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Description of Impurity Ionization in Semiconductors by Chemical Thermodynamics
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The phenomenon of impurity ionization is considered on the basis of exact thermodynamics, involving
an extension of the usual mass-action formulism. To make possible the evaluation of quantities of interest
in the two-band model of covalent semiconductors, comparison is made with the statistical formulation of
ionization equilibrium. Particular consideration is given to the concentration dependence of the impurity
ionization energy. Interactions between ionized impurities and mobile carriers are treated by the Debye-
Huckel theory of strong electrolytes; the treatment involves only one parameter which must be determined
from experimental carrier densities. Very good agreement is found for arsenic-doped germanium using the
detailed data and analysis of Debye and Conwell.

INTRODUCTION

''MPURITY ionization equilibria have usually been
~ - treated by combining quantum statistics with a so-
called "mass action" formulism. This treatment has the
disadvantage that interactions other than exclusion
effects are inserted in an ad hoc manner as corrections
to the ionization energy. In a treatment based on
chemical thermodynamics, on the other hand, particle
interactions are included naturally and, indeed, con-
stitute an essential part of the formulation.

In any rigorous approach a distinction must be made
between the equilibrium constant E, involving thermo-
dynamic activities, or "ef'fective concentrations, " and
the analogous quantity X', involving actual concen-
trations. Depending upon impurity content, E' for im-

purity ionization reactions in semiconductors may, in
fact, exceed E by several orders of magnitude. In the
language of chemical thermodynamics, the variation of
E' with impurity content is ascribed to deviations from
ideal particle behavior.

Particle interactions leading to a concentration de-
pendence of E' include specific (short-range) forces and,
for charged particles, long-range electrostatic forces.
The exclusion principle constitutes an additional inter-
action, whose relative importance depends upon particu-
lars of the band structure. Measurements of the electri-
cal properties of boron- and phosphorus-doped silicon
by Pearson and Bardeen' and of arsenic-doped ger-
manium by Debye and ConwelP showed that interac-
tions between mobile carriers and ionized impurities in
silicon and germanium outweigh exclusion e8ects, at
least for hole or electron concentrations be1ow about
10" cm '; as a result, impurity ionization energies de-
creased to zero with increasing impurity content.

The concentration dependence of the impurity ioniza-
tion energy in semiconductors is of particular interest.
Lehman and James' state that the first attempt to derive
the dependence of the ionization energy on impurity

* Operated with support from the U. S. Army, Navy, and Air
Force.

' G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).' P. P. Debye and E. M. Conwell, Phys. Rev. 93, 693 (1954).
3 G. W, Lehman and H. M. James, Phys. Rev. 100, 1698 (1955).
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content was made by Shifrin, ' employing a hydrogen-
like model of the impurity atom. Shifrin concluded that
the ionization energy should decrease linearly as E&,
where Ã is the concentration of impurity. An empirical
relation of the same form was found by Pearson and
Bardeen' to 6.t their measurements on silicon; these au-
thors provided a theoretical interpretation based on the
decrease in the average potential energy of an electron or
hole, resulting from attraction between it and the ionized
impurity center. Subsequently, Debye and ConwelP
found closer agreement with their own experimental
data when the total donor concentration of the Pearson
and Bardeen expression was replaced by the concentra-
tion of ioeized donors.

The variation of impurity ionization energies in semi-
conductors has also been considered theoretically by
Pincherle' and, more recently, by Chetkarov. ' The
most comprehensive treatment is that due to I ehman
and James'; their intricate theory is based on the de-
termination of one-electron orbitals by solution of Har-
tree equations and leads to results in fair agreement with
the data of Debye and Conwell. The present paper de-
scribes an alternate approach, based on chemical ther-
modynamics, which gives very satisfactory agreement
with the data. The procedure consists of evaluating the
difference between the actual and the ideal free energy
change for the ionization of an impurity atom. Two
contributions to this difference are recognized: The first,
arising from electrostatic interactions, is treated by the
Debye-Huckel theory' ' of strong electrolytes (see
Teltow" for an account of the literature on applications
of the Debye-Huckel theory to defect interactions in
solids); the contribution of exclusion is obtained by
comparing thermodynamic and quantum-statistical ex-
pressions for the concentration product E'.

