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In this article, we discuss in further detail the significance of potentials in the quantum theory, and in
so doing, we answer a number of arguments that have been raised against the conclusions of our first paper
on the same subject. We then proceed to extend our treatment to include the sources of potentials quantum-
mechanically, and we show that when this is done, the same results are obtained as those of our first paper,
in which the potential was taken to be a specified function of space and time. In this way, we not only
answer certain additional criticisms that have been made of the original treatment, but we also bring out
more clearly the importance of the potential in the expression of the local character of the interaction of

charged particles and the electromagnetic field.

1. INTRODUCTION

N a previous paper,!? we have given several examples
showing that in the quantum theory, electro-
magnetic potentials have a further kind of significance
that they do not possess in classical theory; viz., in
certain kinds of multiply-connected field free regions
of space and time, the results of interference and scat-
tering experiments depend on integrals of the potentials,

having the form
I= f A dxr 1)

(where the integration is carried out over a circuit in
space and time). This dependence is present even when
the electrons are prevented by a barrier from entering the
regions, in which the fields have nonzero values. On the
other hand, according to classical theory, no such
dependence of physical results on the potentials is
possible, if the electrons are confined to a field-free
multiply-connected regions of the type described above.

Since the above paper was published, several experi-
mental confirmations of the predicted dependence of
electron interference on potentials have been obtained.
First, it was shown by Werner and Brill® that, in order
to explain the absence of fringe shifts in certain experi-
ments that had been carried out under conditions where
there were appreciable 60-cycle stray magnetic fields,
one had to take into account the effects of the potentials,
which just compensated those of the fields. Secondly,
an experiment has been carried out by Chambers,* in
which the flux was supplied by a very fine magnetized
iron “whisker” (about 0.75 u in diameter). An electrical

* This work was partially supported by the Office of Scientific
Research, U. S. Air Force.

1Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

2 See also, W. Ehrenburg and R. E. Siday, Proc. Phys. Soc.
(London) B62, 8 (1949), who, on the basis of a semiclassical
treatment, obtained some of our results; viz., the prediction of a
fringe shift due to magnetic vector potentials in a field-free
multiply-connected region.

3 F. G. Werner and D. R. Brill, Phys. Rev. Letters 4, 349 (1960).
4R. G. Chambers, Phys. Rev. Letters 5, 3 (1960).

bi-prism was used to separate the beam into two parts,
which passed on the two sides of the whisker without
contact. The resulting interference observations con-
firmed the existence of a fringe shift, as predicted by
the theory. Thirdly, Marton and his collaborators®
have reported an experiment similar to that of Cham-
bers in its essential points, and they too obtained fringe
shifts, as predicted. Finally, Boersch el al.® have
studied the interference patterns of fast electrons
passing through thin ferromagnetic layers, and have
likewise confirmed that, as predicted, vector potentials
have a direct effect on the fringes.

Although all of the above experiments are in agree-
ment with the theory, none of them constitutes an
ideal confirmation. For, in each case, the effect of
vector potential was mixed up with that of magnetic
fields, so that the theory was confirmed only insofar as
it was seen that in order to account for the total effect
it is necessary to take the influence of the potentials
into account. The experiments with whiskers are,
however, potentially capable of providing an ideal
test, provided that the magnetization of the whiskers
can be made sufficiently uniform, so that all stray
fields in the region of the beam may be reduced to
negligible values.

The existence of effects of potentials on electrons
confined to field-free multiply-connected regions of
space and time seems to have been regarded with
surprise by some physicists. If one reflects on this
problem for a while, however, one will see that there
is in reality no reason whatsoever to be surprised at
this possibility. For a similar effect arises in the much
more common case of the stationary states of an
electron in an atom. As is well known, according to
classical mechanics, any orbit should be possible in such
an atom. According to quantum theory, however, the
energy levels are restricted in such a way that (at
least in the correspondence principle limit of high

5 .. Marton ef al. (private communication).

8 H. Boersch, H. Hamisch, D. Wohlleben, and K. Grohmann,
Z. Phys. 159, 397 (1960).
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quantum numbers) the Bohr-Sommerfeld rule holds,

viz.,
f p-dq=n, @

where the integral is taken around a closed orbit and #»
is an integer. If we were to take the classical point of
view and to require that any such restriction be
explained by a force, then we would be presented with
an incomprehensible problem. For the forces known to
be present in an atom simply would not constrain an
electron, moving in a certain position in its orbit at a
given moment of time, to one of a set of possible
orbits that depends on an integral of its momentum
over the entire orbit in question. If we note, however,
that the electron also has a wavelike aspect, the reason
for this constraint is quite evident, since an integral
number of waves must fit in a circuit (or, in other
words, the wave function must be single valued). And,
of course, it is this requirement that is really at the
root of the Bohr-Sommerfeld condition.”

If then, we are ready to accept the fact that there
exist characteristically quantum-mechanical phenomena
such as discrete energy levels (as well as interference
and diffractive scattering), we are, in effect, admitting
that the concept of force is not adequate for treating
the basic properties of an atom. It is not very much of
a further step to add that the concept of force is also
not adequate for treating electromagnetic interactions.
Or to put the same argument in more precise terms,
we note that as the behavior of the electron depends
on integrals of the action, #'p-dq, in a way that would
not occur according to classical mechanics, so it depends
on integrals of potential, which would likewise have no
such implications classically. And indeed, in both cases,
this dependence has basically the same origin, viz., the
quantum conditions as given in terms of the “canonical”
momentum, p=mv-+(¢/c)A(x), which are (in the
correspondence limit of high quantum numbers)

f p-da= f [vt(/dAR] dx. (&)

We see then that the integral of potential, $ A-dx,
plays a part in the quantum condition, which supple-
ments the corresponding integral, $mv-dx of the
“physical” momentum, mv. This means that the very
existence of quantum conditions demands that po-
tential integrals, # A-dx, must have a physical signifi-
cance which they do not have in classical mechanics.
{For example, they influence the eigenvalues of the

Hamiltonian which contains the kinetic energy operator:

T=3mv’=[p— (¢/c)AT/2m}.
The notion of force has in the quantum theory at
best a very indirect meaning. Thus, one can define

7 D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs,
New Jersey, 1951), see Chap. 2.
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an average force, F, by means of Ehrenfert’s theorem?:

amv

o F= f VL= VV+eVg— (¢/c) (vX30) Jpdx, (5)
dt

where ¢ is the electron wave function, V is the non-
electrostatic part of the potential, §=—V¢ is the
electric field, ¢=VXA is the magnetic field, and v is
the velocity operator of the electron. In spite of the
formal similarity of the above equation to the classical
Lorentz equation, dmv/di=—VV—e8— (e/c)(vX3e),
nevertheless there is a very fundamental difference in
its physical significance. For all the quantities entering
into the classical equation (&, ¢, v, etc.) can be
determined experimentally and are defined mathe-
matically in a way that does not require the introduc-
tion of the potential (which is, in fact, only a mathe-
matically convenient procedure in classical theory).
In the quantum theory, however, the average force
depends, as can be seen from Eq. (5), on the precise
form of the wave function which, in general, can be
obtained only by solving Schrodinger’s equation (e.g.,
if one is given the fact that the system is in a certain
stationary state of energy, E, one must solve for the
corresponding eigenfunction, ¥ g(x), of the Hamiltonian
operator). Now it is well-known that the potentials
must appear in Schrddinger’s equation, because there
is no way in quantum mechanics to express the inter-
action of the electron with the electromagnetic field
solely in terms of field quantities. The wave funclion
entering into Eq. (5) for the average force therefore
cannot, in general, be known unless one first knows the
potentials. Thus, in quantum mechanics, force is an
extremely abstract concept, having at best a highly
indirect significance, which is of only secondary
importance.’

