
P II YS ICAL REVIEW VOLUME 123, NUMBER 4 AU GUST 15, 1961

Evolution of a Quasi-Stationary State*
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To elucidate the time development of quasi-stationary states, a simple barrier penetration problem has
been studied. Both approximate expressions and numerical results for some parameters were obtained for
the decay rate. First, irregular oscillations occur for a short time. Second, the exponential region follows.
Third, further oscillations occur during which the decay rate dips to negative values, so that the probability
of finding the undecayed system increases briefly at several times, Fourth and finally, the decay rate de-
creases like an inverse power of the time.

HERE have appeared lately several studies' ' of
nonexponential evolution of quasi-stationary

states. K.hal6n' has proved that all states that have a
lowest energy in their spectrum eventually must decay
more slowly than exponentially. Here, we examine a
simple model to illustrate the various stages that occur
in the time development of such systems.

Consider a one-dimensional, nonrelativistic problem,
with a potential given by

With the notation

the result is

+(x,l) =2n(2/a)l

q
—= [a(2mE)-*' j/A,

T=At/2m—a'

l=—x/a,

G—=2maU/A'

V(x)= ~, x& —a,
= U5(x), x) —a.

Ke choose as initial wave function

4'(x, 0) = (2/a)1 sin(e~x/a), —a&x&0,
=0, x(—u or 0(x,

and study the leakage through the barrier at the
origin. Such a delta-function barrier has, for particles
of mass m and energy E, a transmission coe@cient
(1+mU'/2EA') '. Its use, rather than use of a barrier
of 6nite thickness, simplifies the calculations. It also
removes the need to decide whether to treat the density
within the barrier as part of the undecayed system.
One can think of this problem as a simple picture of
alpha decay; it is similar to the model used by Petzold. '

To obtain 4'(x, t), we first find the energy eigenfunc-
tions @s(x), which are orthonormal in the sense that
(ps,Ps) =5(E'—E). Then we expand +(x,0) in terms
of the g~, determine the expansion coefficients C(E),
and obtain the wave function

l
"

dq exp( —iTq') q sinq[q sin (l+1)q+f)
(q' —n's ) (q'+Gq sin2q+G' sin'q)

f=0, —1&l—&0 (inside the well),

—=G sing sinlq, 0&l (outside the well).

ANALYTIC APPROXIMATIONS

If G&)1, the barrier has low transmittance, and the
state is quasi-stationary. The wave function for the
times of exponential decay can then be found from the
contour shown in Fig. 1. The pole P that is paramount
in the determination of the wave function lies, to
terms in 1/G', at

rwr[1 —1/(G+ 1) ice/G—'+ . ].
The line .V of the contour introduces negligible error
because the exponential is small on it except at ex-
tremely early times. The result for the inside (—1&i &0)
function is

4« ——(2/a) 'e " ~"i [1—e's'(l+ 1)'/G'] sinn' l
—[1+(ides 1)/Gf[—m. (l+1)/G] cosm. l). (2a)
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FIG. 1. Momentum plane contour for the determination of the
exponential region wave function.

1503



1504 ROLI" G. W I N TE R

For the outside (L&0) function it is

0,,= (2/a)'e "- r"-'(costsmL+i sinenL)(m7r/G) . (2b)

The current j outside the well is given then by

e =m'7r'(1 —2/G), (3)

The energy e in units of A'/2ma' and the mean life r in
units of 2nsa'/A are given by e ' 1+3L+3L'(4n'm'r) i+4m'm'rP

7 32'sx'7-'T'

~
—Tj2r

2Q37r7127. T-.

1/r = (4n'ir'/G') (1 4/—G)

Higher powers of 1/G and L/G have been neglected.
The approximations used here are, therefore, not valid
at large distances from the barrier.

These expressions are wrong not only at very small T,
but also at very large T. Everywhere, except in the
neighborhood of q=0, the oscillations of exp( —iTq') in

(1) eventually become so rapid that the contribution
to the integral there becomes negligible. The behavior
of the integrand near q=O then controls the result. We
expand the integrand in powers of g, and use the
Riemann-Lebesgue lemma~ in the form

t dq exp( —iTq') (bo+bgq'+b4q4+ )
~0

= (1 i) (7i—/8T) l (bo ib2/2T+3b4/4T + ~ )

The result for the large-time inside (—1&L(0) func-
tion is

(1+i)(L+1) 3i 1 L2 L————+ (5a)
2e~G'(era) 'T'* 2T e' r' 76 3

For the outside (L)0) function it is

(1+i)(GL+1)
+1.0=-

2nvrG2(~a) **T*'

32 1 12 l2

1—— ————(GL+1) + . . (Sb)
2T e'm' 6 3

Again, only the leading terms in 1/G have been kept.
W'e now seek an expression that gives, at least quali-

tatively, the behavior of the wave function at all except
very early times. For G))1, the resonance in the inte-

grand of (1) near q= sir is sharp. Then the neighborhood

of q=0 becomes important as soon as the effect of the
resonance is made negligible by the rapid oscillations of

exp( —iTq') there. The wave function for all except
early times is approximated therefore inside the well

by the sum of (2a) and (5a), and outside by the sum

of (2b) and (Sb):

7 E. T. Whittaker and G. N. Watson, A Course of Moderrs
Analysis (Macmillan Company, New York, 1947), American ed. ,
p. 172.