4 K. S. Shifrin, Zhur. Tekh. Fiz. 14, 43 (1944).'L. Pincherle, Proc. Phys. Soc. (London) A64, 663 (1951).' M. L. Chetkarov, Zhur. Tekh. Fiz. 28, 962 (1958).
7 P. Debye and K. Huckel, Physik. Z. 24, 185 (1923).
R. H. Fowler and E. A. Guggenheim, Statistical Thermo-

dynamics (Cambridge University Press, New York, 1960),
Chap. IX.

R. A. Robinson and R. H. Stokes, Electrolyte Solutions (Butter-
worths Publications Ltd. , London, 1959), 2nd ed. , Chaps. 4 and 9."J.Teltow, IIaSleiter Probleme, edited by W. Schottky (Fried-
rich Vieweg und Sohn, Braunschweig, 1956), Vol. III, pp. 26—58.
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E=g a "' (2)

THERMODYNAMIC FORMULATION

Chemical equations for the ionization of a donor or
acceptor impurity may be generalized by writing

2 vP'~=0,

where the 5, denote chemical symbols and the v,. are the
stoichiometric coe%cients, taken as negative for re-
actants. The equilibrium constant of the reaction is

d 1nE.
AP"'=- —k-

d(1/T)
(10)

The energy change DE for an arbitrary composition is
similarly related to E':

concentration is then essential for reliable extrapolation.
To see why it is desirable to evaluate E, we note that

the standard" energy change DE' is obtained from the
temperature dependence of E according to

and the equilibrium concentration product is

E =Q cg' ~. (3)

8 1nE'
AE= —k

8 (1/T)
The quantities c; and a; are the equilibrium particle con-
centrations and thermodynamic activities, respectively.

For the generalized impurity ionization reaction (1),
the change in the Helmholtz free energy at constant
temperature and total volume is

AF=P v,p, =P v, tj,,'+kT g v, lna, , (4)

where IJ,,=IJP+kT lna, is the chemical potential of the
jth particle, and p,, (T) is its chemical potential in the
standard state of unit activity. It is convenient for our
purposes to choose the standard state such that the
particle, present at unit concentration (one particle per
cm'), has the properties it would possess at the given
temperature in the absence of all other solute particles.

If there were no interactions (other than the chemical
reaction considered), the free energy change would be

AF;d„)=Q v,pP+kT Q v, inc, . (5)

The difference between (4) and (5) will be referred to as
the deviation free eeergy:

AFs. AF AF;g„)——kT —Q v, ln(a——,/c, ). (6)

For the case where each a; has its equilibrium value,

Z v,u, =0,
so that, from (4),

Q v, lna, = —Q v,p,,'/kT= lnIS, —

which is identical with (2).
Since each pP =IJP(T), the equilibrium constant E is

seen from (8) to be a function of temperature only. The
quantity E', on the other hand, varies with composition
owing to the concentration dependence of the quantities
a,/c, :

lnE'=P v, lna, —P v, ln(a, /c, ) =lnE DFs, /kT. (9)—
Sy virtue of our choice of standard states for the react-
ing particles, each a; —+ c, (whence E' —+ E) as g c; +0, —
the summation extending over all solute species. In
principle, provided sufhcient data are available, E may
be obtained from E' by extrapolation. For the impurity
ionization reaction which we shall consider in some de-
tail, it will be found that IC' approa, ches E asymptoti-
cally. A theoretica]1y sound expression reIat, ing E' to

However, the experimental data will not generally be
sufficiently extensive for the direct evaluation of hE,
since the temperature dependence of E' for a particular
set of values of the concentrations c; is required in (11).
Therefore, 8E must be obtained indirectly; the evalua-
tion of E at several temperatures is involved in the
procedure. LITnlike (10), the relation (11) is not of
general thermodynamic validity, but applies to the
problem at hand since the concentrations employed are
not arbitrarily chosen, but are equilibrium values and,
as will be shown, E' can be expressed as a function of
NA+e and Tg.

For the ionization of a simple donor, present at the
concentration ND, (1) and (3) become respectively

D= D++e, (12)

where p has been written for the hole concentration c,+,

E„v'=rip, and E~'= (c~-)p/cq. For a sufEcient excess
of donors over acceptors and a,t the lower temperatures
corresponding to incomplete ionization of the donor
impurity, (14) reduces to

ED'= (Ng+e)e/(ND —N~ —e), (15)

the expression usually employed. In what follows, ED'
will be written without the identifying subscript.

