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We investigate the linear transport properties of electrons in a solid when both phonon and impurity
scattering are important. The problem is treated for the case where Maxwellian statistics apply and the
electrons are described by a classical distribution function in position and velocity, f (r,v). This function
satisfies a space-dependent equation in which the interaction with the impurities is treated as part of the
Hamiltonian and the phonon scattering is described by a linear Soltzmann-type collision term. This equation
is solved formally in the presence of a weak external electric field in a form convenient for perturbation
expansions in the relative strength of the different scattering mechanisms, some of which are carried out
explicitly. We also show rigorously that the change in conductivity due t'o the presence of impurities is
negative.

l. INTRODUCTION

HE electrical resistivity of a solid at high tempera-
tures is often due primarily to the scattering of

electrons by phonons and by impurities. It is usually
assumed (Matthiessen's rule)' that the effect of these
two contributions to the resistance are simply additive,
i.e., 1/o = 1/ . oui+1/o;, where o is the conductivity and
0 pQ 0 are respectively the conductivities when there
is only phonon or impurity scattering.

This additivity is true only if the e8ect of both im-

purity and phonon scattering can be represented by
means of single relaxation times whose ratio is inde-
pendent of velocity. Kohler has also shown' when both
effects were represented by space independent transition
probabilities, that the resistance is larger than that
given by Matthiessen's rule. It is the purpose of this
note to treat the action of the impurities rigorously as
part of the Hamiltonian of the system while continuing
to treat the eGect of phonon collisions by means of
stochastic transition probabilities. We now have to use a
space- and velocity-dependent distribution function.
This introduces important changes in the problem and
there does not appear to be any simple method now for
proving Kohler's result. We only show here that the
addition of impurities will always decrease the con-
ductivity.

The deviation from the results obtained by using a
space independent distribution function could be espe-
cially important in the case where the effective phonon
mean free path is small compared to the range of the
impurity electron forces. In this case, which certainly
occurs for ionized impurities in a semiconductor at high
temperatures, the electrons will suffer many collisions
with the phonons while traversing the field of a single
impurity. We. investigate this situation explicitly in
Sec. 3.

* Supported by the U. S. Air Force Once of Scientific Research.
'A. H. Wilson, The Theory of Metals (Cambridge University

Press, New York, 1953), Chap. 10; see also R. A. Logan and A. J.
Peters, J. AppL Phys. Bl, 122 (1960).

We consider a sample of total volume 0, which con-
tains a number of (possibly charged) axed impurities.
There are to be E impurity centers in each macroscopic
unit volume V, located at fixed positions (r,},s=1, 2,

, 1V. The electrons are assumed to act (effectively)
independent of each other. The average number of
electrons in the unit volume V is e. The number of
electrons with velocity v lying in dv and position I' lying
in dr is f(r,v;(r;})dvdr. This f satisfies a classical
transport equation.

A representative electron located at r, will be acted
on by forces due to (1) the externally applied electric
field E causing transport, where

~
E~ is so small that

quadratic terms in ~R~ can always be neglected, and (2)
the potential of interaction with the 6xed impurity
centers U=U((r —r;})

U=Z' p(r —r;),

where y is the potential energy of interaction of an
electron with the impurity center at r;.

The effect on the electrons of collisions with the
lattice will be described generally in terms of a proba-
bility density per unit time E(x,x') for an electron in a
state x'= (r',v') making a transition (i.e., a discontinu-
ous jump) to a new state x= (r,v). The properties of E
will be discussed in the next section.

By virtue of the above assumptions the equation
satisfied by the electron distribution f is

af af 1~ aU~ af—+v —+—
(

eE—
[
—=] —), (1.2)

a1 ar m( ar3 av Egg...i'
where (af/8) ii represents the eRect of phonon scat-
tering, nz is the isotropic effective mass and e the charge
of the electron. We will be strictly interested only in the
steady-state electron distribution f(r,v) which satisfies
Eq. (1.2) with af/at set equal to zero.