It is clear that at least in the mathematical theory of
the quantum mechanics, the electromagnetic potentials
(and not the fields) are what play a fundamental role
in the expression of the laws of physics. Nevertheless,
it seems that physicists have generally been reluctant
to accept the notion that potentials also have a more
fundamental physical significance than that of the
fields. This reluctance is grounded in part on a tendency
to regard force as a fundamental concept in quantum
theory, a tendency that, as we have seen, cannot be
justified. It is also grounded in part, however, on the
invariance of all physical quantities to gauge transfor-
mation, A,=A4,'49f/0x*, where f is an arbitrary
continuous and single-valued scalar function. This
invariance implies that even when the physical state of
the system is completely specified, the potentials are
still arbitrary to within such a gauge transformation.
It is therefore argued that the potentials do not have a

8 See, for example, reference 7, Chapter 10.

9In the Appendix, we shall discuss a particular example,
showing, in more detail, the comparatively indirect and secondary
significance of force in the quantum theory.
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direct physical significance, but that they are significant
only insofar as they determine the field quantities,
Fu,=098A4,/dx"—9dA,/dx*; which latter are invariant to
such a transformation.

Although we must accept that gauge invariance
implies that the value of a potential at a given point
has by itself no direct physical significance, it does not
necessarily follow that the physical significance of the
potentials is always exhausted by that of the fields
which they define. For, as we have seen, it is possible
to confine the electron to multiply connected regions
of space by means of suitable potential barriers, and
the behavior of electrons thus confined depends on
integrals of the potential § 4 .dx*, which are physically
significant even when all fields in the regions in question
vanish. These integrals are gauge invariant so that
they are not subject to the arbitrariness, in relation to
the physical state, which the potentials themselves have.

It is true, of course, that in a simply connected region
the integral ¢ A ,dx* is identically equal to the integral
S F,dS* of the field quantities F,,, taken over the
surface (whose elements are d.S**), which the circuit of
the potential integrals encloses. One might therefore be
led to conclude that there is no additional physical
content in the potential integrals that is not already in
the field variables. However, we must keep in mind
that the quantum theory as it is now formulated
requires that the interaction of electron with electro-
magnetic field must be a local one (i.e., the field can
operate only where the charge is). Therefore, in the
description of this interaction, only those quantities
which differ from zero in the region accessible to the
electron can account for observable physical effects on
the electron. As a result, when the electron is thus
confined to a multiply connected region, the fields in
the excluded region (which appear in the above identity,
between field and potential integrals) cease to be
relevant for the problem under discussion. The observ-
able physical effects in question must therefore be
attributed to the potential integrals themselves. Such
integrals, being not only gauge invariant, but also
Hermitian operators, are perfectly legitimate examples
of quantum-mechanical observables. They represent
extended (nonlocal) properties of the field, which are
evidently directly measurable in the region in question
with the aid of the observable properties (interference,
diffractive scattering, and energy levels) of electrons
confined to this region.

Although the above point of view concerning po-
tentials seems to be called for in the quantum theory
of the electromagnetic field, it must be admitted that
it is rather unfamiliar. Various of its aspects are often,
therefore, not very clearly understood, and as a result,
a great many objections have been raised against it
(some of them in the published literature, and some of
them in private communications to the authors). Such
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objections have appeared so frequently that we feel
that it would be useful to answer them systematically,
and in so doing, to present certain further developments
concerning the theory of the effects of potentials in
quantum mechanics.

The objections mentioned above fall roughly into
two types. In the first type, it is accepted that the
potentials can be expressed in the one-body Schrsodinger’s
equation as definite functions of space and time, as we
did in our first article. On this foundation, however,
various points are raised which call some of our con-
clusions into question. These points will be discussed
and answered in Sec. 2 of the present paper.

In the second type of objection, it is not accepted
that the potentials can be written as specified functions
of time and space, but instead, questions are raised
which would suggest that there would be a breakdown
of some of our conclusions if we took into account the
distribution of charges and currents (e.g., in a solenoid)
which are the sources of potentials. To discuss these
questions, we begin in Sec. 3 by giving a theory, which
treats the source of the electric potential by means of
a many-body Schrodinger’s equation, and in Sec. 4,
the same is done for magnetic potentials. In all cases,
we show that the results are precisely the same as those
given in our first paper.

In our detailed treatment of the effect of the sources
of the potentials, the fact that potentials possess a
physical meaning beyond that of the fields emerges
with even greater clarity than before. Thus it will be
shown in Sec. 3, that whereas the electron does actually
exert force on the various parts of the source in experi-
ments of the type that we have described, the total
force of reaction of the source back on the electron
vanishes. Nevertheless, the electronic interference
effects remain, thus confirming our conclusion that in
the quantum theory, force does not have the funda-
mental role that it has in classical physics. In Sec. 4,
where we treat the electromagnetic field quantities as
dynamical variables, it will be seen that the potentials
constitute an intermediary link between the electron
and the charges and currents in the source variable.
As in the one-body theory (in which the variables of
the electromagnetic field are taken as specified functions
of space and time), it is only with the aid of the po-
tentials that this link can be established by means of a
localized interaction between charged particles and
field (the field quantities themselves being, in general,
inadequate for this purpose). Thus, we demonstrate
the fundamental role of potentials for this problem in
still another way.

Finally, in an Appendix, we shall discuss a recent
article by Peshkin, Talmi, and Tassie on the subject
of potentials in the quantum theory.

( 10 M. Peshkin, I. Talmi, and L. Tassie, Ann. Phys. 12, 426
1961).
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2. FURTHER CLARIFICATION OF EFFECTS
OF POTENTIAL IN ONE-BODY
SCHRODINGER’S EQUATION

In this section, we shall attempt mainly to clarify
various questions that have been raised concerning the
effects of potentials in the one-hody Schrédinger’s
equation.

First of all, Furry and Ramsey! have discussed the
relationship of the uncertainty principle to interference
experiments such as those suggested in our first article
(e.g., an electron beam is split coherently in two, each
is allowed to pass through tubes in which there is a
different time dependent potential, after which the
beams are allowed to come together and interfere).
Although the above authors did not intend their article
to be regarded as an objection to our conclusions, it
seems that it has been so regarded by a number of
physicists.’? It is therefore worthwhile here to make a
few remarks about this point.

Now, as long as no observation can be made from
which one could tell through which beam the electron
actually passes, then there will, of course, be interfer-
ence as predicted in our paper. If, for any reason, how-
ever, an observation as to which beam the electron
actually passes through can be carried out, then as is
well known, the apparatus that makes this observation
possible must introduce a disturbance that destroys
the interference pattern.’® Furry and Ramsey treated
this point in some detail, considering a special example
of a measuring device (a charge), and showing that as
a result of its effects, interference will be destroyed, as
is to be expected. Of course, this demonstration does
not invalidate our conclusions in any way whatsoever,
since by hypothesis, we are considering a case in which
the experiment is done under conditions in which no
such detailed observation of the path of the electron
can be made.

The above discussion indirectly answers a large
number of further objections of a certain general type
to our conclusions. For example, if the electron passes
through one of the condensers, then when that condenser
is charged up, the amount of work done by the charging
generator will be different from what it would be in
the absence of this electron. By measuring this work,
one could, in principle, tell which beam the electron
passed through, so that interference would be impossible.
In accordance with the preceding discussion, however,
it is clear that in order to be sure that interference will
take place, it is necessary to arrange conditions so that
no such measurement can be carried out. We shall
treat this problem in more detail in Sec. 3, where we
shall show that if the generator is properly constructed
(so that its behavior is adiabatic), then no energy

1'W. Furry and N. Ramsey, Phys. Rev. 118, 623 (1960).

2 Private communications.

18 See, for example, reference (7), Chapter 6, where it is shown
that this behavior is, in fact, quite general, and not just restricted
to the experiment under discussion.
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measurement permitting us to tell which beam the
electron passed through will be possible, and the usual
interference pattern will be obtained.