The time average of P, taken over a long time, approxi-
mates the expectation value of the momentum of the
particles that emerge from the well. During the time in
which exponential decay is valid,

P eh/2u,

the magnitude of the momentum that would be found
in the well if the barrier were impenetrable and the
state stationary. At very large times, when only the
second term in (7) is important,

P 5/2aT= ma/t. (10)

The quantity P will be examined further in the next
section.

NUMERICAL STUDIES

The approximations used above are good for large
G, that is, for 0E/E((1. For such "narrow" states, the
second and third terms in (7) do not become important
until very many mean lives have elapsed. If one begins
with any reasonable number of decaying systems, the in-

Xfsin(eirL —eT 7r/4—)+m7rL cos(eirL —eT 7r/4)—j. (7)

The barrier parameter G has been eliminated through
(4). The first term is dominant in the exponential re-
gion a.",d is the consequence of (2b) alone. The second
term controls the very large time behavior; inverse
power-time dependence is a characteristic of the T—& ~
behavior of all states with a nonsingular energy spec-
trum. ' ' This contribution comes from (Sb) alone.

The third part of (7) is the cross term between (2b)
and (Sb), and is of importance in the transition from
exponential to power-law behavior. It oscillates in time
with frequency equal to the energy found in the ex-
ponential region. The oscillations can be violent enough
to drive the current negative. It is easy to prove, for
any G and any / within the region of validity of the
approximations, that there will indeed be a time at
which the current dips to negative values. Such nega-
tive currents are not as absurd as they might appear;
%(x,O) contains negative as well as positive momenta
everywhere. For high energy, the frequency of the
oscillations can easily be too great to permit their de-
tection; only the time average of j (L,T), given by the
first two terms of (7), would be observed then.

An interesting picture of the decay is obtained by
examining the "mean momentum"
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tensity would become negligible long before the large-
time deviations from exponential decay occur. It is
interesting, therefore, to examine numerically and
without approximations somewhat wider states. Ke
want 6 large enough to let us consider the state quasi-
stationary, but small enough to given an exponential
region of reasonable length. Calculations were made
with a=i for 6=6 and G=20. The wave functions
were obtained by evaluating the integral (1) with an
IBM 650 computer through use of a five-point Gaussian
integration formula. The results are given in Figs. 2
through 7. Points at which calculations were made are
shown; the curves connecting these points were
sketched in.

For G=6, the full width of the energy spectrum at
half-maximum, divided by the resonance energy, gives
AE/8=0. 13. Figure 2 shows that, for about 10 mean
lives, the current decays roughly exponentially with a
mean life of 0.644&(2nra'/A. Theexponentialregionispre-
ceded and followed by oscillations that are brought out
in Fig. 3, where the current times exp(T/0. 644) is
plotted as a function of time. For precisely exponential
decay, this plot would show a horizontal line. At very
early times, we see instead irregularities qualitatively
like those observed by Lynch, Holland, and Hamer-
mesh. ' Since the wave function is zero at the barrier
at T=0, the current must be zero initially. In the early
time region, the wave function adjusts to the well and
evolves into the function from which approximately
exponential decay can take place. The current in this
region is sensitive to details of 4'(x,0): Admixture of
1% of the sr=2 initial function can double the current
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n=f, 6=6

I I I t

.00 I .002 .005 .Ol .02 .05 .l,?,5 I 2 5 l0

7

+6-

+4-

2 ~

2ma

jism.

I & IP

p~l, G~6

$ I

+2-

0-
O

lP 12 18 20

FIG. 4. The current at the barrier, for G=6, in the large
time region. Note the negative dips.