The equilibrium distribution function, fs, in the
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absence of an external field E, is fp(r, v; {r;)) given by

—mv' e ~"~) m
fp(r, v)=ri~ [ exp (1.3)

(2prkT) 2kT Z

with T' the temperature and Z the configurational parti-
tion function of the electron-impurity system,

=e ~v(f(v))~dv,
J

Z=)t e ~~»dr (1 4)

where

(f( )) =
(&)

I'ir fdri ~ driv') )

The phonon collision term, (bf/bt) ii, must have the
property that (Bfp/Q)„ii vanishes, so that fp is the
stationary solution of Eq. (1.2) when E=O.

The spatial integration in Eq. (1.4) is over a unit
volume V which is chosen to be large enough for the
system to be uniform on this scale, i.e, , surface effects of
V can always be neglected. The value of Z is thus inde-
pendent of the location of V inside the total volume 0
of our sample.

We insist that the steady-state distribution f that we
are looking for must have the property that if A (v, r) is
any vector or tensor that is itself uniform in r over V,
then

the ( )iv always denoting averaging over I'&.
In Sec. 2 we And a general expression for the con-

ductivity. In Sec. 3 we carry out some explicit calcula-
tions for the change in conductivity due to impurity
scattering when the phonon collisions dominate. There
we make use of a simple relaxation time approximation
for the phonon collisions, writing

(5f&/&~)- =(f —f)/ (1 7)

In Sec. 4 we discuss the relation of our results to
Matthiessen's rule using the electron velocity autocorre-
lation functions.

t dr div A(v, r)fdv=O
V

(1 5)
2. GENERAL TRANSPORT EQUATION

AND CONDUCTIVITY

The transport Eq. (1.2) can be written
This insistence (which is analogous to the assumption
that in the case of vanishing U, f=f(v) onlyj, reflects
the physical fact that in our sample of volume 0 we are
dealing with an open system with electrons entering one
side and leaving the other. In the limit, as 0 approaches
inanity in such a way that the density of electrons and
impurities remains constant, we are dealing with an
in6nite system which is uriiform on the scale of V. An
alternate approach corresponds to assuming periodic
boundary conditions, this necessitates using an electric
Geld produced by a changing magnetic Geld, which does
not essentially aGect the results. '

This requirement of uniformity can be made more
precise, and some other complications avoided as well,
by considering an ensemble of systems in which
the distribution of impurity centers is governed by
an a priori joint probability (density) distribution,
Ear(r&, ,re).' The expectation value of any physical
quantity Q in our system will then be found by aver-
aging Q both over f and over I'iv. The averaging over
I'~ will eliminate the dependence of the macroscopic
quantities on the {r;)and also on r, assuring complete
uniformity. Thus, for example, the current density is

' W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).' This reduces to the previous situation of speci6c location for
the impurity centers when PN is chosen to be a product of delta
functions, Pir(rr', ~ .,riv') = II; P 5(ri' —r~). However in order to
make the system manifestly uniform PN should be a function of
the (r;—r;).

r)f t. f(x) eE Bf
+(f,H) =—E(x,x') f(x')dx' — ———, (2.1)

Bi J r(x) m cIV

E(x',x)dx',
r(x)

(2.3)

with the integrations in Eqs. (2.1) and (2.3) being taken
over the electron phase space. Since (8fp/8t) „iivanishes,
we must have

fp(x)
I E(x&x )fp(x )dx = ll E(x,x)fp(x)dx = . (2.4)

J r (x)

We shall also assume that E yields detailed balancing in
equilibrium which implies

E(x,x )fp(x ) =E(x,x)fp(x) =W(x,x ) = W(x', x). (2.5)

In general we expect that "collisions" with phonons will
change the momentum of an electron but not its position

with B the single electron, impurity centers Hamil-
tonian

H = ,'mv'+ U- (2 2)