The second general kind of question that has been
raised concerns the problem of the single-valuedness of
the wave function. In connection with this problem,
the magnetic example given in our first paper (a very
narrow solenoid with flux inside but no flux outside) is
the easiest to discuss, although the conclusions that we
shall give here are true in general.

Since the wave function is being solved in a non-
simply-connected region (which excludes the solenoid),
it is argued that the usual considerations leading to the
requirement of the single valuedness of the wave
function may not be valid here. For example, if the
wave function were to be multiplied by a constant
factor, e**, when the polar angle is increased by 2,
then all physical predictions, which depend only on
functions like y*Oy (where O is a Hermitean operator),
will still be single-valued."* It is proposed then that for
this case, the boundary conditions on the wave function
might be altered. For example, the vector potential in
this case can be chosen (in a certain gauge) as

A=qu,/ 277, (6)

where ¢ is the total flux inside the solenoid, and u is a
unit vector perpendicular to the radius. Then by a
certain gauge transformation which is regular in the
multiply-connected region under discussion and singular
only in the excluded region, viz., A— A’'— (¢/27)V¢
(where ¢ is the polar angle), one can eliminate the
vector potential altogether, reducing the Hamiltonian
to that of a free particle. If now we regard ¢’ as a
proper representation of the wave function, we would
obtain solutions corresponding to a free particle. Since
such solutions are single valued in the ¢/ representation,
they would have to be multiple valued in the original
representation (¢ would be multiplied by e*¢/c when
¢ was increased by 2x). If such a procedure were
legitimate, then all effects of potentials in field-free
multiply connected regions could be transformed away,
and the conclusions of our previous paper would be
invalidated.

It is easy to see, however, that such non-single-valued
wave functions in the original representation are not
compatible with the basic principles of quantum
mechanics. For they do not take into account the fact
that the magnetic flux can be turned off adiabatically
and that any potential barriers that surround this
flux can, in principle, likewise be decreased adiabatically
to zero. From the fact that the Hamiltonian is always
a single-valued operator (even when it is thus changing
in time), it is easy to show that if the wave function is
initially single-valued, it remains single-valued for all

4 The requirement that ¢ itself be single-valued stems basically
from the demand for three-dimensional invariance (see, for

example, reference 7, Chapters 14 and 17). If the region is not
simply connected, we cease to require this invariance.
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time, while if it is originally multiple-valued, it retains
the same kind of multiple-valuedness. Hence, if (in
the original representation) multiple-valued wave
functions were allowed while the barrier was present
and the flux was turned on, they would also have to be
allowed when the barrier had disappeared and the flux
was turned off. This would evidently lead to new
quantum conditions on the particle, which depended on
its past history (i.e., as to whether it had once been in
a multiply connected space with flux in the excluded
region). But it is a basic postulate of the quantum
theory that the quantum states of a given system
allowed in a specified physical situation are independent
of the past history of that system (i.e., of how the state
was prepared). Therefore, it is not possible to transform
away the effects of potentials in field-free multiply-
connected regions by giving up the condition of single-
valuedness of the wave function.

A third type of question that has been raised is
concerned with the electric field which arises when
source of the magnetic vector potential (e.g., the current
in the solenoid) is turned on. To treat this problem,
let us suppose, for example, that in the absence of the
flux there is an electron in a stationary orbit going
around the solenoid. In the correspondence limit its
angular momentum is determined by the Bohr-Sommer-
feld quantum conditions [Eq. (2)]. When the flux is
turned on, the resulting electric field acting on the
electron will alter its “physical’”’ momentum, v, and
as a simple calculation shows, this alteration is equal
in magnitude to (e/c)A, where A is the final vector
potential due to the source.

At first sight, one might then suppose that the effects
of a vector potential have been explained, as the result
of the action of an electric field, by means of the above
argument. However, it is possible to begin the experi-
ment with the electron screened by a Faraday cage,
so that it experiences no electric field whatsoever. If
the electron is subsequently released from the cage and
then captured into a stationary orbit, the quantum
conditions will be precisely the same as those which
would be operative if the electron had initially been in
this orbit [and are, in fact, given by Eq. (4), in terms
of the vector potential]. This is just a special case of
the general rule of the quantum theory that we have
cited in connection with the problem of the single
valuedness of the wave function; viz., that the possible
quantum states are independent of the past history of
the system. It is therefore clear that the change of
quantum state cannot, in general, be ascribed in this
way to the action of electromagnetic fields on the
electron.

A similar question has been raised by Pryce,'s except
that he has discussed the problem of the shift of
interference fringes, and has tried to explain them as
due to the static magnetic field. This explanation

18 Pryce’s arguments have been discussed in reference 4.
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starts from the circumstance that in the Chambers
experiment,* the flux in the whisker varied somewhat
in its longitudinal direction (which we shall call z). As
a result, the displacement of the fringes was a function
of 2, so that the fringes consisted of tilted, (and in
general, curved) lines. The z dependence of the flux im-
plies, of course, that there is a magnetic field outside
the solenoid. If one assumes that the flux, ¢(z), does
not vary too rapidly as a function of z, the vector po-
tential A=gq(z)uy/2nr will still be the correct solution
of Maxwell’s equations, to a good order of approxima-
tion. From this, one can calculate the magnetic field,
Je=VXA=7¢(dg/dz)/2nr, where # is a unit vector in the
radial direction. This field implies a force on the elec-
tron, F= (e/c) (vX3€)= (¢/c) (vX#)(dg/dz)/2mr, which is
in the z direction. There will be a resulting momentum
transfer to the electron of Ap= /"Fdi= (e/c) S (vX)d!,
where the integration is carried out over the path of the
electron. (This transfer will be oppositely directed in
accordance with the side of the solenoid on which the
electron passes.)

Pryce then noted that the above-described momen-
tum transfer can be used to calculate the slope of the
fringe. Evidently this slope is determined by 9%/dz,
where ® is the phase difference of the beams which
have passed on opposite sides of the solenoid. Now,
as we saw in the discussion of the Bohr-Sommerfeld
quantum conditions, this phase shift (the number of
wavelengths) is equal to #'p-dx/h, where p is the
canonical momentum, mv+(e/c)A. Now, consider the
dependence of this phase shift on 2, at the location of
the screen, where inier ference is being detected. Here A
can be neglected (because r is large). The z dependence
of ® will then arise only because the two beams have
different z components of the “physical” momentum,
mv. From this difference, as calculated in the previous
paragraph, one obtains

P e

2 (vXae)dt, @)
9z ch
where 2 is a unit vector in the z direction.

We see then that the slope of the fringe line can be
obtained from the momentum transferred to the
electron by the magnetic force due to the stray field
outside the solenoid. However, Pryce then went on to
consider a case in which the flux in the “whisker” has
a value of zero at some point, say z=3, and in which
¢(2) rises continuously to its actual value at the altitude
z. The total phase shift can then be obtained by
integrating Eq. (7) from z to 3; viz., ®= /z,%(3®/9z)dz.
Before doing this, however, we first transform the
integral in Eq. (7) into

e e
———f(&cxﬁ)-vdt=—~f(3c><2)udx.
ch ch

We then note from our expression for 3¢ that 3¢X2



1516

=9A/0z, so that we finally obtain

e z
<1>=—fdzf(5€><2)~dx
ch V4,

e r? A e
=— | dz —~dx=—-fA(z)-dx, 8)
Ch 20 9z Ch

using the fact that S A(z)-dx=0, because ¢(z0)=0. In
this way, it would seem that the whole effect can be ex-
plained as a result of forces exerted by the magnetic
field on the electron, so that potentials are after all not
playing any more fundamental role than they play in
classical physics.

