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The theory of sound attenuation in structurally perfect di-
electric crystals is extended and applied to recent experiments
on the absorption of acoustic waves in crystalline quartz at
frequencies from 10° cps to 2.4X10% cps. The sound wave is
assumed to vary the frequencies of the thermal phonons adiabati-
cally, and the complete Boltzmann equation is used to determine
the response of the thermal phonon distribution to this disturb-
ance. The rate of energy transfer from the thermal phonons to the
temperature bath is computed. In the steady state, energy is
supplied by the driving sound wave to the thermal phonons at

1. INTRODUCTION

NTEREST in the fundamental mechanisms re-
sponsible for the damping of elastic waves (sound)
in insulating crystals has recently been stimulated by
the experiments of Bommel and Dransfeld® and of
Jacobsen,? in which the attenuation of such waves in
quartz was studied for frequencies ranging from 10° to
2.4X10% cps at temperatures between 4°K and 160°K.
This paper is an exposition of a theory of sound ab-
sorption in insulators which provides an interpretation
of these experiments. One of the results of the present
work is to extend and deepen the prior discussion! by
Bommel and Dransfeld of their results. The inter-
pretation given here is not always sufficiently quanti-
tative because only very rough values of some of the
parameters entering the theory are available at present,
so that explicit evaluation of the complicated theoretical
expressions is not always warranted. Only insulators
are considered because the theory of sound absorption
processes involving free electrons has already been
treated in considerable detail.*—5
An important contribution to the microscopic theory
of sound absorption was made by Landau and Rumer,®
who presented a quantum mechanical treatment of the
problem, valid when Qr>1, where Q is the circular
frequency of the sound wave and 7 is the mean time
between collisions of a thermal phonon in the solid.
They emphasized that their theory no longer applies
in the range Qr< 1.
Akhieser” treated the case Qr<1. Following the
classical phenomenological analysis® he regarded the
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the same rate, which gives the attenuation. Relaxation times are
assumed for V and U processes. Since the effect of the sound wave
on a thermal phonon depends on the relative polarization and
wave-number vectors of both, the phonon distribution in a small
spatial region tends to relax to a new temperature 7’ which is
determined by requiring local conservation of the total energy to
first order. The present treatment leads to better understanding
of the rapid decrease in attenuation with decreasing temperature
in the range in which the sound-wave period becomes comparable
to the average relaxation time of the thermal phonons.

absorption as arising partly from heat flow and partly
from viscous damping. Our work is related to and was
in part suggested by his method for calculating the
viscous damping contribution. We have avoided trying
to separate the absorption into heat-flow and viscous
damping parts because as Qr approaches unity this
separation is difficult to justify. The present work
resembles Drude’s treatment? of the absorption of light
by electrons in its dependence on the linearized Boltz-
mann transport equation and heuristic assumptions as
to the form of the collision integral in that equation.
Like Drude’s theory, it agrees fairly well with experi-
ment for @7 approaching and even greater than unity,
though its derivation is rigorously valid only for @r<1.

Akhieser’s calculation of the viscous damping con-
tribution to sound absorption is based on the idea that
the sound wave modulates the elastic properties and
hence the thermal phonon frequencies of the medium
through which it propagates. The modulated phonons
are no longer in thermal equilibrium but relax towards
local thermal equilibrium via phonon-phonon collisions
caused by the anharmonic interaction. This relaxation
is an entropy-producing process which removes energy
from the sound wave driving the process and thus
damps it. The time-independent Boltzmann transport
equation is used to describe the process. The collision
integral is written explicitly and exclusively in terms of
the three-phonon transition probabilities.