(f,H) is the complete Poisson bracket with respect to
the electron coordinates r, v and the kernel E(x,x') is
the transition probability per unit time from x' to x
describing the electron scattering due to the lattice. As
usual
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so that K will have the form4

E (x,x') =X(v,v'; r, (r,})b(r —r,),
where K is the transition rate from one momentum state
to another which may depend on the position of the
electron in the vicinity of an impurity. We note here
however that the relaxation-time approximation [of
Eq. (1.7) discussed in Sec. 3] does not correspond to a
E having this form. 4 In this case the probability that an
electron will have the phase space coordinates r and v
after a collision is equal to fp(r,v), which means that the
position of the electron may also change abruptly in a
collision.

We seek solutions of Eq. {2.1) which retain terms of
order

( E( but neglect all higher powers of
(
E (. To this

end, we set
f=fp(1+y) (2.7)

where fp is the electron equilibrium distribution Eq.
(1.3) and y(x, t; {r,)) is a correction term satisfying

fp(By/Bt)+ fp(y, H) = oy+epE vf p, (2.8)

with P= I//AT and 8 is an operator such that

(a, y) =PeE fpavdx —afo(y, H)dx

{2.14)

and in particular, see Eq. (1.6) (where we omit here and
wherever it is not important the indication of averaging
over Psj),

f
{y,y) =PeE ~ fpyvdvdr=PE jdr

J J

=pE J=pE e E. (2.15)

Here J is the total current, since we are always inte-
grating over a unit volume, and e is the conductivity
tensor. The last equation was derived by noting that

Since {c,c} is always positive, we can easily show by
letting c=Xa+b that

{a,a) (b,b}& {a,b)'. (2.13)

It follows further that the correct p which is the
stationary solution of Eq. (2.8) satisfies

Q, y= "dx' W(x, x')[y(x') —y(x)]. (2.9) 1
fp(y, H) = (y,fo—),- (2.16)

It is convenient to break up the correction term q
into two additive contributions q(x, t) and h(x, t). q(x, t)
characterizes the lattice scattering of the electrons, i.e.,
q(x, t) satisfies the inhomogeneous equation

foBq/Bt= eq+ePE v fo (2.10)

Actually q will still depend on the impurities through fo
and possibly also through E(v, r; v', r'). Only when the
two processes are completely independent, i.e., E in Eq.
(2.6) is independent of r, and also in the constant
relaxation time approximation, does q become the same
as in the complete absence of impurities. The other term
h(x, t) gives the further correction due to the presence of
the impurity centers and must satisfy by virtue of Eqs.
(2.8) and (2.10) the inhomogeneous equation

fpBh/Bt=fp(H, h)+Olh+fp(H q). (2.11)

and

y(y, fp)dx

=— ~~( ',fo)dx
2~

1 t' B ( By 'l B tr Bye)
fo f

——'J fo f
. (2.17)

Bv & Br) Br & Bv&

The first term in the last integral of Eq. (2.17) vanishes
by virtue of the fact that fp goes to zero for large
velocities and the second term vanishes in accordance
with Eq. (1.5).

We have similarly for the stationary q of Eq. (2.10),

We are interested in the stationary solutions of Eqs.
(2.8), (2.10), and (2.11),which will be denoted by y(x),
q(x), and h(x), and which are obtained by setting the
time derivatives equal to zero in these equations.

Following Kohler, ' we now define

Thus,

and

{a,q}=PE fpavdx

(q,q) =pE J,s.„=pE e„.„.E,

(yq)=pE J=(y y)

(2 18)

(2.19)

(2.20)

1
= —

J
aSbdx= —

~

J
W(x,x )

2~

&([a(x') —a(x)][b (x') —b (x)]dxdx'

' E. P. Gross, Phys. Rev. 97, 395 (19S5).