One can show the inadequacy of the above argument
by noting the electron beam can be limited in the 2
direction to a region, Az, in which the change of flux,
(8¢/92)Az, is negligible in comparison to ¢(z) itself.
Moreover, it is always possible, in principle, to find con-
ditions in which this limitation of the beam will have a
negligible effect on the interference pattern (it is neces-
sary only that Az be sufficiently large in comparison to
a wavelength). In practice, such a limitation could be
achieved by suitable slits, but for theoretical purposes,
it is more convenient to discuss infinitely high potential
barriers which confine the electron to the region in
question.

It is clear that the fringe line in the interference
experiment described above is, in effect, a map of
®(z)= FA(z)-dx onto the coordinate [ ¥ (z)] perpen-
dicular to 2, on the screen. To obtain such a map em-
pirically, one could begin by doing such an interference
experiment at a certain altitude z, with a slit of width
Az. Then it could be done at a series of altitudes, z+4-Az,
z+2Az, etc. It must be remembered, however, that in
a shift of #-+6 fringes (where # is an integer), only § is
observable with the aid of measurements made at a
definite value of z. Nevertheless, if Az is limited in the
way described above (so that there is much less than a
whole fringe shift in the interval Az), then one can make
an effectively continuous map, which can be extended
over many fringe shifts, and which permits the integer,
7, to be obtained by counting the fringe shifts down to
a point of zero flux. In this way, the function ®(2)
could be obtained in measurements.

It is clear that the argument of Pryce applies only to
the calculation of the shift of the fringe line in the in-
terval Az [which is proportional to (8%/92)Az]. The
main part of the deviation, §, of the fringe shift from
an integer (which can be measured directly in observa-
tions taken in the interval Az) is, however, not explained
by this argument at all, since the electron cannot pene-
trate into the regions over which the integration of
d®/9z [in Eq. (8)] was carried out. This deviation, 8,
is, in fact, determined directly by the potential integrals,
$'A-dx, while (as has already been pointed out in Sec.
1), the concept of the force exerted by the fields acting
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on the charges is seen to be a comparatively abstract
one, having at best, a secondary importance in com-
parison with that of the potential integrals themselves.

Finally, another point of interest that has been raised
is in connection with the possibility that in the experi-
ments described here, the flux is actually quantized in
units of “fluxons” (1 fluxon=chk/e). In those cases
where stray fields are present (e.g., in the Chambers
experiment?) such a suggestion implies that there is,
in reality, always an integral number of fluxons at any
given altitude, z, and that this number changes abruptly
at certain altitudes. The stray field would then be
present only at these altitudes where the number of
fluxons suffers an abrupt change of the type described
above.

Of course, as pointed out in our first article, all inter-
ference and scattering experiments must vanish in a
field-free multiply-connected region containing an in-
tegral number of fluxons. If the flux were quantized,
one would first sight, therefore, expect no observable
fringe shifts except at those altitudes, z, where the
flux changes abruptly, (and where the resulting mag-
netic field might perhaps be expected to deviate the
fringe pattern in the manner indicated by the argument
given by Pryce). Such a discontinuous pattern would
contradict the observed results which, as we have al-
ready pointed out, show a continuous tilted and, in
general, curved fringe line. In order to answer this ob-
jection it could, however, further be suggested that
the electron is not fully localized in the z direction, so
that it effectively experiences a magnetic field averaged
over a certain range of z. In this way, one could perhaps
hope to explain the observed continuity of the fringe
lines, while still holding on to the notion that the flux
is quantized, and that all observable effects are really
due to the fields.

In order to settle this question of quantization of
flux finally, it would suffice if an experiment were done
in which Az were small enough so that the fringe shift
along its length would be negligible in comparison to the
deviation, 4, from an integral number of fringe shifts.
In this way, one could demonstrate that the average
field experienced by the electron (which is proportional
to the slope of the fringe line) is too small to account
for the observed fringe shift, §, so that the assumption
of quantized flux lines with discrete changes in intensity
would have to be given up.

TFinally, it must be pointed out that the quantization
of flux is not compatible with the quantum theory of the
electromagnetic field as it stands now. Some arguments
have been given with aim of deducing the quantization
of flux from the present theory, but these arguments are
erroneous. For example, consider an electron moving in
a uniform magnetic field of strength, H, in the z direc-
tion. The vector potential can be taken as A = — Hru,/2.
The Bohr-Sommerfeld condition is #[mv-+(e/c)A]
-dx=wnh. But for a circular orbit in a uniform field,
mv=(Her/c)ny. We thus obtain (wer?/c)H=mnh, so that
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the flux is g=m72H =nch/e, which is just a whole num-
ber of “fluxons.” If flux were always confined by charges
moving in uniform magnetic fields, then the effects of
potentials would vanish in the way described above.
In general, however, the electrons are confined to a given
region by other kinds of forces (e.g., electric) so that
the above conclusion of quantized flux does not hold.

Additional arguments in favor of the assumption of
quantized flux arise in the theory of superconductivity.'®
Even if these arguments are accepted, however, they
would imply at most that flux was quantized for super-
conductors, and therefore would not hold for the experi-
ments that we have considered.

Of course, there is a possibility that current electro-
magnetic field theories should be modified in such a way
as to introduce quantization of flux as a general property
of the field. In this connection, the experiments that we
have cited furnish strong evidence against such an
assumption. However, in order that this evidence shall
be made conclusive, it is desirable that the experiment
be done with a suitably limited slit width, Az, in the
manner described earlier (so that the fringe shift along
Az should be much less than the main deviation, §, from
an integer).

3. EFFECT OF SOURCES OF POTENTIAL IN
INTERFERENCE EXPERIMENTS (CASE OF
AN ELECTRICAL POTENTIAL)

We have thus far been treating the interference ex-
periment under the assumption that the one-body
Schrédinger equation, with the potentials given as
specified functions of space and time, is adequate. We
shall now show that the same results are obtained, when
we take into account quantum-mechanically the fact
that all potentials originate in some kind of source (or
set of sources). In this section we shall discuss only the
case of electrical potentials (i.e., no magnetic fields),
for which the problem is simplified by the fact that these
potentials satisfy Poisson’s equation (in the gauge
in which divA=0).

Vi (x) = —4mp(x), ©)
so that ( ')d
p(x)dx
o (x)= (10)
g- [

The above equation shows that the value of ¢(x) at a
given time is determined completely by the distribution
of charged particles at that same moment of time. (In
the next section, we shall see that there is no analogous
complete determination of magnetic vector potential by
the distribution of currents.)

Our procedure will then be to include in a many-body
Schrédinger equation, not only the electronic coordi-
nates, X, but also the coordinates, y;, of the various

16 See F. London, Superfluids (John Wiley & Sons, Inc., New
York, 1950-54).
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parts of the apparatus, which are used to generate the
potential. In general, the potential energy of interaction
of the electron with the source will be a function,
V(x, -y --), which depends on the y; as well as on
x, because the y; determine how the various charges in
the source are placed. Thus, the system will have to be
described by the wave equation

J
iﬁ~\I’(X,' ey .’t)
at

=[HAHs+V(x,:- 3 (%, i - -40), (1)

where H, is the Hamiltonian of the electron by itself.
The Hamiltonian of the source can be expressed in more
detail as

P
HS=Z _+W(. TR .)’
i 2M1

(12)

where M ; is the mass associated with the ith coordinate
and W(-- -y, --) is the potential energy of interaction
of all parts of the source with each other, while p; is
the momentum conjugate to y;.