The present analysis differs from that of Akhieser in
that all field and time-dependent terms of the complete
Boltzmann equation are considered, in keeping with
the fact that the driving term has an explicit time
variation. Further, the collision term is written in
terms of relaxation times for normal phonon-phonon
collisions (V processes) and all other processes (U
processes), both of which tend to relax the distribution
function to an equilibrium distribution which is
characteristic of a local temperature 77, and, in the
case of the N processes, is shifted in phonon wave-
number space away from the origin. Except for the
introduction of 77, this procedure is in correspondence

9 P, Drude, Ann. Physik 1, 566 (1900).
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with Callaway’s treatment! of thermal conductivity in
insulators. The temperature 7" arises here because the
perturbation of the distribution function by the sound
wave driving the system depends on the polarization
of the thermal phonons. This leads to a local relaxation
of these phonons, by a process having no analog in the
theory of thermal conductivity of insulators, towards
a Planck distribution for which the phonons in all
branches are at a common temperature 77 different
from the ambient temperature of the crystal. Finally,
the energy transferred from the sound wave to the
thermal phonons is computed differently in the present
paper.

Bommel and Dransfeld! based their discussion of their
results on some of the ideas underlying Akhieser’s
calculation of the viscous damping. They emphasized
the importance of the local relaxation process just
described in the attenuation of the sound wave.

We turn now to a survey of the main lines of the
present analysis. As suggested by Blount in his paper
on ultrasonic attenuation in metals,* it is convenient to
consider three systems: (a) the driving sound wave;
(b) the dissipative system, here the assembly of thermal
phonons; and (c) an external system (thermostat or
heat bath) to which the thermal phonons deliver energy
by means of collisions. The dissipated energy is that
delivered by (a) to (b) or equivalently that delivered
by (b) to (c). We study the latter process in this paper.
The driving sound wave is represented as a traveling
plane wave of elastic displacement of the form
u, cos[i(o-r—Qf)7] where u, is the amplitude and o
and Q are, respectively, the wave vector and frequency
of the wave. As already noted, the principal effect of
this sound wave is to produce a periodic variation of the
frequencies of all the thermal phonon modes of the solid
with frequency €, which perturbs the distribution. The
linearized Boltzmann transport equation is set up in
Sec. 2. In Sec. 3 the rate of energy loss of the phonons
to the heat bath is computed by a procedure analogous
to that used by Blount.* In the last section (Sec. 4) the
behavior of the rather complicated expressions for the
attenuation I is examined for several important special
cases.

2. THE PERTURBED THERMAL PHONON
DISTRIBUTION

Our first objective is to determine the distribution
function N (q; r,?) for the population of thermal phonons
in a sample of unit volume. N(q; r,¢) is the number of
phonons of mode q at position r and time #. This ap-
proach is valid so long as ¢<gi, the wave number of
the most abundant phonon excitation or, neglecting
dispersion in the velocity of sound, so long as

Q<KT/h. 2.1)

We let the direction of sound propagation be the
z axis, and, unless otherwise indicated, assume the

10 J, Callaway, Phys. Rev. 113, 1046 (1959).
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polarization index to be included in the specification
of the wave-number vectors q and e. Similarly, inte-
gration over q will be assumed to include summation
over mode type.

The Hamiltonian for a single phonon q at position z
at time ¢ under the influence of the externally applied
sound wave is

H(q; 5,0)=Ho(@+H1(q; 5,)=ho(q; 5,), (2.2)
where
H0= ﬁwo(‘l), (2'3>
Hi=a(q; o,u0)Ho(q) exp[i(oz— Q)]
=V¥(q; o,u0) exp[i(oz—Q%)]. 2.4)
Thus the perturbed frequency w is given by:
w(q; 5,8 =wo(@){1+a(q; o,u0) exp[i(oz—Q) ] (2.5)

Here wo(q) is the frequency of a phonon of mode q in
the unstrained crystal and a(q; o,u0) is a coefficient
depending in a complicated way on q and ¢ and linearly
on uy for small amplitudes, the case considered here.
The determination of the coefficient a(q; o,up)
discussed in the Appendix. Throughout this paper it is
understood that only the real parts of all complex
expressions such as appear in (2.4) and (2.5) have
physical significance. Note, too, that in general the
coefficients in complex expressions [e.g., a(q; o,u0) ] are
complex. We wish to distinguish three different distri-
bution functions: the thermal equilibrium distribution
at temperature 7T,