(2.12)
or

(y, y)(q q) &(q y)' (2.21)

pE eph, „E=(q,q}&(q,y) =pE e E. (2.22)

Since e»,„and e are both symmetric the above implies

where e»,„ is the conductivity in the absence of
impurities. [See the discussion after Eq. (2.10).]

Replacing now a and b in Eq. (2.13) by y and q, we
find
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that the eigenvalues of eoh, „are greater than those of times s and t+s. Use of the Wiener-Khintchin theorem
e, which is what we wanted to prove. Combining Eqs. now yields
(2.14), (2.15), and (2.19), we also find

((Go(s))&v)p= ' ((Go(v))&v)p cos2&ri&sdi&& (2.29)
(J—J,h,„) E

= —1/P &Ifo(q&,H)dx= —1/P fov&(H, q)dx
fQ T

Go(i)= hm2/T I Q(t)e
—s»&»dt

where Go(&) is the power spectrum

= —1/P fph(H, q)dx=E ae E, (2.23)
"0

X) Q(t)e""'dt (2.30)
0

where the last two equalities follow by arguments
similar to those developed. after Eq. (2.15).

The stationary value h(x) may be written formally as
the value of h(x, t) as t -+ oo .This leads to the expression

which is assumed to exist. This yields finally

E ~e E= —(1/p)~((Go(O)) )„ (2.31)

te

fph(x)= ' ds P(x,x'Is)-J. J
&&LH(x'), q(x')7fo(x')dx', (2.24)

where the Green's function P(x,x'Is) is the solution of
the homogeneous equation,

E(x,x') =E(x*,x'),

with x~= (r, —v), q(x) is given by

g(x) =r(x)epE v.

(2.32)

(2.33)

where Gg is positive.
For the case where the kernel randomizes velocities, '

1.e.)

BI'
+(P,H) = ~dx"LE(x,x")P(x",x'Is)

—E(x",x)P(x,x'Is) j, (2.25)

This yields

epi„„——e'p (rv'f p)ivdx 1,
J

(2.34)

under the initial condition,

P(x,x'IO) =b(x—x'). (2.26)

Q= ep(H&rv) ' E.

3. RELAXATION-TIME APPROXIMATION

(2.35)

=-1/P ds((Q(x'
I
s)Q("'

I 0))iv) o, (2.27)

with

Q(*)=Q(xl o) = (Ha)

and ( ~ )p representing, as usual, an average over the
equilibrium electron distribution, and the ( )iv repre-
senting an ensemble average over the impurity dis-
tribution.

Now since we are dealing here with a stationary
stochastic process, we have

((G ()) ) =((Q( )Q(o)) )o

= lim 1/T ((Q(t+s)Q(t))iv)pdt, (2.2g)
0

P(x,x'Is)dx is thus the probability that an electron
initially at the phase point x' will be found in the region
dx about x at time s later. Substitution of Eq. (2.24)
into Eq. (2.23) yields 'I; the autocorrelation~function
expression, p&..!

E he E= —1/P ~ ds, (Q(x)P(x,x'Is)Q(x') fp(x ))ivdx'

In the relaxation-time approximation the equation
satisfied by f is

Bf fp f eE Bf-—+(f,H) =
8$ r m BV

(3.1)

this would no longer be true of h. We shall therefore
consider here only the case r constant, for which

P(x x'Is) =e '~'8(x, x')+(1—e '~') fp(x—), (3.2)

where

For r constant this corresponds to the choice

E(x,x') =fp(x)/r,

while there is no choice of E which would yield Eq. (3.1)
for r not constant. This may be seen most easily by
noting that the correct collision term conserves the total
number of particles while the relaxation time approxi-
mation does so only for r a constant. While it is true
that when E randomizes velocities, the form of q would
be unchanged if one used Zq. (3.1) with the correct
7 (x), i.e.,

q= —repE. v,

where Q(t+s) and Q(s) are the values assumed by the
function Q (thought of here as a random variable) at the

x &=x(x, t)—
' C. Herring and E. Vogt& Phys. Rev. 101, 944 (1956).