We now take advantage of the fact that the source
consists of a macroscopic piece of apparatus. Thus, all
its parts will be very heavy, so that it can be treated
with the aid of the WKB approximation. As is well
known,” the approximation leads to an expression for
the wave function of the source by itself, having the
form

B(wyir e ) =Ry (13)

where S is a solution of the classical Hamilton-Jacobi
equation

. ’t)ei-S<-~yf-~,t)lh,

as
—+z( )/2M AV (g )=0,  (14)
at ¢ \0y;
and the momenta, p;, are given by
= aS/ayi. (15)

The probability density, P=R?, satisfies the conserva-

tion equation
oP d [ ps
—+> —(——P) =0.
ot i 0y; M;

(16)

In a typical state, P(---y; --,f) takes the form of a
packet function (in the configuration space), such that
the probability density is appreciable only in a small
region of width Ay; near a point y;=v;(¢), which
follows the classical orbit. In view of the fact that such
a wave packet spreads and otherwise changes its shape
negligibly, it can be approximated as a function
P+, vi—yi(f)--+), which depends only on the dif-
ference, y;—v:(2)

17 See, for example, reference 7, page 270.
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Since y; is very close to y;(f), wherever the proba-
bility density is appreciable, the interaction potential,
V(:+-9:-+,x) canbe approximated as V(- - - y:(¢) - - - ,X).
Thus, we obtain a time-dependent potential. Our prob-
lem is then to show that the equation for the electron
wave function factors out of (11), to yield the time-
dependent Schrodinger equation for the one-body
problem

ol
ih—=[HAV (- i)+ X)W (17)

If we succeed in doing this, we will have shown that a
complete quantum-mechanical treatment which in-
cludes the source of the potential leads (in a suitable
approximation) to the same result as does the treatment
given in our first paper.

Now, in a typical interference experiment (e.g., the
first case treated in our previous paper,! with a split
electron beam passing through a pair of drift tubes),
the generator of the potential is so arranged that
V(- 9i(®)---,x) is zero before the experiment begins,
then rises continuously to a maximum, finally falling
again to zero when the experiment is over. Since the
probability density is negligible when v, is appreciably
different from y;(?), it follows that V(---¥;---x) also
satisfies the same conditions in the domain in which the
wave function of the source is appreciable. When the
experiment begins, there is therefore no interaction be-
tween the electron and the source of potential, so that
we can write the solution of the wave equation for
the combined system as a simple product function

\I,UZR( ) yl—y@(t)) o ')eis(’”yi“"t)/h‘//o(x)t); (18)

where ¥o(x,¢) is the initial electronic wave function
(which also takes the form of a suitable packet).

After the experiment is over (and the interaction
vanishes again), the wave function will, in general, take
the form of a sum of products

\I/=Zn ¢n( s Vit ',t)lﬁn(x,t), (19)

where the ¥, (x,f) represents a set of solutions of the
wave equation for the electron alone, and ¢, (- « ;- - - ,f)
a corresponding set for the source variables. If such a
sum of products is necessary, then it is clear that it
will be impossible to factor out a one-body Schrédinger
equation applying to the electronic variables alone. As
we shall see, however, because the parts of the source
are so heavy, only a single such product is actually
needed.

To treat this problem, let us first tentatively write
the solution as

‘I':R( " y’i_yﬂ'(t)a o )

XeiSCovin D Ip(x - ez« 1), (20)

If we substitute this function in Schrédinger’s Eq. (11),
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we obtain

oy
iﬁ__=[He_|_V(. )
at

o ('as—l—ﬁ
(2
i M; 9y;

dInRY 9 1 &

——1W. (21

dy; /3y,

We now apply the adiabatic approximation,'® which
is based on the large value of the M; plus the fact that
V(- -pi-+,x)and R(: - -y;—y:(2)- - ) are fairly regular
and slowly varying functions of the y;. Because these
conditions are satisfied, we can neglect %9 InR/dy, and
the term on the right-hand side of (21) involving
(1/M1)0%/9y# in comparison to the term containing
dS/dy;. This leaves us with

Ky 9
e [He+ V(x, g )—ih Y m(t)———]r,&. (22)
at ‘ i

(Note that we have also replaced
U= ?z/Mz= (1/M,‘)(95/ax¢,

by its average, 9;(#), because the probability of an ap-
preciable difference between v; and 7;(¢) is negligible.)
We then make the substitution

:\h:yz(t)—i"bi“ ‘p(xi' R Pl -,t)=¢’(x, Tty y«‘(l)‘f‘”i; t)'
Equation (22) becomes

iﬁ{f [HATVC, -yl Fudd. (23)

The complete wave function is obtained by multi-
plying ¢/ with

¢(X,- sy -,l)———R(- ce Ut
XexplaS(- -+, yi(O)tui -+, /B ].
This is
T=R(- -t expliS (-, i)+ -+, )]
XY/ (%, - caie o). (24)

Since Eq. (22) does not contain derivatives of #;, these
variables can be set equal to any specified set of values.
But from (24), we see that the wave function is appreci-
able, only in a small range, near #;=0. Thus, to a good
approximation, we can write ¢'(X,- - -4+ -+ ,0) =¢/(x,1),
where ¥(x,f) is the value of ¢’ when all the u; are set
equal to zero. Equation (24) becomes (after setting

o
= [HAVE, -y )W, (25)

which is just the one-body Schrédinger equation with
the appropriate time-dependent potential [i.e., the same

18 See reference 7, Chapter 12, for more details.
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as Eq. (17)]. We have thus accomplished our objective
of showing that when the source of potential is taken
into account quantum-mechanically, we obtain the
same result as that given in our first paper, where the
potential was assumed to be a specified function of
space and time.

We can now obtain directly from the above treatment
the same conclusion that was drawn by Furry and
Ramsey! in terms of an illustrative example of a meas-
urement process (see Sec. 2). Thus, if, in the case of the
drift tube experiment, the interaction with the source
were such as to make a measurement of which tube
the electron actually passed through possible, then after
this interaction is over, the wave function would take
the form of a sum of products, in which the electron
wave function is correlated to the wave function of the
apparatus.l® Such a sum would be a special case of the
expansion given in Eq. (19). As is well known, however,
when the wave function of the combined system takes the
form of a sum of products of the kind described above,
then there is no interference between the different parts of
the electronic wave function. In order that there shall be
such interference, it is necessary that the wave function
of the combined system take the form of a simple
product (18). But if this happens, then by observing
the apparatus, we will obtain no further information
about the electron. Therefore, the adiabaticity of the
interaction, which guarantees that the source shall not
destroy the interference properties of the electron, also
guarantees that no measurement can be made as to
which partial beam the electron actually passed through.

We shall now illustrate the equivalence of the one-
body treatment to that in which the apparatus is treated
quantum mechanically, in terms of some examples. We
shall begin with our first case of a split electron beam
passing through a pair of drift tubes. Suppose that one
of these tubes is attached by a wire to a generator of
electric potential, while the other is grounded (at zero
potential). We now suggest a simplified model of such
a generator. Consider a sphere of capacity C (much
greater than that of the drift tube Cy), with two small
holes in it, at opposite ends of a diameter. We then take
an insulating rod of mass M, with some charge distribu-
tion fixed near its center. Let this rod move in such a
way that it passes through the two holes in the sphere.
If we let y be the coordinate of the center of the rod,
then the potential on the sphere will evidently rise from
essentially zero to some maximum value, as the charge
enters the sphere, after which it will fall again to zero
when the charge leaves. This potential will therefore
have a form, V(y), which resembles a localized packet-
like function in y space. If the rod moves (by its own
inertia) with some velocity (), this movement will
produce a potential V(y(¢)), which is time dependent,
in such a way that it starts at V=0 at ¢=0, rises to a

1 See reference 7, Chapter 22, for a more detailed discussion
of this aspect of measurement theory.
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maximum of some time, {=/,, and then falls back to
zero as ¢t — . Thus, we are able to produce the kind of
time dependent potential required in this experiment.
And if the adiabaticity conditions are satisfied, then,
as we have shown, the one-body Schridinger equation
with this time dependent potential will yield the same
results as would the exact quantum mechanical treat-
ment, based on solving for the wave function ¢ (x,y,f)
for the combined system.

