;)+(2or)'Qiw (K;—K,).

Now we write"

This sum can be simplified in practice by using the
theorem above on the product of two Kubic harmonics
when summed over the lattice, and the secular equation
will, of course, factor in many cases into equations of
smaller order.

We end with a brief comment on the method of this
section: It is a variational method which uses the free-
atom solutions to calculate an approximate value for the
energy, and as such, it is in the same spirit as the usual
tight-binding approximation. That approximation is
bedeviled by the fact that to apply it, one must calculate
a difFicult succession of overlap int;egrals. But in the
formulation above, all these integrals are effectively
done automatically, when we sum as indicated over the
magnitudes E;. The only approximation we use is to
take the atomic functions as the variational functions.

IV. FINAL COMMENTS

In this section we make a few remarks on the method
as we have presented it, and on possible generalizations.

First, it may be worth pointing out that our results
for a single exponential above can be extended, without
further analytic work, to any potential which can be
represented as the sum of exponential potentials, for in
that case the function w(K —K') and related ones will

simply be sums of the functions we have evaluated for
a single exponential.

In this paper we have found, as we would expect, that
the convergence problems get worse and the accuracy
poorer as we consider higher and higher excited states.
The problem is essentially that the tails of the wave
functions become very long, and superficially at least,
this demands high-order secular equations. Here we
would simply call attention to the remarks at the end
of Sec. II.B, where we suggest a way for overcoming this

difhculty, since we feel they show good promise of
enabling us to calculate high 5 states (and other states
as well) without being driven to secular equations of
impractically large order.

In the last analysis, the method we present in this
paper is an expansion of the wave functions in plane
waves with amplitudes C(K;). One may well ask why it
is advantageous to expand the wave function in just the
way we have done, that is, by separating the C(K;) into
radial and angle-dependent parts. The answer is that
this is the only way that takes full advantage of all the
symmetries present in the problem. These are the
translational symmetry of the lattice, the rotation-
inversion symmetry of the lattice as a whole, red the
rotational symmetry of the individual potentials. Now
one can take the first two symmetries into account by
writing the wave function in Bloch form and expanding
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the wave function in symmetrized plane waves without
breaking the C(K;) into radial and angle-dependent
parts. This has the disadvantage that one cannot make
the natural separation of the C(K;) into large and small
radial parts, i.e., one cannot drop the small partial waves
of high order. For example, as we have pointed out in
the text, if one does not make this separation, one is
essentially trying, in the limit of large lattice spacing,
to solve a spherically symmetric problem without mak-
ing the crucial simplifying step of separating variables.

In the present method, which does take this crucial
step, one tends to have advantages always compensating
disadvantages. Thus when the lattice spacing gets large,
there is the computational disadvantage that the re-
ciprocal lattice points get close, but this is compensated .

for by the fact that we have to take into account es-
sentially only one partial wave, whose form we know
pretty well from the atomic solution. When the lattice
spacing gets small, it may well be (especially for other
than 5 waves) that we have to consider simultaneously
coupled equations for partial wave amplitudes, but this
is compensated for by the fact that the reciprocal lattice
points get farther apart, tending to make for secular
equations of smaller order.

But using Eq. (1) of the text this is

f(r)= (2v-)'IIgp;g. (K,) exp(iK; r),

from which we conclude that

g(K,)= (2v-)'Qgg. (K,). (A.5)

APPENDIX IL CALCULATION OF w(K —K')
AND w&(K,K')

We have from Zqs. (9) and (10) of the text

w(K —K') = Qj, v'(r) exp/i(K —K') rjdr

=4Irnp ' vl(r) je() K-K'~r)r'dr.

where

w(K —K') = P(2l+1)wi(E, K')E~(cosy), (A.6)
L=O

We use the addition theorem for je(~K—K'~r) to get

APPENDIX I. RELATION BETWEEN ORBITAL AND
FOURIER REPRESENTATION OF A

PERIODIC FUNCTION

f(r) =g, f.(r,-), (A.1)

Suppose we have a function f(r) which is periodic
with the periodicity of the lattice. We can then express
it in two different ways. First, we can write it as an
ininite series of "orbitals"

w~(E,E') =4v Ilq~ v'(r) j~(Kr)j ~(K'r)r'dr. (A.7)
0

For the exponential potential

v (r)= b'e "'"—
we then have

w&(E,K') = —47rb'II&~t e '~ "j&(Kr)j&(K'r)r'dr
0

the subscript "o" standing for "orbital, " this being a
function which obviously has lattice periodicity. Alter- where
natively, we can express it as a Fourier series in re-
ciprocal space