(3.3)
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are the phase space coordinates, x t,
——(r ~,v ~) of an

electron, moving solely under the action of the forces
due to the impurities, at time —t when its coordinates
are x at t=0. From the time reversibility of the equa-
tions of motion derived from the Hamiltonian H it
follows that

r, =r(r, v; t) =—r(r, —v;+t),
v ~

——v(r, v; t)=——v(r, —v;t)

By using Eq. (3.2), Eq. (2.27), giving the change in
conductivity due to the presence of the impurity centers
he, becomes

from the solution of Eq. (3.1), f= fo(1+ oo)

y(r, v, t) =ep ds exp{—sL1/r+iZj}v E
0

+exp{—tL1/r+igj} rp(r, v,O), (3.12)

where i2= (,H). The stationary solution is obtained
from the above by letting t ~ + po,

op(r, v) = lim y(r, v, t) =epE
~

ds exp{—ski/r+i21}v
g-+oo

0

Ae= —e'P " ds ((Q„(x)e 'I'Q„(x ,)) ),, (3.5)

~QQ

=epE ds e 't'v „
Jp

(3.13)

where Q„(x) is given by

Q„(x)= r (H,v) = —(r/m) F(r). (3.6)

as could also have been found by solving directly the
steady-state equation satisfied by this y,

(is+1/r)qo=ePv E. (3.14)

Thus
eopr2 ~ao

ae= — ' ds e 't'((F(r, )F(r))~)p
m p

eop
ds e "((F(r)F(r,))~)o.

m' "o

Two limiting cases of Eq. (3.13) are of interest: (1)
when there are no impurities, U=O, i.e., v, =v (though
we shall formally leave U inside fo), then

q (r,v)
~
z o q==ep——rK v, . (3.15)

(3 8) and (2) when lattice scattering is negligible, in which
case

To derive the last equality we have made use of time
reversibility, F(r,)=F(r, —v; —s) and of the time
invariance of fo Thus A. e is equal to its transpose, i.e.,
de is symmetric as expected in general. Ke note also
that in Eq. (3.7) the effect on be of the electron-phonon
interaction is "separated" from that due to the forces
exerted on the electron by the impurity centers. For
central forces and an isotropic distribution of impurity
centers, it follows from symmetry, that

oo(r,v)~ it, o=epE V ttdS. (3.16)

to obtain
F(r,) = —m(d/ds)v „

7e
y(r, v)=q — E ds e 't'F(r, ).

(3.17)

(3.18)

For what follows, it is convenient to integrate Eq. (3.13)
by parts, using the relation

or
xo= & ' & pro,

(Gv(s))o=(Gv(s))o»

Substituting Eq. (3.18) into the current given by

(3 9) Eq. (2.19), one finds that

with Gv(s) the autocorrelation function of any com-
ponent of F and 1 the unit tensor. By virtue of the
Kiener-Khintchin theorem used in the last section we
can now write in analogy to Eq. (2.29)

a.vo.„——(o)p o rte'r/m. , ——

while from Eq. (2.23)

re'p
he= — ds e-' 't(( Fv(r, ))~) p

m ~o

(3.19)

(3.20)

«'p t
" ((Gv(~))~)o

1 do. &0,
J o (&o+I/ro)

(3.10)

dv ds ((Gv(v))~)pe I cos(2~vs)
Carrying out an integration by parts of Eq. (3.20) and
using the facts that (a) the equilibrium distribution is
invariant with respect to time translation by the
operator exp(iZ) so that

with co=2xv, and
(vF(r, ))o=(v,F)o, (3.21)

Gv(v) = lim2/T
g-+Oo j 0

F(t)e '"'dt )0. —

(vF)p=O, (3.22)

and (b) noting that there is no correlation between the
(3.11) instantaneous value of F and v at equilibrium,