COMPARISON WITH STATISTICAL
FORMULATION

The application of Fermi-Dirac statistics to the donor
ionization equilibrium (12) is straightforward and

"Refers to the reaction under conditions where the impurity
atom, impurity ion, and electron are in their respective standard
states; AL&0 is the value of the energy change for the ionization
reaction irl the limit of vanishingly small impurity content.

ED' (cD+) (c,-)/c——& ——(cD )n/(N& o& ), (13—)
where e has been written for the concentration of elec-
t.rons. If the semiconductor also contains the concen-
tration E& of acceptor impurity, the exact formulation
of ED' in terms of ÃD and r/ is

[Ng+e —p+ (E„v'/kg') (e—p) )e
ED —,(14)

N, ~+p+(E„—„'/~E&') (ND n+p)—
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I' IG. 1. Electron en-
ergy diagram illustrat-
ing the energy changes
attending transitions be-
tween donor states and
conduction band (simple
model).

~P..„=—kT inL2~-& exp( —9)F., (9)),

whereupon it follows that

(22)

As indicated above, the product of terms to the right
of the cross in (18) increases with decreasing e, becoming
unity in the classical limit. The identification of AIi,„,j is
thus readily made (cf., Reiss" and Rosenberg") as

leads to
AF, i ——6Sg) —3,8D'. (23)

K' = (27rmk T/k')-'*exp (—68D/k T)
X27r lexp( —t))Fi(t)),

with 68g)= 8o—8n, t)= (8p —8o)/kT, and

l

F;(t))= g&L1+exp (x—t))g
—'dx.

The concentration dependence of AE is more compli-
cated than that of AID, but can be derived using the
thermodynamic identity AE= 8(DF—/T)/r)(1/T); the
general relation is

DE= AE"+8(AFg, /T)/8(1/T), (24)

and the contribution of exclusion to AE is evaluated as

(A8g)' —68g) yK'=K exp~
~
X27r

'
*exp(—t))Fi(t)). (18)

On comparing (17) with (10), it; is found that the
standard energy change AE (of the system) is related
to the standard donor ionization energy AID by

8 inn
Eo 0 8D'+ sskT+ ask T

dASD'T. (1—9)

If we neglect any temperature variation of lnm and
68&', (19) shows that AE' exceeds 68D' by skT, i.e. , by
the average thermal energy of an electron in the
standard state. It does not follow, however, that dE
and 68 also differ by (8—8o), ; AE cannot be repre-
sented on an electron energy diagram (Fig. 1).

Referring to the earlier discussion of interactions con-
tributing to departures from ideal behavior, we write the
deviation free energy as the sum of contributions of
electrostatic and quantum-mechanical effects:

aPs..——aF.t +aF. ,t,
so that, from (9)

BPetec) ( &Pe~et)

kT ) 4 kT )

(20)

"J. McDougall and E. C. Stoner, Phil. Trans. Roy. Soc.
(I.ondon) A237, 67 (1938).

8o, 8D, and 8s are the energies of ae electron at the
bottom of the conduction band, at the donor level, and
at the Fermi level, respectively, and m is the density-of-
states eRective mass for conduction band electrons.

As the impurity content is progressively decreased,
Fi(ri) —+ (~l/2) exp(g)," 58D ~ 68D' and K' becomes
equal to

K = (2m AT/k')-' *exp ( 68ns/k T),—

so that (16) may be rewritten as

a(aF...t/T)
l

dg
=-,skT~ F;(rl)

t) (1/T) E dF, (rl)

It is interesting that sskTF~(dry/d—F~) is not the average
kinetic energy of an electron, kTF;/F;, "although both
quantities reduce to -', kT for su%ciently negative values
of g. Whereas electrostatic interactions between elec-
trons and ionized donors decrease both AE and 68D
(though not by the same amount), exclusion operates
to increase hE by forcing electrons into higher levels in
the conduction band.

EVALUATION OF ELECTROSTATIC EFFECTS
BY THE DEBYE-HUCKEL THEORY

In applying the Debye-Huckel theory' ' to impurity
ionization, mobile carriers and ionized impurities will be
identified only by their charges, except that for pairs of
particles there is in the theory a characteristic parameter
a which is nominally the distance of closest approach
of their centers. We imagine the indicated change of
state to be carried out by a two-step process. In the
first step, the ionization reaction takes place, yielding
the donor ion and electron without their respective
charges. For this step, the free energy change is
AF;qeet+AFe„ct. In the second step, the particles become
charged. If a way can be conceived of charging the
particles reversibly to their respective potentials, then
the work performed can be equated to the decrease in
free energy for this step and, therefore, to —AF, ~ for
the over-all ionization reaction.