No(wo)=[exp (fiwe/ KT)— 171, (2.6)

the local equilibrium distribution No(w) corresponding
to the perturbed frequencies w, and finally the perturbed
distribution N(q; 2,£). Since in practice the attenuation
is small (I'Ks) and we are interested only in effects of
lowest order in the sound amplitude, we are justified in
regarding the perturbation of the phonon distribution
function by the sound wave as small. Hence we can
write, to first order, the perturbed distribution function
in terms of the local equilibrium distribution as

N(g; 2,8)=No(w)— (N'/KT)®(q; o,u0)

Xexp[i(oz—Qt)], (2.7)

where
NOIEdNo(wo)/d(hwo/KT). (28)

Using Eq. (2.4) we can also relate the perturbed dis-
tribution to the thermal equilibrium distribution in
first order:
N(q; 2,t)=No(wo)+ (No'/KT) (¥ —®)
Xexp[4(oz—Q%) ]
=N, (wo) +N 1.

The Boltzmann transport equation can be written

aN 1 3 ON 0H ON o0H
coll 6t h 1.—~1 61’1 6q,~ aqi ar;
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where the 7; are the position coordinates and the 7g;
the momentum coordinates of the phonons, here con-
sidered as classical particles. That this form of Boltz-
mann’s equation is equivalent to the more common form
involving velocities and accelerations is an immediate
consequence of Hamilton’s equations of motion. Note
that on the right-hand side of Eq. (2.10) we include
the term dN/d¢ omitted in Akhieser’s work,” but not
terms involving differentiations with respect to tem-
perature. Omission of the term 9dN/d¢ is justified, as
will become clear, for Qr<1; however, it strongly
affects the results as Qr approaches unity. We believe
that it is incorrect to introduce the notion of tempera-
ture in connection with the Boltzmann equation, except
in describing the boundary conditions or in approxi-
mating the collision integral. For the present problem
(2.10) becomes

ON 1,0N dH ON oH
(). A o
coll (% 0z 892 aqz 0z
upon retaining only terms of first order,
AN, 170N, 98H, ON,dH,
( ) —(—— T 1)
coll 0z 0q, 0g. 03

Proceeding heuristically we next construct an ap-
proximation to the collision term. As noted, the
scattering processes fall into two classes: (1) N
processes, which conserve phonon wave vector, and
(2) U processes which do not conserve phonon wave
vector. To describe these two classes of processes we
introduce the relaxation times, rx(q) associated with
class (1) and 7y(q) with class (2). Because they con-
serve wave vector, the normal processes produce
relaxation towards a distribution which is shifted in
phonon wave-vector space. Both kinds of processes
produce relaxation towards Planck distributions which
are characterized by an effective temperature

T’ (2,8)=T+AT exp[i(oz—Q¢)].

T'(z,t) is the temperature which would ultimately be
attained in a small region around a point at position z
if at time ¢ this region were isolated from the remainder
of the solid but maintained in the state of strain existing
in it at that time. We can roughly specify the region
around z as a sphere centered at a point having co-
ordinate z and with radius of order ¢7, where ¢ is the
mean velocity of sound and 7 the mean free time for
the thermal phonon distribution N(q;z,). The dis-
tribution function towards which &V processes relax may
therefore be written

No(w; T",%)={exp[ (hw—2-q)/KT ]— 1}

The corresponding relaxed distribution for U processes
is

(2.13)

(2.14)

No(w; T")={exp[liw/KT' ]—1} (2.15)
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The physical significance of the shifted distribution
characterized by A is discussed by Klemens! and
Callaway.® Note that w(q) and not wo(q) appears in
the unperturbed distribution function: All collision
processes tend to relax the perturbed distribution
towards distributions corresponding to phonon modes
of the locally strained crystal.
To first order,

No(w; T',0) =No(w)— (N'/KT) [ heo(AT/T)+A-q]

Xexp[i(oz—Q8)], (2.16)
Nolw; T)=No(w)— (No'/KT)hwo(AT/T)
Xexplt(oz—Q8)], (2.17)

where A is defined by
A=A exp[i(oz—Qf)].
The collision term of the Boltzmann equation is then

(E)N) N(q; 2,t)—No(w; T',0)
at con—

()
N(q; 2,0)—No(w; T")

v(q)
= (No//KT){rx ' [®—T0(AT/T)
+rv7 [ @—%wo(AT/T) ]}
Xexp[i(oz—Q8)].