These results can also be obtained quite directly we recover Eq. (3.7).
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We shall now investigate the explicit form of Eq.
(3.13) and Eq. (3.7) for the case when lattice scattering
is dominant, i.e., r is small compared to r;. This will be
accomplished by expanding (o and ho in powers of o.. To
this end we note that

r,= r—sv+1/m ds' F,-(Es"
Jo o

Corresponding formulas for de can be obtained by
substituting Eq. (3.24) in Eq. (2.23) by expanding
directly Eq. (3.7) or by expanding Eq. (3.11), (r«co '),
noting that

F00

d~(&G~(~))N)o
2~ ~0

=r sv—+ (1/2)—F(r) +0(so), (3.23)
1 f= lim ((F(t)P(t)))v)oCt

g~ao 2g j

which when substituted in Eq. (3.18) yields

reP 8
rp(r, v) = P. mv 7.F(r)—+r'v F(r)+— . (3.24)

m Bf

=((F(r)F(r))~)o

(I (N)

J

BUBU
«1 ' ' ' dr+Pnrfo(r, v)

81' 81'

(3.28)

(3.29)P((F(r)F(r)))v)o+0 (r').
m2

The physical parameter of expansion which is used here
is essentially the change in the electron impurity centers All three of these methods give directly the desired
potential over one phonon mean free path, bV, divided relation

by kT. In this approximation the velocity distribution 3/2

of an electron can be written as he=—

(
()v)

f(v) = —dr~, , drNP~ f(r,v)«y, J

=0 ()L1+X( )j,
where PM is the Maxwellian distribution,

(3.25)

After some integration by parts, the last identity of
Eq. (3.28) simpli6es to read, for central forces,

f
((F(r)F(r))zr)o=P 'pr g(r')VVq(r')dr' (3.30)

|tM(v) =oo(2ormkT) I expL —Pmvo/2j, (3.26)
and

with p=E/V (V is a unit volume) and g(r'), the radial

Q(v) E {mv opv ((F(r)F(r)) ) + . ) (3 27) (iistribution function for an impurity center-electron

m pair,

9(N—1)

j
g(r —r,)=

p
(N+1)

N
~ Pq(r~, .,rz) expL p 2 y(lr r&l)](Er&' ' '«&

k=1

N
~ P&(r.. ~ ~ ~ .r)o) expL —p 2 y(lr r&l)3««&' ' '«&

J k=1

(3.31)

Thus, if g is known, Eq. ,(3.30) in Eq. (3.29) gives us the
limiting change of conductivity Ae for sufficiently small
~ valid to all powers of p.

Unfortunately the problem of carrying out the inte-
grations shown in Eq. (3.31) is not easier than the
corresponding problem in the theory of fluids. Just as in
that theory, progress can be made if the system is
suKciently attenuated, i.e., p is very small and we are
dealing with a dilute "impurity gas." Expanding g
straightforwardly in a power series in the density of
impurities p, one obtains

f
((FF))v)o ——P 'pro e «'("')VV(p(r')dr'

, do(r')',= I I e eo'("') r"dr'. (3.33)
3

4o'p f
Ao = — pro e &&l —

l
r'dr.

m' 3 " (drj
(3.34)

In this double limit of small p and o, Eq. (3.29) reduces

by virtue of Eq. (3.33) to he= lho,

g(r') =e '""'L1+O(p)j (3.32)
Equation (3.34) can be explicitly evaluated if the

which when substituted in Eq. (3.30) gives, retaining force —oo, between the electron and the impurity center
only erst-order terms in p, is known. Possible choices for the potential y for
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charged impurities are suggested by current theory of
electrolytes. For example, in the case of a negatively
charged impurity center p can be given by the Debye
shielded Coulomb potential AD. s. and in the case of a
positively charged impurity center (of effective positive
charge +Ze), imbedded in the solid of eRective dielectric
constant D, y can be the Bogoljubow potential cp&,

' viz.