In the charging process devised by Guntelberg, ""the
ions are charged simultaneously, allowing the ion atmos-
pheres to adjust to each incremental addition of charge;
the electrical free energy is then obtained by integration.
The evaluation is particularly straightforward in the
present application, wherein all that is required is to
charge one donor ion and one electron in the presence

H. Reiss, J. Chem. Phys. 21, 1209 {1953).
'4 A. J. Rosenberg, J. Chem. Phys. 33, 665 {1960)."F.. Guntelberg, Z. phys. Chem. 123, 199 (1926).
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of all of the other ions. For this purpose we require the
electrical potential at each j ion due to the remaining
ions, i.e., to its ion atmosphere. According to the
Debye-Huckel theory, this quantity is

)015

20.4
illili I I I I ill!i I I j I 1llll I & I I & I[-

s,e
(26)

)0

where s,e is the charge of the j ion, e is the dielectric
constant, u is the mean eGective distance of closest
approach of the ion centers, and ~ is defined by

10 f3
K = 1.66x )0

~'= (4se'/ekT)g c,sP, (27)

cD++c~ +n -2cg)=+ =2 (Xg+e). (28)

If at any given stage in the charging process the j ion
has acquired the fraction A. of its final. charge, the po-
tential due to its atmosphere is XP,', whereupon d,F,q„
for the reaction P v,5;=0 may be evaluated as

~1 e~

g v;()y )s;ed) = gv—,s'—,~ )d). (29)
1+KG ~p

For the ionization of a single impurity atom P v,s, = 2,
whence

AIi,.i„,= ———
c 1+~a

(30)

The concentration dependence of DAD follows immedi-
ately as"

)014
I I I I I III

(0"—

)p&2

K =4.7X)0"

the indicated summation extending over all charged
species.

In an impurity semiconductor with SD donors, Ez
ionized acceptors and rc electrons per cm', the sum in (27)
is equal to (consistent with over-all electroneutrality)

K

ggD ggDo
E. 1+KG

and that of K' as

(31)

g2

E'=Eexp('
~
X2s l exp( —g)Pi(ri). (32)

&ekT 1+au)

COMPARISON WITH THE EXPERIMENTAL DATA
OF DEBYE AND CONWELL

The concentration product E' was calculated for the
Debye and Conwell samples at a series of temperatures
between 12.5'K and 25.0'K using their tabulated values
of X~—X~ and X~, and reading e from their Fig. 10.
At each temperature, E' for diferent samples was found
to be a smooth function of X~+e in agreement with
the indicated concentration dependence of a. Figures 2
and 3 show typical plots of Z' vs Xz+e. As noted
earlier, E' approaches a limit asymptotically, so that
graphical extrapolation is not a reliable method for
obtaining E. At the lower temperatures, the calculated
concentration products are sensitive to the values
selected for Ã~, the procedure adopted was to base the
computation on the average of the three estimates of
X& (see Fig. 2) listed for each sample by Debye and
Conwell.

In fitting the curves the abridged relation,

)0 I I I [ I [III I t I I ![III 1 I I I I III| I I I I I III

)012 ~015 )0(4 )0 )0
NA+n

FIG. 3. Evaluation of the equilibrium constant at 20.4'K for
arsenic ionization in germanium using the data of Debye and
Conwell. '

10 '

)0(3 10 )0 )016

lnE'= in'+
ekT 1+au

(33)

FIG. 2. Evaluation of the equilibrium constant E at 14.3'K for
arsenic ionization in germanium. Dots show E' calculated for the
diferent values of Ez estimated for each of their samples by
Debye and Conwell. ' Circles show E' for an averaged value of Ãz.