The parameters A and AT are determined by the
following considerations: For the normal processes,
wave number must be conserved, which implies:

N
> f q(—) d*g=0.
i 0t 7 con,w

To first order, the total rate of change of the energy of
the system must also vanish, implying:

2 frto(%)

In Egs. (2.19) and (2.20) the summation over the
polarization index j has been made explicit to emphasize
that both integration over the Brillouin zone and
summation over polarizations are involved. Non-
energy-conserving processes like radiation and inter-
actions with external surfaces are excluded throughout
the present analysis. The irreversible energy changes
associated with attenuation of the sound wave only
occur in second order, as discussed below. The con-
ditions (2.19) and (2.20), which refer only to a single
point of coordinate 2, determine AT in accordance with
our definition of 7" only when ¢r is small compared to

(2.18)

(2.19)

dq=0. (2.20)

1 P, G. Klemens, in Solid-State Physics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc., New York, 1958), Vol. 7, p. 1.
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the wavelength of sound, or Qr<1. It is clear that T’
approaches 7" as Qr becomes greater than unity. This
incompleteness of the conditions (2.19) and (2.20)
causes no real difficulty because, as will be seen, terms
in AT and A disappear from our results as @r becomes
greater than unity. Further, the present analysis does
not really apply in this range, since quantum mechanical
effects become important. Indeed, this regime is just
that to which the Landau-Rumer® analysis applies.
Using Egs. (2.4), (2.9), (2.12), and (2.18) we now
construct and solve the linearized Boltzmann equation.

Introducing the total or combined relaxation time +(q)
defined by

[r@I*=[rv(@T+[ro(@1?, (2.21)
we find the solution
&= {1—i[Q—c.(qQ)o |7} {Awo(AT/T)
+(r/78)A-q—1QrT}. (2.22)

Upon inserting the solution for ® into (2.18), the
conditions (2.19) and (2.20) determining AT and A
may be stated explicitly. We find

224, 9(cqrn) 1S (q, H[1—i(Q@—c.0o)7 I
X{i(Q@—c.0)r(AT/T)+[(v/7n)—1

+1(Q—c.0)7](A - q/fiwse) —iQra} =0, (2.23)
and
>4 S(@HL—i(@—co)r ]
X{i(Q@—c.o)L(AT/T)+ (v/7n) (A q/Fiwo) ]
—iQa}=0, (2.24)
where
S(q,7)=—K[iwo(a,7)/ KT N (2.25)

is the specific heat due to the mode q, j. Equations
(2.23) and (2.24) must be solved simultaneously to
determine AT and A. Equation (2.22) may then be used
to obtain an explicit expression for .

3. THE DISSIPATION

Next, following Blount’s* approach, we calculate the
rate at which energy is transferred from system (b)
(thermal phonons) to system (c). We have noted
already that the average rate at which energy is re-
moved from the sound wave is equal in the steady state
to the average rate Q at which energy is transferred
from the phonon system to the heat bath. Q is given by

+C(5).)

where ( ) denotes time average. In this expression the
quantities H and (dN/8T)en are to be understood as
the real parts of the respective complex quantities
previously considered. Equation (3.1) may be trans-
formed into a more convenient form with the help of

@3.1)
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Eq. (2.11):
ON 0H 9N oH

dz dq. 9q. 9z

Q=_

[

[BN 1

]> (3.2)

which can also be written

0= §<[N§“(N“’>7a—z(maq)

haqz( H )] - 63

The second term, which is just the time derivative of
the total energy, averages to zero. The fourth term
vanishes when summed over the Brillouin zone.