Z8
yn. s.=+ exp[ —r/Xn],

Dr
0 phon

4ir ~' pZe'~ '1 ) a y
(3.37)

3 mITiD& ~( ~ )

ought not contribute to the current at all, but which do
in our theory, a little. It would seem reasonable to
choose a to be of the order of the Bohr radius DA'/me'.
The further elucidation of this question requires a
quantum mechanical treatment which we are carrying
out.

At sufficiently high temperatures, P I
Z

I
e'/Da«1, Eq.

(3.36) reduces to

the latter remains 6nite as r vanishes, with 0. a distance
of the order of the effective Bohr radius and X1) the Debye
shielding distance. A mathematically simpler choice is
that the force is given by Coulomb's law with appro-
priate cutoffs, which are necessary to satisfy the condi-
tions of the expansion. For an impurity center of
effective charge Ze imbedded in an impure solid whose
effective dielectric constant is D, we set

—q'(r)=0 for r(a and r)X~,
Ze'/Dr' fo—r a&r &) n, (3.35)

4s (pr Ze )
|7phon

3 Lm D)
XLexp(PZe'/Da) —exp(PZe'/D) n)j (3.36)

where a and ) D are the lower and upper cutoff distances.
Substituting Eq. (3.35) into Eq. (3.34), we find

4m par' Ze'
5g = — Lexp (PZe'/Da) —exp (tIZe'/DX&) $

3m2 D

72Ao. (Ze') ' ( 128
,I(» I. (337')

oui„~ A(mkT)l ( D j ((18m)*

Here, y is (3/16m')(X/hn)' where X is the de Broigle
wavelength of the electron, X=h/(3mkT)&, and

x' exp( ——,'x')
I=, dx

(gs+~s)s J
exp( ——',y')

sinh(xy)
dy ——&

y
y-&0

(8s)
'
*ln(X/Xn)

We note here that if a is taken to be independent of the
temperature then Ao/o ~s,„has a temperature depend-
ence which goes as (cr~i„„)'/T, while Matthiessen's rule
predicts a temperature dependence of Aa/g, i,.„=o.,i,.„/o.,

Note added in proof. The calculation carried through
in Sec. 3 for the constant relaxation time approximation
can also be done quantum-mechanically in the density
matrix formalism. When the impurity-electron inter-
action is represented by a screened Coulomb potential
q D.g. and only the lowest order terms in y are kept,
then the quantum formula corresponding to Eq. (3.37)
here is

and the other symbols have the same meaning as in
Eq. (3.37).where we have assumed for simplicity that all the

impurities have the same charge; otherwise their effect
is additive in this approximation.

The upper cutoff ) & may be chosen, as in the Conwell-
Weisskopf theory, ~ ' to be one-half the average distance
between impurity centers, XD= —,'p ', and Ao- will gener-
ally not be too sensitive to its exact value. The lower
cutoff distance, a, presents a serious problem in the case
of negatively charged impurities where 60- given by Kq.
(3.36) goes to infinity as a vanishes. The origin of this
difFiculty is related to the complete trapping of the
electrons by the —1/r potential. This is true, classically,
for any potential with an infinite depth, but this com-
plete trapping does not occur in a true quantum me-
chanical theory. Even with the cutoff we do not treat
correctly the electrons with negative energies, which

4. CONDUCTIVITY AND VELOCITY
AUTOCORRELATION FUNCTION

In this section we continue the analysis of the
conductivity in the relaxation time approximation, par-
ticularly in reference to the extent to which this con-
ductivity departs from Matthiessen's rule. Using the
stationary value of q (see Sec. 2), one finds after some
manipulation assuming isotropicity, that

Pe'
o.=— v (P (x,x'

I s)v'f o(x'))Ndxdx'ds3J, J~

(4.1)C(s)ds,
m ~0

C(s) =((v(s) v)~)o/(v v)o, (4.2)

'See for example, G. Kelbg, Wiss. Univ. Rostock, Math. -
Naturw. Reihe 9, 4 (1959).