"The electrostatic contribution to the variation of b,E is, from
(24) and (30),

~ (~~elec/T) e K 3+2Kg

0(1./T) e 1+Ku 2(1+K')

was used, since calculation showed the additional term
in (32) to be smaller than the uncertainty in other quan-
tities; for example, the value of (2/s&) exp( —g)F~(q) is
0.98 for the largest experimental value of e employed
in the calculations. The value of a at each temperature
was selected so as to result in the smallest average
deviation of 1nE. "Best"values of the equilibrium con-
stants and the parameter a are tabulated below.
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peratures, so a detailed comparison is not warranted.
Apart from the good agreement between the 68~'
values, Fig. 5 indicates that at 20.4'K, DID becomes
zero at a lower net donor concentration than their
sample 59.

In essence, the Debye-Huckel theory of ionic inter-
action has been used for smoothing and extrapolating
experimental values of E' for arsenic ionization in
germanium. The over-all formulism was tested by calcu-
lating e at a series of temperatures according to the
expanded equation

(Ãg+ e)m 6BD'
ln = const — — +-,' lnT

XD—IVY —e kT
FIG. 4. Temperature dependence of AE and AGD'

for arsenic-doped germanium.

.0(0-

c„.006—
C!

QCo"-

.002—
t

0 )033 )0
MA+ n

)015 )016 (057

FIG. 5. Concentration dependence of 6 8D calculated for.

arsenic in germanium at 20.4'K and a=35 A.

~' T. H. Geballe and F. J. Morin, Phys. Rev. 95, 1085 (1954).

In Fig. 4, lnK is plotted vs reciprocal absolute tem-
perature. The value of AP' obtained from the slope of
the least-squares straight line drawn through the points
is shown in the 6gure. However, it is unlikely that hP' is
actually constant as suggested by Fig. 4, since this
would require that the standard entropy change for the
ionization reaction be independent of temperature over
the same range and, moreover, that E approach a finite
limit as the temperature is increased indefinitely (n
would not then become equal to En E~). If, in—stead,
the more reasonable assumption is made that AhD' is
constant and. equal to AZ' —3kT, a plot of ln(ET-') vs
1/T should be a straight line of slope —hhn'/k. The
value of Aha' obtained from the least-squares slope of
Fig. 4 is in reasonably good agreement with the value
0.0127 ev obtained by Geballe and Morin. " It is not
possible within the probable error of the calculated
points to distinguish between constant hE' and constant
DhD over the limited temperature interval of Fig. 4;
both quantities may in fact exhibit some variation,
consistent with (19).

In Fig. 5, Ah&& calculated by (31) is plotted against
the concentration of ionized donors. The concentration
dependence of Ah& is seen to be not very different from
that of the semi-empirical expression in (A ~+e)'
adopted by Debye and Conwell. Their corresponding
plot (Fig. 12 of reference 2) applies to a range of tem-

DISCVSSION

The Debye-Hiickel theory treats only the electrostatic
part of the total interaction between charged particles;
the neglect of interactions other than electrostatic and
exclusion eGects restricts the treatment to "dilute" solu-
tions. As seen in Fig. 5, the ionization energy of arsenic
in germanium becomes zero at an ionized impurity con-
centration of about 6)&10i6 cm ' (10 ' molar solution);
it is probably valid to neglect short-range effects at this
and lower concentrations. At higher concentrations,
such short-range interactions as may exist would be
swamped by exclusion effects.

A more specific limitation to the applicability of the
theory results from dropping terms higher than fP in
the expansion of the assumed Boltzmann distribution of
ions about a central ion:

c =c; exp( —s,eP,/kT). (35)

In (35), c is the time-average local concentration of
i ions, and P; is the time-average local electrostatic
potential (including that due to the j ion). The approxi-
mation is valid for (s;eP,/kT) &1, i.e., for the electro-
static potential energy of. an ion sma]1 in comparison to

(e'/ekT)DSme'/ekT)(iVg+g) j'*
+ —,(34)

1+aDS~e'/ok T) (,Vg+e)]2

and comparing with experiment (Fig. 6). The first two
terms on the right were obtained from Fig. 4, the value
16.1 was used for e, and a was taken to be 35 A for
all samples and all temperatures. The extraction of e
was performed by the IBM 7090 computer.