In the present case the third term also averages to
zero. However, in the presence of a uniform temperature
gradient it gives rise to the entire energy dissipation.
In this case,

dH/dz=098H,/dz= 3.4)
To first order, using Eq. (2.7),
N(q; 2,t) =No(fiw—>). 3.5)
Then
oN how 19T 1 0T
Dy~ v N 66)
dz KT? T 9z T 9z

Only the last term gives a contribution because of the
angular integration associated with 9H/dq.=kc.(q).
We thus find

1 0H ON

’=__Z H____
E #ai 9, 02

10T
= —Z ﬁwo(q)cz(‘I)N(q,Z)_‘ DN
0.7 T oz

1
=——vTw,
T

where w is the thermal current. This is the well-known
expression for the rate of energy dissipation by heat
conduction in a uniform thermal gradient. We return
now to the sound absorption problem. Here, the entire
contribution to the energy dissipation comes from the
first term of (3.3). For complex quantities this may be
written as

0 Vz dsR[N H}
—— e ——
o7 J ! Y

3.7

Substituting Ny from Egs. (2.9) and (2.22) and H;
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from Eq. (2.4), we obtain as the general expression

. 1Qa
Q=—4T £ 5(0.) Ref-— ——
a.d 14+i(Q—c.0)7
AT* 7 A-q
x[ +— —~+mm*]}, (3.8)
T 7~ fiwo

which will be discussed in the next section.
The attenuation I' is given by

I'=0Q/cW, (3.9)

where W is the energy density of the sound wave,
W =pQu?/2. (3.10)

p is the mass density.

4. DISCUSSION OF SPECIAL CASES

The expressions (3.8), (2.23), and (2.24) determine
Q if the quantitieS wo(q,j), TN(qu)> TU(‘l;j); and
a(q; o,up) are known. In view of our incomplete
knowledge of these functions for most materials, further
consideration will be restricted to a discussion of Q in
some simple limiting cases.

The angular integrations in Eq. (3.8) can be per-
formed analytically if one assumes wo, 7w, 7v, and @ to
be independent of the direction of q. They may still
depend on |q| and on the mode type j. The angular
integrals can then all be reduced to easily evaluated
forms. In order, however, to obtain tractable expres-
sions for Q, two further approximations are desirable.
First, it is assumed that the solid can be represented
by the Debye model, for which

w(q,7)=cq, (4.1)

where ¢ is a constant average velocity of sound. Second,
Tv, Tu, and ¢ are supposed independent of g. Since 7y,
7y, and ¢ may be expected to be sensitive functions of
q and 7 in most solids, it is clear that the second as-
sumption causes the following results to have only
qualitative significance.

The angular integrations involved in the evaluation
of Eq. (3.8) are most easily expressed in terms of

1 Mm(l__”)n

Lnn(@Qr)= | ———dp.
—1 1'—1,91‘(1‘“;0

(4.2)

With the preceding assumptions and definition, Egs.
(2.23), (2.24) and (3.8) become, respectively,

QI (AT/T)+ (rat— 7)1 50(A/ Fic)

+iﬂ]21(A/h6)—iQIma= O, (4:3)

1.9[01 (A T/ T)+ TN_lIm (A/ﬁG) - ’iQIooll= 0, (44)
Q=—1C,T Re{iQa[Io*(AT*/T)

+ (T/TN)Im* (A*/ﬁc)-{—iﬂrloo*d*]}, (4.-5)
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where A= (0,0,A) and

=% 5(a,) (4.6)

is the total lattice specific heat of the solid.

It is convenient now to specialize our formulation to
the case of a compressional wave, for which, as is noted
in the Appendix,

4.7

where v is Griineisen’s constant. Then using Egs.
(3.8)-(3.10),

I'= (C,Tv/20¢%) Im{ (Log*/a*) (AT*/T)
+ (TIm*/hGTNd*)A***‘iﬂ’r[oo*} . (4:8)

It is not difficult to solve Egs. (4.3) and (4.4) for AT
and A and hence determine T' in terms of 7n, 7y and
the other parameters. In most solids there is con-
siderable uncertainty regarding the values of 7y and
7y. Their determination depends on careful experiments
and analysis such as that given by Callaway! for
germanium. We can nevertheless obtain a qualitative
impression of the content of the present results by
restricting consideration now to the case (7n/7y)>1
and associating the remaining 7y with the thermal
conductivity relaxation time. In this limit we consider
only the second of the two relaxation terms in (2.18),
A and Eq. (4.3) being eliminated. Then Eq. (4.4)
becomes

a= —1ylo,

AT/T=1Iua/In, (4.9)
and
I'= (C,T7*/ 20¢) Im{ (Io6*/Tor)+iQ7I00*}.  (4.10)
For @7«<1, Eq. (4.10) becomes
T'=C,Ty*Q7/3pc% (4.11)

This result can be succinctly expressed in terms of the
thermal conductivity
k=3Cycr,

I'=v202T/pc®.