E. Conwe11 and F. Weisskopf, Phys. Rev. 69, 258 (1946). where C(s) is the normalized velocity autocorrelation
'H. Brooks, in Advances in Electronics and Electron Physics, function

edited by L Marton (Academic Press, ¹wYork, j.955},Vol. 7,
p. 85.
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and

(v v)s 3r——ikT/rid. (4.3)

For the relaxation-time approximation, I' is given by
Kq. (3.2) which yields immediately

C(s) = e
—"C,, (s) =C,s(s)C, (s), (4 4)

Csz(s) = e
—

I ~I I ~= 1 — +O(ss) (4 5)

where C, (s) is the velocity autocorrelation in the absence
of phonon scattering, i.e., r -+0 and C~q(s) is simi-

larly defined as C(s). For Matthiessen's rule to hold,
C,(s) would also have to be of the form exp( —s/r, ).

Our point now is that there is an essential difference
between the behavior of C, (s) and Ceq(s) near s=0. For
while C~h(s) has a cusp at the origin,

2 exp( s—/r)ds

m & s exp(mrs/r~)+exp( —mrs/r;)

cos
m &r) 2~ &4 4 ~ )

tr3 m' ri)
(4.10)

&4 4ri
with

lt (s) =I"(s)/I'(e); I'(s) = t e 't' 'dt.— (—4.11)~ ~

In the two limiting cases of 7((7, and 7,«r, we have

ee'r vr' ( r ) '
1—

I

—I+"
m 2Ir]

ee'7

C;(s) = 1— ((P)sr)ss'+O(s'),
2@m

(4.6)

C, (s) must be a smooth even function of s near the
origin. More explicitly,

1—4.»I —I+". ,
Er;i

0'(l) & 'i
I

—I+ "
&r)

(4.12)

which leads back to Eq. (3.29) for tL,o.
The origin of this different behavior lies in the fact

that the interaction of the electrons with the phonons
has been treated as impulsive while that with the
impurities has been retained as part of a continuous
Hamiltonian (neglecting any slight complications that
might arise from a finite cutoff). It is generally believed
though, in the case of atoms moving in Quids or solids,
and the same reasoning ought to apply here too, that
for large times C;(s) ought to decay exponentially. A
conjectured form of this function which exhibits the
proper behavior for small and large s,' whose conse-
quences we shaB investigate here brieAy, is

C, (s) = sech( /st, ), (4.7)

where the factor x has been put in so that 0-;, the con-
ductivity when 7,«7, is given by

B82 S8
C, (s)ds=

m
(4 8)

The impurity relaxation time r, appearing in C, (s) may
be identified, in this approximation, from Kq. (4.6) as

r, '= ((P)sr)s/(3m''kT). (4.9)

' D. C. Douglass, J. Chem. Phys. (to be published).

It is clear from this equation that the identi6cation of
(rM /m)r, with the conductivity in the limit r,&&r, can
possibly be true only when there is a high concentration
of impurities. For at low densities of impurities 1/r,
given by this equation is proportional to p Lcf. Eq.
(3.34)j and the resistance would not be linear in p. The
full conductivity 0 is now given by

while for comparison Matthiessen's rule gives

887 7
1——+, r«r;,

M 7 7
1——+

m 7

(4.13)

We see that in the case r,«7, the two essentially agree.
This corresponds to the case where the probability of
scattering by a phonon d.uring the transversal by an
electron of an impurity atom is very small and the two
processes therefore add up in the resistance. LOur
choice of C, (s) rules out the case where r, is small be-
cause there are very strong long range forces between an
electron and an impurity center. Rather 7; small corre-
sponds to having a large concentration of impurities. $
On the other hand, for 7«7;, where there are many
phonon collisions during a transversal time, the devia-
tion from Matthiessen's rule will be very large in this
approximation, and actually corresponds to a larger
conductivity. We should mention again though, that
this last discussion depends on the particular form
chosen for C, (s).
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