In contrast to the theory of I.ehman and James, the
fit at the higher impurity contents is very good. The
somewhat poorer 6t for the purest sample is partly the
result of a discrepancy between the tabulated value of
S~—Sg and the limit of the experimental points. In
future applications, careful consideration should be
given to the estimation of carrier densities from Tneas-
ured Hall coeIIIj.cients, since somewhat diferent values
of the various parameters will be obtained depending
upon the ratio of Hall to conductivity mobility.
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its thermal energy. The maximum physically possiMc
value of P, , given by t.he theory as 300 78

—4 I

20.4
I

14,3 10

s;e exp(xa) exp( —xr)

e I+Ka r

e, e2

kT . ekT (I+xa)a

occurs at the distance u from the j ion, leading to

(36)

(3"/)

10
17

~61

16
10

Oa

4

Calculated values of 1eiP,/kT t,„v ray from 23.6 for the
most lightly doped sample at 12.5'K to 9.1 for the most
heavily doped sample at 25.0'K. It might therefore
appear that the Debye-Huckel theory applies better to
the phenomenon of impurity ionization than one has a
right to expect. However, for the two extreme cases
cited, the calculated average separations of charged
particles are 7050 A and 410 A, respectively, at which
distances the magnitudes of eP,/kT are only 0.028 and
0.016. The quadratic approximation to c probably
involves no serious errors in the present application.

Two further considerations may be mentioned. In the
Debye-Huckel theory, the dielectric constant is taken
to be that of the pure semiconductor; small influences of
impurities on the polarization (see Castellan and Seitz's)
may be absorbed in the a. Of greater concern is the
question of applicability of the theory to systems in
which some of the ions are fixed. Reiss et aL."were con-
fronted with a similar question in applying the concept
of ion pairing to semiconductors containing both mobile
donors and immobile acceptors. Reiss" was able to show
rigorously that the same equations apply to the equi-
librium condition as in the more general case of all ions
mobile.

Although mobility does not appear explicitly in the
Debye-Hiickel theory (it is implied by the etymology
of the word "ion"), it is essential that the equilibrium
distribution of ions about any given ion be describable
by Boltzmann factors. This presents no problem for
electrons (or holes) about an impurity ion," but the
converse requires some thought. To an observer follow-
ing an electron about in its peregrinations, attracted by

' G. W. Castellan and F. Seitz, Semiconducting Material
(Butterworths Publication Ltd. , London, 1951), pp. 8—25.

"H. Reiss, C. S. Puller, and F. J. Morin, Bell System Tech. J.
35, 535 (1956); see especially pp. 565, 566.' H. Reiss, J. Chem. Phys. 25, 400 (1956).

"Laura Roth has suggested to the author that the distribution
of electrons about a donor ion should obey Fermi-Dirac statistics,
leading to

n'=n J x~fo(x ~g)dx J x&fo(x)dx,

where x has been written for ( 8—so)/kT. A linear approximation
to fo(x—ep;) gives

1F g(q) et|;
2 Fy(g) kT

and modi6es ~' to equal (4xe'/ekT) (2Ã~+eL1+-,' (F y/Fl) 1}.In
the classical limit, the foregoing expressions reduce to those em-
ployed in the text.

M~44&4 4 4 a

11
10

0.02 0.04 0,08 0.10

Fit. 6. Comparison between theory and experiment for six
samples of n-type germanium. The points are from the corre-
sponding figure of Debye and Conwell. '

ionized donors and avoiding ionized acceptors and other
electrons, the fixed ions would appear to be distributed
in the proper way relative to the movieg electro', . More-
over, in the range of temperature corresponding to in-

complete ionization, the simultaneous capture of elec-
trons by some donor ions and release of electrons by
others lends a certain effective mobility to ionized (and
neutral) donors. The exact distribution of impurities is

probably unimportant at large average separations,
although the theory may run into difficulty at appreci-
able concentrations of compensating impurity.

The pragmatic justification for including the fixed
ions lies in comparison with experiment: The formula-
tion does not 6t the data unless the totcL concentration
of charged particles is used in the Debye screening
length I/x. Lax and Mengert" refer to quantum me-
chanical calculations by P. A. Wolff of correlations
introduced by Coulomb forces; for separations large com-
pared to a thermal de Broglie wavelength, the expres-
sions are stated to reduce to those obtained on describing
the correlations in terms of the classical Debye-Huckel
theory. However, the Debye screening length employed
by Lax and Mengert contains e+p rather than the total
concentration of charged particles. Furthermore, the
Debye-Huckel limiting law, which applies for ~a&(1, was

22 M. Lax and P. Mengert, J. Phys. and Chem. Solids 14, 248
(1960).
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rA&LE I. Donor equilibrium constants and values of the Dehye-
Huckel parameter a for arsenic-doped germanium. "

T ('K)

12.5
14.3
16.7
20.4
25.0

25.35 ~0.150
25.877&0.046
28.561~0.039
30.442a0.014
31.848~0.024

1.0, X10»
4 7p X10"
2.53 X10'2
1,662 X10"
6.78 X10»

GX10s {cm)

35-36
31-32

36
40
34

a Derived from the published data of Debye and Conwell. 2

"e =16.1.