Another example that is interesting to study is af-
forded by the consideration of a condenser, consisting
of two large insulating flat sheets of mass M, charged
uniformly and oppositely with a surface density, o,
which is attached without possibility of moving relative
to the sheets. Let 9; be the coordinate of the first sheet,
9, that of the second (in a direction perpendicular to
the sheets). The energy of interaction with an electron
outside the sheets is then

W=HA4rce(y1—7y2), (26)

the sign being opposite, in accordance with the side of
the condenser on which the electron is.

Let us suppose that initially the condenser sheets are
practically in contact, so that the above potential energy
is essentially zero. At this time, a pair of wave packets
corresponding to a split electron beam is allowed to pass
on opposite sides of the condenser. Then, when the
packets have gone far enough so that edge fields can be
neglected, the condensers are allowed to separate with
some relative momentum, p;—ps, thus generating a
potential difference between the two beams given by
(26). After some time, the attraction of the two sheets
for each other overcomes their initial relative mo-
mentum, and they turn around to approach each other.
After they touch, so that W is zero again, the electron
beams are allowed to pass over the edge of the con-
denser, and are brought together to interfere.

This example is useful because it brings out an im-
portant point, viz., that whereas the electron exerts a
force on each sheet, there is, nevertheless, no net force in
the electron, because the sheets exert equal and opposite
forces on it. Thus, while the electron can be seen to
change the relative momentum of the parts of the
source, the total momentum of the source is not altered ;
and it is basically for the reason that the reaction forces
of the source on the electron cancel out. (Note that the
kinetic energy of the electron is therefore not altered;
the change of energy of the parts of the source can be
shown to come from cross terms of the electrostatic
field of the electron with the electrostatic field of the
source.)

We note also that a similar argument can be applied
in the general case. For example, with the drift tubes,
we can consider pairs of small elements of charge on
opposite diameters of these tubes as a basic unit. To
simplify the problem, let us suppose that the electron
is at the center of the tube. Then it will exert equal and
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opposite forces on the elements of the pair, so that the
net reaction of this pair on the electron vanishes. Since
this happens for every such pair, it follows that the total
force on the electron is zero, even though the electron
is actually exerting a force in every element of charge
in the tube.

We thus verify again that in quantum mechanics,
there are experimental situations in which the behavior
of an electron can be influenced by interactions, under
conditions in which there is no force on it, so that ac-
cording to classical theory, no effects could occur.

4. EFFECTS OF SOURCES FOR CASE OF MAGNETIC
VECTOR POTENTIALS

In Sec. 3, we treated the source of electric potential
quantum mechanically, and showed that if the source
is heavy enough for the adiabatic approximation to hold,
the results are the same as if the potential is taken to be
a specified function of space and time entering the one-
body Schrédinger equation for the electron. We shall
now go on to obtain a similar result for the case of mag-
netic potentials. This case is not so straightforward as
is the corresponding electrical problem, because the mag-
netic vector potentials satisfy d’Alembert’s equation,

19 4
(VL— —— JA=——3,, 27
¢t o ¢

where we are using the gauge in which divA=0, and
where j, is the divergence free part of j (i.e., divj,=0
and VXj,=0). As a result, there is no simple expression
corresponding to the integral (10) for the electric po-
tential, which would, in general, determine the mag-
netic vector potential at a given time in terms of the
current distribution at that time. Rather, as is well
known, the field has a “dynamic” character, implied
by the fact that even when j(x,f) is given everywhere,
an arbitrary solution of the homogeneous wave equation
can be added to A. As a result, A cannot be eliminated,
as was the case with ¢; and in quantum mechanics,
it must therefore be included in the wave function and
in the wave equation.

It follows then that the method given in Sec. 3 will
not be adequate for the magnetic case, and that a more
general treatment will be needed. This treatment, which
we shall give here, will also show how the local character
of the interaction between charge and field, which
played an essential part in our discussion in Sec. 1,
appears in the theory when the fields are treated dy-
namically, instead of as specified functions of position
and time.

We begin by writing down the Hamiltonian for the
system, consisting of sources, the electromagnetic field,
and the electron under discussion.?

20 For a more detailed discussion, see, for example, W. Heitler,
Quantum Theory of Radiation (Oxford University Press, New
York, 1954), 3rd ed., Chap. 1.
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This is
H=Hp+Hg+H.. 27
The Hamiltonian of the field is
(&4-3e?)dx
o s
8m
with (28a)
19A
§=—-——, 5=VXA
¢ ot

The momentum canonically conjugate to A(x) is
I (x)=(1/c%)0A(x)/9t. The Hamiltonian of the source
is

HF%[PP EA(YJ')]Z/ZM#V(”'YJ--'), (28b)

where y; is the coordinate of one of the moving particles
which constitute the current in the source whose mass is
M;. P; is the momentum canonically conjugate to
yjand V(- - -y;---) is the potential energy of interaction
of the source particles with each other.

The Hamiltonian of the electron is

Ho=[p—(e/c)A(x) F/2m, (28¢)

where x is the coordinate of the electron, and p is the
conjugate momentum.

The wave function of the system must depend on the
above variables, so that it can be expressed as

(X, -y, Az) - - 0),

where A(z) is the potential at the point.

As in Sec. 3, we can use the WKB approximation for
the source, so that its wave function may be written
as ¢(- - -y;- - +,0), where ¢ is a narrow packet-like func-
tion which is appreciable only in a small region near
y=7v;(#), the classical orbit of the particle. We then
make the adiabatic approximation, based on the large
mass, which we are assuming for the source particles.
In analogy with Eq. (20), we write

V=¢(-- -y 0)EC- vy ,x,- - -Az)- - D).

By a calculation based on approximations similar to
those used in Sec. 3, we obtain

(29)

9t €
| =2 S0 A [¢, (300
ot 7

where we have set

G v, %A@, )
=E (X, A(Z) D),

and where (v;(£) Yav=(p;(£) )av/ M, the average velocity
of the jth source particle in its wave packet. In this
expression, we have neglected the terms involving
e?A%(y;)/2M %, in comparison to the sum involving
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{vi(£))av+A(y;), which is permissible if M ;islarge enough.
(To do this is equivalent to assuming that the effects
of mutual induction between the source particles can be
neglected in comparison to those of their own inertia.
This simplification evidently does not change the results
in any essential way.)

As in Sec. 3, we can set #;,=0 in Eq. (30a), because
derivatives of #; do not appear in this equation, and
because ¢ (- - -y;- - +,) is negligible for appreciable values
of #;. We shall write

E'(. . .O’. BED A ‘A(Z)' . .’t):n(x’. . .A(z). . .’t).
Equation (30a) then becomes

.ﬁaﬂ [HF+EP~ (e/c)A(X)T

wn—-=

ot

2m
[
LSO A | G0)

where (y;(f) )av is the average of y; over its wave packet.

Because the position (y;(f) )ay and the velocity (v;(¢) )ay
appear in Eq. (30b) only as average quantities, which
are ¢ numbers and not operators, it is now possible to
divide A(z,) into two parts, one of which (A(z,t))av, is
a C number associated with the average movement of
the source, while the other, A’(z,t), is an operator as-
sociated with the “zero point” quantum fluctuations
of the electromagnetic field, plus whatever field is
generated by the electrons. Thus,

A(z,t)=(A(2,8))uv+A'(z,0). (31a)

Rigorously, the average potential (A(z,))sy should
satisfy d’Alembert’s equation, corresponding to the aver-
age current density j(z,t)=(e/c)>_;6(z2—2;){V;(t))av-
However, because the acceleration of the source particles
is negligible in typical cases (e.g., the electrons in a
solenoid) and because the velocities are small enough
for relativistic effects to be neglected, we can replace the
exact solution of d’Alembert’s equation by

M@= O/ |-y, G1H)

This is, of course, just the expression leading to the
Biot-Savart law.