(4.12)
(4.13)

At temperatures greater than the Debye temperature
of the solid, k~7% Thus «7" and hence I' become
independent of temperature, an effect that is experi-
mentally observed in quartz.

For @r>>1, Eq. (4.10) becomes

T=my2QC, T /4pc. (4.14)

It is interesting to note that this expression is inde-
pendent of 7 and has the same dependence on @ and
T as that arrived at by Landau and Rumer® in their
quantum mechanical treatment of the case 27>1. From
Eq. (4.10) it is seen that the term arising from AT is
negligible in the present limit. As already pointed out
in Sec. 3, the temperature shift AT could not be main-
tained with Qr>>1. If we relax for the moment the
restriction 7y/7¢>>1, which eliminated the normal
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processes, we see from Eq. (4.8) that the term de-
pending on A is also unimportant in this limit. Thus
Eq. (4.14) is valid in this more general case as well.

The last question concerns the form of T' when the
possibilities of the existence of finite AT and A con-
sidered here are ignored. It seems physically reasonable
that relaxation should occur towards the unperturbed
thermal equilibrium distribution for 2r>1, when on
the average a thermal phonon travels many sound
wavelengths between collisions. Under these circum-
stances one does not expect collisions to occur often
enough in any local region to alter the distribution
towards which relaxation occurs. Putting AT=0 as
well as A=0 leads to the result

3y22Tk tan™1(2Q7)
I‘ =
2Qr

. (4.15)
pc®

which is similar to Eq. (4.10) except that the term
(Z00*)%/I01 is absent. For Qr<1, Eq. (4.15) leads to a
value of T' three times that given by Eq. (4.13); for
Qr>>1, it leads to the same value given by (4.14). T' is
considerably smaller when AT is considered than when
AT is neglected (for Q7<<1) because for finite AT the
distribution function does not have as far to relax.
This results in smaller collision terms and hence
smaller attenuation.

In order to check the qualitative validity of the
present theory, let us compare the results given by
Egs. (4.10) and (4.15) with the experimental infor-
mation available for quartz. Griineisen’s constant
will be treated as an adjustable parameter. The thermal
conductivity relaxation time will be obtained from
experimental values of .2 C,,® and Eq. (4.12). A plot

2 J, W. deHaas and T. Biermasz, Physica 2, 673 (1935).
BR. C. Lord and J. C. Morrow, J. Chem. Phys. 26,232 (1957).
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of 7 vs temperature is shown in Fig. 1. For the Debye
model an average velocity of sound ¢ can be defined in
terms of the velocities ¢z, ¢; for longitudinal and trans-
verse waves as follows:

/)= (1/e®)+(2/c?).

The attenuation is plotted vs temperature and com-
pared with the theoretical curves for frequencies of 1
and 3.9 kMc/sec in Figs. 2 and 3. The parameters v are
determined by matching the experimental and theo-
retical attenuation at 60°K in the case of the lower
frequency and at 40°K for the higher frequency.
Despite the grossness of the approximation involved
in letting a single v represent the coupling between the
sound wave and the crystal, it is seen that the magni-
tude of the attenuation is represented quite well by the
“refined” theory of Eq. (4.10), although the shape of
the curves is represented better by the “simple” theory
of Eq. (4.15).