=4rrb'Qg(r)I(/r)l )r=g)e,

e rj ((Kr)j r,(K'r)rdr.
0

f(r) =Z~ g(K~) exp(iK~" r) (A.2)
The integral I~ is a standard one":

f,(r;)= g.(e) exp(ie r;)de,

There is a relation between these two super6cially
different ways of writing the same function. To show Ig (1/2EE') Q) (y),——
this, we Fourier-transform each of the orbital functions, / 2 ~g ~I2/ /2~~f d h / g ' }

Legendre polynomial of the second kind. The first few

(A 3) polynomials are (for y) 1)

I
g, (e) = t f.(r,) exp( —ie r,)dr;.

(2e)8 ~
(A.4)

f(r)= ~| g, (e) exp(io" r)(g exp( ie d;))de—.

Putting (A.3) into (A.1) and using d;+r, =r, we get

Qe=-' »L'(y+ I)/(y —1)7,

Qr=yQob) —1

Q2=&2(y) Qo(y) —3y/2,

Q3= I'~(y) Qo(y) —Sy'/2+2/3,

Q4= I'4(y) Qo(y) -35y'/g+55y/24.

"P. Morse and H. Feshbach, Jr/lethods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 1575.



LEONARD EVGES

From the expression above for Q4, we could of course
write down a similar formula for the function w4(K, K')
which is needed in the text, but it is a fairly clumsy
expression. More suitable for our purposes is a series
expansion which can be got by expanding in[(y+1)/
(y—1)$ in the expression for Q4 in powers of 1/y,

8 1 15
Q4(y) =— —+ +

5&7&9 y' 11y'

This leads to

~1024~s~d nb' (Ed) (E'd)
v)4(E,E') =—

63 ) (1+(E'+E")d']'
(Ed)'(E'd)'

X 1+——
11 $1+(E'+K")d'j'

~ ~ ~

APPENDIX III. KUBIC HARMONICS

Ke introduce a notation for the Kubic harmonics,
which generically we call H(Q). There are ten types
corresponding to the ten different classes of operations
of the cubic group. To keep to a minimum the number of
numerical superscripts and subscripts, we label the types
with the original notation of Van der Lage and Bethe, "
i.e., as n, P, y, 8, e, u', P', y', 6', e'. The type label is put
as a superscript and the order as subscript. For example,
the function o'~ in the original notation becomes III ~

From the expression for Qo we find

2wb'dQg
wo(E,K)=-

EE'

( 1 1

x]
K1+d'(E —E')' 1+d'(K+E')')

If a function is one of a degenerate set, we add an addi-
tional subscript s, which takes the value 1 or 2 for
doubly degenerate functions, and 1, 2, or 3 for triply
degenerate, with the connection x, y, s —+ 1, 2, 3.
Strictly, s should have a subscript v attached to it, to
show that it takes on different sets of values, according
to the type (v) of the Kubic ha, rmonic, but it is easier to
simply bear this fact in mind than to continually write
subscripts of subscripts. If there is more than one func-
tion of a given type and given order, we put a prime
over the order number. Examples of the correspondence
between the notation of Van der I,age and Bethe and
the present one are

(76)1~H61"', (&5).~H58'", (&5).~H53'".

Finally, we write the analog for Kubic harmonics of
the addition theorem of spherical harmonics. If y is the
angle between a vector specie. ed in a spherical coordinate
system by 0, P (which we jointly symbolize as 0) and
one specified by O', P' (0'), then

Pi(cosy) = P Hi, &"'(0)Hi,&"&(0'). (A.S)
2'+1 v, s

The summation over v is taken over all types which
contain Kubic harmonics of order l, and the summation
over s is taken over all the degenerate functions which
may belong to a given type and order. For example,
we have

Po(cosy) =Ho' &(0)H'&"&(0')—=1,

P'(cosy) =-', P Hi, "'(Q)Hi, "'(0'),

P, (cosy) =
~ (P H2, &'&(Q)H2, &'(0')

s=l

"F. C. Van der Lage and H. A. Bethe, Phys. Rev. 71, 612
(194&).

+Q Hg, &»(Q)Hg, &»(0')).