We have thus separated out a part (A(z,))., of the
total vector potential, A(z,), which is related to the
current distribution, in the same way that the electro-
static potential is related to the charge distribution by
the integral (10). Note, however, that there remains
another part of the potential, A’(z,t), so that we have
not expressed the fofal potential as a function of the
current density at the same moment of time (i.e., we
have not eliminated the dynamic character of A).

When the transformation implied by the substitution
(31a) and (31b) is used in the wave function, then
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Eq. (30b) reduces to
o

P , , (o= (/A D)e+A'(x,1) ])?
at o 2m

M (31)

where H ' represents part of the electromagnetic field
energy associated with the potential A’(z), viz.,

(1/8m) S L(1/) (oA /oty + (VXA 1dz.  (32)

In the above equation, the term A’(x,f) (which
couples the electron to the part of the electromagnetic
field that is not generated by the source) describes, as
we pointed out above, the effects of zero point “vacuum”
fluctuations of the field, along with associated effects
(such as the back reaction of the electron’s own field
on itself), which are taken into account in standard
renormalization theory.? However, it is well known that
in the first approximation, the effects of the zero-point
fluctuations on the electron average out to zero, while
in the second approximation they introduce corrections
which (along with those of the self-field of the electron)
are quite small. We shall neglect these corrections here.
This is evidently equivalent to leaving out the term
A’(x) in Eq. (31). The Hamiltonian H 7' then ceases to
be coupled to the electron variables. The wave function
can therefore be chosen as a simple product

X=Xo(---A'(z)- - W (x,0), (33)

where Xo(---A4’(z)- - -) represents the ground state of
the A’(z) field (describing therefore the ‘“zero-point”
fluctuations) while ¢(x,?) satisfies the equation

o [p—(e/Ax)T
ih—= J.

ot Im

We have thus achieved our aim of showing that the
quantum mechanical treatment of the magnetic source
leads to the same results as those of the one-body treat-
ment, in which the vector potential is taken to be a
specified function of space and time.

The fundamental role of potentials can now be il-
lustrated in more detail by considering the following
simple example, in which a solenoid surrounded by an
impenetrable potential barrier is switched on adiabatic-
ally. Suppose that, as suggested in our discussion in
Sec. 2, the electron originates in a Faraday cage, so that
it is not acted on by the electric field resulting from
turning on the solenoid. (This electric field is cancelled
by the effects of currents induced in the wall of the cage,
currents which can, however, be treated in the formalism
as just another part of the source variables.) The average
initial momentum and position of the electron wave
packet are then so arranged that after this electric field
vanishes, the electron emerges through a hole in the
cage. (The hole is so small that the penetration of the
electric field through it can be neglected.) The packet

21 H. Bethe and S. Schweber, Mesons and Fields (Row, Peterson
and Company, Evanston, Illinois, 1955), Vol. 1. Chap. 21.
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is then split into two parts by a bi-prism, which go
around the solenoid on opposite sides, after which they
are reunited by another bi-prism, into a single coherent
packet. This packet then enters a second Faraday cage,
through a small hole, after which the flux in the solenoid
is turned off adiabatically. Interference phenomena are
then observed inside the second Faraday cage.

The above experiment satisfies the conditions as-
sumed in our treatments in Secs. 3 and 4; viz., that
initially there is no interaction between electron and
source, while during the course of the experiment, this
interaction rises to its full value and then falls back to
zero. Moreover, it is evident that at no stage is the elec-
tron wave packet in a region containing electromagnetic
fields [i.e., &(x) and 3¢(x)].

It is clear that there is no way to formulate this prob-
lem in the quantum theory without considering poten-
tials. Thus, when the initial quantum state of the elec-
tron at {=0 is determined as represented by a certain
packet wave function, this packet by itself contains no
reflection whatsoever of the fact that there is a flux
in the solenoid (since the electron was screened from
electric fields by a Faraday cage). Indeed, we must start
with the initial wave function for the combined system
of the form (33), where ¢ is taken to be the initial elec-
tron wave packet ¥o(x) and ¢ the initial packet of the
set of particles ¢o(- - -y;- - +,f) in the source, whlie the
electromagnetic field is represented by Xo(A’(z,0)) de-
scribing the zero-point ‘“vacuum” fluctuations in the
field. By solving Schridinger’s equation for this system,
we see from the changing form of ¥ how the quantum
fluctuations take place around a changing average
(A(z,t))av representing the effects of the source. The
electron responds mainly, as we have seen, however, to
the average (A(z,t))av, while the quantum fluctuations
have effects which can, to a good approximation, be
neglected. As a result, the operator A(z,f) can be re-
placed by the ¢ number, (A(z,t))sy; and this is how we
came back to the one-body Schriodinger equation with
specified potentials.

We see then that whether we treat the potentials as
specified functions of space and time (as we did in Secs. 1
and 2), or as dynamical variables furnishing a link
between the source and the electron (as we did in this
section), there is no way in the quantum theory to
express the effect of a flux inside the solenoid on an
electron outside in terms of a localized interaction,
except with the aid of potentials. In no case does the
theory ever contain any kind of interaction between the
electron and the source, which does not go through the
intermediary of potentials and, as we have seen, fields
are not, in general, adequate for expressing all aspects
of this intermediary role.
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APPENDIX

Some Comments on a Paper by Peshkin, Talmi,
and Tassie, Concerning the Role of Potentials
in the Quantum Theory

Recently there has appeared a paper by Peshkin,
Talmi, and Tassie,’® on the role of potentials in the
quantum theory.” This paper seems to have two ob-
jectives; firstly, to show that the nonclassical conse-
quences of potentials in the quantum theory should not
be regarded as surprising, and secondly, to suggest
that these consequences should not be ascribed to the
potentials, but rather to the effects of suitable fields on
the quantum conditions applying to the electron. With
the first of these objectives, we are, of course, in agree-
ment, as we indicated in Sec. 1. We do not, however,
regard the second objective as a valid one; and we shall
show here the inadequacy of such an approach, in
terms of several of the points that were treated in the
above article.

The first question considered by these authors is
concerned with the problem of stationary states of an
electron in a multiply-connected region of space, which
contains flux in the excluded region. They begin with
an analysis, which leads them to the same conclusions
that we gave with regard to this problem in Sec. 2;
viz., that the allowed values of the energy of the electron
are related to this flux in a way that is independent of
the past history of the electron (e.g., of whether the
electron was in the orbit in question or not while the
flux was being turned on). However, in stating this con-
dition, they assert that ‘““The presence of the field in
the excluded region permanently changes the allowed
values of the physical angular momentum of every
electron in the world ; regardless of how the system was
actually prepared. Such arguments from the cor-
respondence principle, which are now very old, apply
equally to the Zeeman effect.” In their Abstract they
also state that the observable effects of potentials arise,
not from forces exerted by magnetic fields or by their
vector potential, but from modifications of the quantum
conditions. In view of the above statements, it seems
difficult to avoid the condlusion that these authors wish
to imply that somehow the role of the potentials can be
eliminated, because the fields in the excluded regions are
able to account for the change in the quantum condi-
tions and presumably, in a similar way, for all possible
physical properties of the electron.

In accordance with the discussion of this problem
given in our paper, however, we see that the fields in
the excluded region cannot be regarded as interacting
directly with the electron. Indeed, this interaction goes
by the intermediary of the potentials; and it is only
when this is taken into account that the essential feature
of the locality of interaction of electromagnetic field

2 We wish to thank the above authors for sending us a preprint
of their work.
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with electron can be brought properly into the theory.
And since the above applies to the exact form of the
quantum theory, it must also apply in the correspond-
ence limit of high quantum numbers (which is, after all,
an approximation to the exact theory), so that this
conclusion cannot be altered by an appeal to the cor-
respondence principle. It is therefore not sufficient to
attribute the change of quantum state of the electron
to the field in the excluded region, but in a more nearly
complete treatment, one must take into account how
this change is brought about by means of the influence
of the potentials which link the quantum state of the
electron to the current in the source by means of purely
local interactions.