'3 C. Herring and M. H. Nichols, Revs. Modern Phys. 21,
185 (1949); see especially p. 255.

~R. N. Dexter, H. J. Zeiger, and B. Lax, Phys. Rev. 104,
637 (1956)."J. C. Slater, Handbuch der Ehysik, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), Vol. 19, pp. 1—136; see especially
pp. 78-80.' E. M. Conwell, Phys. Rev. 99, 1195 (1955).

used in place of the more general expression, so that it
is not clear to what extent the restriction to very large
separations applies. Similar comments hold for the
application of the Debye-Huckel theory made by Herr-
ing and Xichols. 23

The average value of u for the Debye and Conwell
samples is 35 A (Table I). This figure is about half the
radius of the lowest Bohr orbit for an electron bound to
a group V impurity in germanium (calculated by aver-
aging the cyclotron resonance effective masses'4 accord-
ing to 3/m*=2/m&+1/mt) and an order of magnitude
smaller than the de Broglie wavelength of a thermal
electron

I averaging the effective masses according to
m = (2m&+m~)/3j. For ions in liquid media. , the dis-
tance of closest approach of the excess charges is given
roughly by the sum of the ionic radii. The same physical
model obviously does not apply to encounters between
electrons and arsenic ions in germanium, since a is an
order of magnitude greater than a lattice spacing.

In applying the chemical reaction approach, bound
electrons and free electrons have been treated sepa-
rately; it has been assumed, moreover, that the excited
bound states are populated to a negligible extent. On
this basis, it seems reasonable that the region about
the donor ion from which free electrons are excluded
would be defined approximately by the orbit of the
bound electron. A large value of the minimum distance
u is also compatible with the wave mechanical treatment
in that, due to orthogonality to the bound state, the
wave functions of electrons in the conduction band tend
to avoid the impurity atom (see exposition by Slater").
The quantity a may thus measure the separation at
which the "repulsive force" due to orthogonality over-
comes the attractive field of the positively charged
arsenic ion.

If excited impurity states are not negligibly popu-
lated, k' calculated by (15) will be too small at the
higher impurity concentrations (see ConwelP'). Conse-
quently, a larger value of a would be required to fit the

data, and 68& would decrease less rapidly than indi-
cated in Fig. S.

As we have shown, the decrease of the ionization
energy of arsenic in germanium can be accounted for
entirely by electrostatic effects, according to the Debye-
Huckel theory of ionic interactions. The theory was
also applied to the measurements of Pearson and
Bardeen' on boron-doped silicon, although here the data
were not suKciently extensive and precise to permit as
detailed an analysis as for the Debye and Conwell data.
Morin and Maita'~ used the Debye-Huckel limiting law
to estimate the decrease in the gap energy due to electro-
static interactions of holes and electrons in the intrinsic
range of germanium; the correction is important at
elevated temperatures, where intrinsic carrier concen-
trations are high.

It is not unreasonable to expect the same considera-
tions to apply to extrinsic germanium and silicon at
intermediate temperatures, where impurities are com-
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pletely ionized. The electrostatic contribution to the
deviation free energy for the intrinsic ionization reaction
will be given by (30) with the Debye screening length
determined by the total concentration of impurities and
mobile carriers. In consequence of a decrease in the gap
energy, np will be somewhat greater than its intrinsic
value. Calculations have been made for silicon at room
temperature for various assumed values of the parame-
ter u (Fig. 7).