FIG. 3.The current at the barrier multiplied by exp (T/r) for G= 6.
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FIG. 2. The current at the barrier, jz, for 6=6.
s Z. Kopal, Xzmerscal Analysss (Chapman and Hall, Ltd. ,

London, 1955).

at some instants. There follows then the approximately
exponential region, which, in turn, gives way to a
region of violent oscillations that are described. quali-
tatively by the last term of (7). The remainder of the
decay is displayed in Fig. 4. Between T= 10 and 20, the
negative dips in the current occur. As a check, the
first dip around T=10.85 was studied in some detail.
A numerical integration of ~*over the well was made
at T=10.75 and 7=10.95. The increase of the proba-
bility of finding the particle inside equals the time
integral of the negative current, within the 2% accuracy
of the calculation. These oscillations do not depend
strongly on details of the initial state: With optimum
choice of phase, an admixture of 45% of the n= 2 func-
tion is necessary to drive the current positive at
7= 10.85. Finally, near T=20, the power-law behavior
of the second term in (7) appears. The numerical re-
sults are inaccurate here because the current in the
very large time region is given by the small difference
of large quantities.

The mean momentum P, defined in (8), is displayed
in Figs. 5 and 6. Since the current rises from zero faster
than the density at very small times, P —+ ~ as T~O.
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plausible. At very early times, the high-momentum corn-
ponents leave the well rapidly. Then, during the ex-
ponential region, the bulk of the components that have
approximately the resonance energy determines the
decay. The decay is exponential because only the size,
not the shape, of the wave function changes appreci-
ably. Finally, after the components near the resonance
are depleted, the very low momentum components
come out. Khal6n's theorem' can be viewed as follows:
As the state evolves over long times, the high-energy
components are depleted preferentially, and the mean
energy of the emitted particles approaches the lowest
energy in the spectrum. Such lowering of the mean
energy will cause a steady lengthening of the mean life,
which is equivalent to a slower than exponential decay.

For G= 20, hE/E=0. 018. The decay was followed in
any detail only through the beginning of the exponen-
tial region. Enough points were calculated at later
times to locate roughly the end of the exponential

FIG. 5. The mean momentum P for G=6 during the
early and middle times of the decay.
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After the early-time oscillations, P hovers around 0.88
h/2a, then goes through the large time oscillations, and
finally goes to zero as in (10). The oscillations of P
near the middle of the exponential region can be con-
nected with the width of the state; between T= 1 and
&=4, (P, '—P;„')/(P,)' 0.12. Note that fi times
the angular frequency of the large-time oscillations,
7.6h/2ma', does equal the energy found in the ex-
ponential region if we take that energy to be P'/2m.
An examination of the evolution of I', with oscillations
averaged out, suggests a description that is intuitively
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FIG. 7. The mean momentum P for G=20 during the
early and middle times of the decay.

region. The results for I' are shown in Fig. 7. The very
early time region is qualitatively like that shown for
6=6 in Fig. 5. In the exponential region, P remains
close to 0.95h/2a, and the mean life is 4.05X2tm'/h.
The large time deviations from exponential decay occur
after about 20 mean lives.

The computer results do not, of course, agree in
detail with (7) because G=6 and G=20 are too small
to perniit neglect of all but the lowest powers of 1/G.
There is, however, fair agreement regarding the loca-
tion of the exponential, oscillatory, and power-law
regions, and regarding the magnitude of the terms in (7).
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FIG. 6. The mean momentum P for G=6 during the
middle and late times of the decay.

MEASURABILITY

The detailed results displayed above are, of course,
valid only for our rather artidcial model, but many
quasi-stationary states will develop in a similar fashion.
One can usually expect that there will first be a short
time during which the initially specihed state adjusts
to the interactions that determine its decay. Second,
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there will be a period of approximately exponential
decay, governed by a pole responsible for a resonance.
Third, oscillations of the decay rate can result from
cross terms between the residue at the resonance pole
and the contributions from the low-energy part of the
spectrum. Fourth, only the low-energy end of the
spectrum is important, and the decay rate decreases as
some inverse power of the time.

There is no formal obstacle to the observation of
these e6ects, as can be seen by examining any thought
experiment of the kind commonly used in discussions
of this sort. We must find an operator R such that the
required 4'(x,O) is an eigenfunction of R with eigen-
value r. We measure R, and know, whenever r results,
that we have at that instant prepared %(x,O). After
some time t&, we examine the system to see whether it
has decayed; it does not matter that this examination
disturbs the system. Many repetitions of these opera-
tions for each of many times t& will then yield all re-
quired information. There are no uncertainty principle
limitations on the observability of all the features that

have been discussed, even though we must measure
times much smaller than E/A.

The experimental difficulties of such measurements
are, of course, tremendous. The frequency E/h of the
oscillations will usually be so high that only the time
average can be observed. Furthermore, the 6rst and
second terms in (7) become equal when

n'x exp(T/v. ) = (T/r)'(E/4E)',

that is, for narrow states, when T/r 5 1n(E/hE).
Most quasi-stationary states that we can examine with
any precision are so narrow that the remaining sample
at this time is vastly too small.
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