The next problem considered by Peshkin, Talmi, and
Tassie, was that of the origin of the average force
(i.e., the average rate of momentum transfer) in the scat-
tering of an electron beam off a solenoid of negligible
radius. In their discussion of this problem, they indicated
without, however, giving a proof that (a) when no
barrier is present, this force can be accounted for as a
result of the possibility that the electron will penetrate
into the magnetic field region; and (b) when there is a
barrier, the force comes from interaction of the electron
with the barrier in question.

Before proceeding further, it is worthwhile here to
show that these conclusions can be proved directly
from Ehrenfest’s theorem [Eq. (5)]. Thus, if there is
no barrier V=0, and the average force is equal in this
case to (e/c)SY*(vX 3)Ydx (since =0 also). The
above is, of course, just the average magnetic force.
If there is a barrier, then to simplify the problem, let
us suppose that it is very high, but not infinite. (In
this way, we will guarantee that the wave function and
its derivatives are finite everywhere, so that the condi-
tions necessary for the validity of Ehrenfest’s theorem
are satisfied.) Then, as is well known, the electron will
penetrate with appreciable probability only a short
distance into the barrier, so that the wave function,
¥(x) will be essentially zero near the origin, where the
magnetic field is not zero. As a result, the average
magnetic force vanishes, and the average force will be
SV (VV)dx, which is just the force coming from the
barrier, as was indeed suggested in the above paper.

Peshkin, Talmi, and Tassie then assert that because
the force comes from the barrier in the manner described
above, there is no reason to ascribe any force to the
excluded magnetic field or to the local vector potential.
They recognize, however, that the average force exerted
by a given barrier depends on the flux inside. For
example, in the absence of flux, such a barrier has a
cross section and a proportional average force of the
order of the radius, while when there is flux within, the
cross section for the same barrier can rise to a generally
much larger value, of the order of the wavelength of
the incident electrons. They ascribe this change in the
effectiveness of a given barrier to the “modification of
the quantum conditions” (which they have, in turn,
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ascribed to the effects of the magnetic field inside the
barrier). From these statements, it would seem once
again that the above authors are giving arguments
against the notion that in quantum mechanics the
potentials play a role more significant than that which
they played classically.

In answer to these arguments, we first point out that
from the modification of quantum conditions alone,
there is, in general, no way to calculate either the scat-
tering cross section or the average force on the electron,
without first specifying the vector potential in the whole
region outside the barrier, and then solving Schridinger’s
equation in detail. (For example, in the case of a barrier
of a radius that is appreciable in comparison to the
wavelength of the incident electrons, all physical ef-
fects will depend on this detailed solution.) It is only
by thus introducing the potentials that we can account
for the change of the average force exerted by the same
barrier, when no fields of any kind change except those
in the region that is not accessible to the electron.

The above discussion illustrates once again that (as
we have emphasized throughout this article), the con-
cept of force is, in the quantum theory, an abstraction
of secondary importance. Therefore, from the fact that
potentials exert no forces, it does not follow that (as
seems to be implied by the above authors) these po-
tentials can have no physically significant effects.

Finally, Peshkin, Talmi, and Tassie give a model for
the interaction of the electron with the source of the
field. To do this, they assume a direct velocity-de-
pendent mechanical interaction between the electron
and the source, which gives rise essentially to the Biot-
Savart law for the electron. On the basis of this model,
they are led to a result analogous to that which we give
in Sec. 4; viz., that the interference effects are the same
as those obtained on the basis of the one-body Schrod-
inger equation with the potentials given as specified
functions of the time.

In connection with the above model, there are two
points that we wish to stress. First, this model involves
the assumption of a nonlocal mechanical interaction
between electron and source, which is adequate for the
purpose of proving the result described above, but which
cannot be used for a treatment of the problem of the
locality of the interaction, which we have stressed in our
article. Secondly, this model has been used (within its
proper domain of validity) to make certain inferences,
which are, however, misleading for other reasons. These
inferences were based on the fact that what appears
in the Hamiltonian obtained by the above authors is
not the vector potential, but rather, the momentum,
s, canonically conjugate to the source variable. From
the constancy of pg with time (which follows from
their Hamiltonian), it can be seen that quantum fluctua-
tions of the magnetic field in the source have no influence
on the interference phenomena under discussion. And
since the vector potential fluctuates along with this
magnetic field, it would seem at first sight that in a
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situation in which quantum fluctuations are important,
the interference effects are determined, not by the po-
tentials, but rather by some other variables (in this
case, pg). Thus, one might be led to conclude that in
such cases, the potentials are not of fundamental
significance in the theory.

A more careful analysis shows, however, that while
the calculation of Peshkin, Talmi, and Tassie showing
the dependence of interference effects on the constant
of the motion pg is correct, their discussion does not
make clear that the vector potential plays an essential
part in bringing about this result. For as can be shown
quite readily, this dependence of interference effects
on pg (with their resulting independence from the
quantum fluctuations of the field in the source) is due
to a compensation of the effects of the fluctuating part
of the vector potential by the effects of the electric
fields, §=— (1/c)(9A/ %), that inevitably accompanies
such a change of vector potential. (In Sec. 1 we treated
a similar problem,” where we saw that stray 60-cycle
magnetic fields compensated the effects of the cor-
responding fluctuating potentials to produce a constant
and stable interference pattern.)

In order to seen in more detail what is happening in
this problem, we first note that there is a back reaction
of the magnetic field of the (moving) incident electron
on the source (see, for example, the latter part of Sec. 3,
where a similar reaction was found in the electrostatic
case). This (in general, changing) magnetic field in-
duces an electromotive force in the source solenoid;
and as a result there is mutual interaction of the elec-
tronic variables and the source variable, in which the
states of both are altered. Nevertheless, as can be
shown by a simple calculation, this interaction is such
that it leads to the constancy of pg.

In all discussions given until now, the source has been
assumed to be so heavy that for practical purposes,

23 See reference 3.
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the effects of the electronic magnetic field on the source
current can be neglected (as indeed also follows in the
treatment of the above authors, if the mass of the source
is allowed to become very large). If, however, the mass
is not large, then one will have to take into account the
effects of the changing flux produced by the source,
which will, as pointed out in the above discussion, give
rise to a further electric field. It is clear, of course, that
when such an electric field is present, interference ef-
fects will no longer, in general, be given by the formulae
of our first paper, in which we, by hypothesis, restricted
ourselves to the case in which there were %o fields of any
kind in the region accessible to the electron. In fact
when fields are present, the interference properties of
the electron are as pointed out in Sec. 1, determined
(in the limit of high quantum numbers) by #p-dx
= ' [mv+(e/c)A’]-dx, where p is its canonical mo-
mentum, and mv its “physical” momentum [see Eq.
(4)]. However, as a result of the change of source
strength brough about by the magnetic field of the
electron, the vector potential, A(x), that is actually
present on the path of the electron will be slightly
different from what it would have been, if this reaction
had not occurred. Thus, it will no longer be correct to
calculate the integral, $'A-dx, under the assumption
that no such a reaction takes place. On the other hand,
the resulting electric field acting on the electron will
change the “physical” momentum, and as can be veri-
fied by a simple calculation, this alteration just compen-
sates the effects of the change in A on the interference
pattern. This result shows that the implication of
Peshkin, Talmi, and Tassie, that potentials are not
playing a fundamental role here, is wrong. For the
fluctuating part of the potentials is just what is needed
to explain the dependence of the interference pattern
on the constant of the motion, pg, despite the presence
of the fluctuating electric field, which necessarily ac-
companies this fluctuating potential.