At high impurity contents, exclusion effects will bring
about a reversal in sign of the concentration dependence
of AB for the intrinsic ionization reaction, so that a
maximum in np may result. At somewhat lower concen-
trations, say 10" cm ', the np product may exceed its
intrinsic value by some 20% (Fig. 7). By the same
reasoning, np should be less for uncompensated material
than for partially compensated material of the same net.
donor or acceptor concentration. It is suggested that the
indicated effects be looked for, although it is rec-

F. J. Morin and J. P. Maita, Phys. Rev. 94, 1525 ('1954).
~' See, for example, pertinent sections in references 8 and 9.
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DENSITY OF MOBILE CARRIERS AND IONIZED IMPURITIES

FIG. 7. Calculated concentration dependence of the intrinsic
ionization product of silicon at room temperature for various
assumed values of the Debye-Huckel parameter a. The lines for
c equal to 2,5 A and 5 A were calculated approximately by the
Bjerrum theory'8 of ion-pairing and are included mainly for
interest.
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ognized that they may be difficult to distinguish from
other effects, as for example, changes in mobility.
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We present a new method for solving the problem of one electron
in a periodic potential; it is discussed in this paper mainly for
k=O, although it can be generalized to other k. The periodic po-
tential is considered to be generated by spherically symmetric
"atomic" potentials at each lattice site; this does not mean of
course that the total potential near a lattice site need be spherically
symmetric. The method has its origin in the observation that
(for k=0) the equation for C(K;), the Fourier coefficient of the
wave function, becomes just the momentum-space Schrodinger
equation when the lattice spacing becomes infinite. This latter
equation is separable into a radial part, and an angle-dependent
part expressible in spherical harmonics. This suggests that it would
be advantageous to expand the C(K;) for finite lattice spacing
similarly, into radial functions C&(E ), where IC is the magnitude
of the mth smallest reciprocal lattice vector, and into an angle-
dependent part expressible (for cubic lattices) by Kubic harmonics.
We do this and the Schrodinger equation for the system becomes
a set of homogeneous linear equations for the C~(E,„), with a
corresponding secular determinant for the eigenvalues.

We have tested the method numerically, as a function of lattice
spacing and potential strength, for S-like states, when the
"atomic" potentials are exponential ones, and the lattice is body-
centered cubic. In many cases it turns out that one can solve the
periodic potential case more easily and more accurately than orle
can solve for the isolated atom. This is because as the lattice
spacing gets large the successive E became more and more closely
spaced and this leads to larger and larger secular equations. The
wave functions as well as energies are given for most lattice spac-
ings to considerable accuracy (three to seven significant figures).

When the lattice spacing gets large and the equations approach
those for the isolated atom, we show how one can use the atomic
momentum space functions as variational functions, in the same
spirit as the usual tight-binding approximation (as applied for
k=0). The present method has the considerable advantage that
it bypasses the usual difficulties with that approximation —near-
neighbor approximations and calculation of overlap integrals-
and permits an easy and accurate evaluation of the variational
expression as a sum over the IE, .

I. INTRODUCTION AND THE BASIC EQUATIONS

HE one-electron band structure problem, i.e., the
problem of solving the Schrodinger equation for

an electron in a periodic lattice, is an old one with an
extensive literature. ' In this paper, we look. at some old
equations for this problem in a new light, and are led to
a new and accurate method for solving it. We are also
led to a new way of doing the "tight-binding" approxi-
mation which bypasses the multi-center integrals that
occur in the usual formulation of this method.

To begin, we consider a monatomic periodic lattice at
each lattice site of which there is an "atomic" potential;
this gives rise, of course, to a periodic space potential.
For simplicity, we shall assume that these "atomic"
potentials are spherically symmetric, although one can
generalize to potentials which are not spherically sym-

*Operated with support from the U. S. Army, Navy, and
Air Force.' For a review article with extensive references to the literature
see, for example: Joseph Callaway, in Solid-State Physics, edited
by F. Seitz and D. Turnbull (Academic Press, New York, 1958),
Vol. 7.

metric in a straightforward way. This assumption does
rot mean, of course, that an electron sees a spherically
symmetric tota/ potential, for near any lattice site it will
see the local "atomic" potential plus the tails of the
potentials that are at other sites. We choose an origin
of coordinates at one of the potentials and in this co-
ordinate system let r be a position vector to a point P in
space. The site of the ith potential is specified by a
vector tl; of the form

'tlar+t2a2+&sa'8

where a1, a&, a& are three basis vectors for the crystal
andi', i~, i3 are integers. At each lattice site, we set up a
coordinate system oriented similarly to the coordinate
system at the origin, and let r; be the position vector in
the ith system to the point P in space. Then obviously
we have

d,+r,= r.

As usual, we define the basis vectors b, of the reciprocal
lattice by

a,"b,=b;,