We note that our Eq. (4.8) becomes identical with
Eq. (9) of reference 1if in addition to setting AT=A=0
we put ¢,(q)=0, i.e., neglect the velocity components
of the thermal phonons in the direction of the applied
sound wave. This is equivalent to omitting all terms
except the first on the right-hand side of Eq. (2.12).
The differences between the expression in reference 1
and our result for Qr>>1 are attributable to the fact
that the analysis of Bémmel and Dransfeld involves
an assumption equivalent to neglect of thermal phonon
velocity components in the direction of propagation of
the sound wave. Our limiting expression for T' in the
Qr>>1 range is larger by a factor @r, so that our con-
siderations lead to markedly different results in this
range. The difference may appear uninteresting because
neither theory is really valid in this range. Neverthe-

(4.16)

10 T T T T
1 kMc

8- _
e
> 6 |
o
=
)
=3
=
& a- —
= S
= o

N
Emted |
z T,
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u
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! { |
() 20 30 %0 80 100

T{°K}

F1G. 2. Absorption of longitudinal waves at 1.0 kMc/sec vs
temperature. The dashed curve and experimentally observed
points were taken from reference 1; the solid curves were obtained
from the theory as described in the text.
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F1e. 3. Absorption of longitudinal waves at 3.9 kMc/sec vs
temperature. The dashed curve and experimentally observed
points were taken from reference 1; the solid curves were obtained
from the theory as described in the text.

less, we remark again that except for a multiplicative
constant of order unity, our result for 27>>1 is the same
as that which Landau and Rumer derived from quan-
tum mechanical arguments. For 27«1 our result agrees
with reference 1 because the terms neglected there drop
out of the complete expressions in this limit.

We have seen that the present theory has the correct
qualitative features and makes possible quantitative
calculations for the range Qr<1, but it should be
emphasized that such calculations are at least as
difficult as calculations from first principles of the
lattice thermal conductivity.

APPENDIX. DETERMINATION OF a(q; o,u)

We treat the calculation of ¢(q; o,u0) defined in Eq.
(2.4), as a problem in the classical theory of elasticity.
Given a displacement u(r) defined at every point r of
the elastic solid, we seek

Aw(q; 7) = a(q; o,u0)wo(q) exp[i(oz—Q1) ],

the change in circular frequency of the phonon-packet
of wave vector q. We assume that the phonon packet is
localized within a wavelength of the elastic displace-
ment and that its frequency follows the deformation
adiabatically. Both of these assumptions are valid for
most of the thermal phonons if

Q<KT/h. (A1)
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Following Akhieser,” we consider only the lowest
order or linear dependence of Aw(q; z,¢) on the state of
strain and rotation of the medium at (z,8):

Aw(q; 2,0) =wo(q) 2 [vie(Quatdu(@)i], (A.2)

ik

with

1 (9%; a%k .
uikE‘( +—1), (strain tensor)

2\0r; Or;
(A.3)
1/0u; Ou
'UikE“(_“‘_ , (rotation tensor)
2 ark or. '3

where 7;, i=1, 2, 3, are the Cartesian position coordi-
nates and #; are the components of the displacement.
The tensor v(q) which we call the generalized
Griineisen tensor, can be computed from the second-
and third-order elastic constants of the solid and the
polarization and wave vectors of mode q with the aid
of an approximate formula given by Ziman' and the
assumption that the effect on w(q;7) of a deformation
at r is the same as the effect on w(q) of a uniform strain
equal to that at r in a macroscopic piece of solid for
which the mode q can be defined. The tensor §:;(q)
relates a local rotation of the medium to the changed
frequency with which a phonon of a particular wave
vector and polarization would propagate in the rotated
medium. In an isotropic continuum the phase velocity
and frequency associated with a particular phonon are
independent of the direction of propagation, and hence
d:x vanishes.

We note that for a displacement described by the
real part of wgexp[i(oz—Qf)], a(q;o,up) is a pure
imaginary number. For a longitudinal wave u, has only
a z component, call it u#o,; the tensor #;, has only a
22 component, #,,= 11,0 ; and v;;=0. Then

Aw=1wqy . t0.0 exp[i(cz—Q%) ], (A.4)
so that

(A.5)

In this case we can identify —+v,, with the constant v
appearing in Griineisen’s theory of thermal expansion,!®
so that we have, finally,

a= i’)’zzuﬂzo'-

(A.6)

14 J, M. Ziman, Electrons and Phonons (Oxford University Press,
Oxford, 1960), page 154, Eq. (3.77).
~ 18 E, Griineisen, Handbuch der Physik (Verlag Julius Springer,
Berlin, 1926), Vol. 10, p. 21.

a= —1YU,0.



