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It is shown that a sufficient condition for an optimal energy variational wave function itt 0 to satisfy the
hypervirial relation (pp, LH W]fp) =0 is for the trial function ip to admit variations of the form titp/Ita
= (i ji't)WP Here .His the Hamiltonian, W is a Hermitian operator, and a is a variational parameter. Explicit
forms of such trial functions are exhibited for several W's. The case in which IV generates a point trans-
formation of the coordinates is discussed in detail. Conditions are given for the existence of simultaneous
hypervirial theorems.

I. INTRODUCTION

'HE diagonal elements (in the energy representa-
tion) of the Heisenberg equations of motion' are

called the hypervirial relations. ' If z is a (bound state)
eigenfunction of a Hamiltonian H and if W (which
henceforth is assumed to be Herrnitian) is a time-
independent operator, the hypervirial theorem for 8'
states that

where ttH, Wj=BW WH is —the co—mmutator of H and
8".Physically, this is, of course, just the statement that,
for a stationary state, the expectation value of 8' is
independent of time. ' For a particular choice of 8',
Eq. (1) yields the familiar virial theorem. 4 For other
choices of 8', the hypervirial relations lead to generaliza-
tions of the virial theorem.

It is well known that if a parameter is introduced

* The Wisconsin portion of this research is being reported under
contract with the U. S. Atomic Energy Commission.'I. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1955), 2nd ed. , p. 140.

-" J. O. Hirschfelder, J. Chem. Phys. 33, 1762 (1960).' More formally, Eq. (1) is also a partial expression of the fact
that the eigenvalues of H are invariant to unitary transformation.
Namely, if we subject H to the unitary transformation generated
by W, then the first-order change in H is proportional to i )II,Wj.
Equation (1) then correctly tells us that the first-order energy
shift vanishes.

4 In reference 2 it is shown that if 8'=~X;(x;p;+p;x;), where
the x; are the Cartesian coordinates of the system and the p; are
the corresponding momentum operators, Eq. (1) is a statement of
the quantum mechanical virial theorem, originally derived by
M. Born, W. Heisenberg, and F. Jordan 1 Z. Physik 35, 557
(1925)g and again by J. C. Slater (J. Chem. Phys. 1, 687 (1933)j.

into an approximate' wave function iver in such a manner
that all distances are scaled, and if the parameter is
varied so as to obtain the optimum energy, then the
corresponding optimal function fo satisfies the virial
theorem. 6 Analogously, we show that, under certain
conditions, it is possible to introduce a parameter into a
trial function P so that the variationally determined
approximate wave function its satisfies the hypervirial
theorem

(iPv, LII,W$&o) = 0.

The general plan of this paper is as follows: In Sec. II
the conditions are derived in a formal manner. In Secs.
III and IV these conditions are put into explicit form for
certain special 5" s. In Sec. V the satisfaction of simul-
taneous hypervirial relations is discussed, and in Sec.
VI possible applications and extensions of our results
are considered. For simplicity of presentation, Car-
tesian coordinates are used throughout the main body

~Throughout this paper, all approximate wave functions are
assumed to satisfy the continuity-boundary conditions required
of physically acceptable bound stationary state wave functions:
(1) The function must be single-valued and analytic in all of its
variables at every point in configuration space where the potential
energy is analytic. (2) The function and its first derivatives must
be absolutely and quadratically integrable over the whole of
configuration space. (3) The function must vanish at infinity
faster than any negative power of the Cartesian coordinates. See
E. C. Kemble, Fmndamenta/ Principles of QNantmm Mechanics
(McGraw-Hill Book Company, Inc. , New York, 1937), Sec. 32.

6 E. A. Hylleraas, Z. Physik 54, 347 (1929); V. Fock, ibid. 63,
855 (1930); J. O. Hirschfelder and J. F. Kincaid, Phys. Rev. 32,
658 (1937); and P. O. I-owdin, Advances in Chemical Physics,
edited by I. Prigogine (Interscience Publishers, Inc. , ¹wYork,
1959), Vol. II. p. 219.
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of the text, with the generalizations to orthogonal
curvilinear coordinates being given in Appendix I.

However, before embarking on this program, we
should emphasize that the conditions which we find are
all sufhcient conditions, and that for some W's it may
be possible to satisfy the hypervirial theorem Eq. (2)
in other, simpler, ways. In particular, the hypervirial
theorem may be satisfied simply because

Wadis

is ortho-
gonal to HP& for reasons of symmetry. For example,
if H is invariant with respect to some symmetry group
and fs is chosen to transform according to a non-
degenerate irreducible representation of this group, the
hypervirial relation is trivially satisfied unless 5' has a
component which remains invariant under the group
operations, since (Pp,HWlgp) and (Ps,WHtPp) each will

vanish separately. Thus, if H remains invariant under
inversion, its has a definite parity, and W is odd with
respect to the inversion, then Eq. (2) is satisfied. Such
symmetry arguments suggest that those 8"'s will be
most useful which transform in accordance with the
irreducible representations of the symmetry group of H.

As another example, if H and 8" are invariant with
respect to time reversal, ' then the hypervirial theorem
is satisfied by any trial wave function Ps which is also
invariant with respect to time reversal. In this case, the
operator Q= (i/h)LH, W$ (which corresponds to the
time-derivative of W) is Hermitian and changes sign
under time reversal. Thus, if fs is invariant with respect
to time reversal, in accordance with a theorem due to
Wigner, gs,Quits)=0 and the hypervirial relation is
satisfied. Time reversal changes the direction of all
motions and the sign of the spins. Spin free operators-
and wave functions are invariant with respect to time
reversal if they are real. ' Thus, if we can neglect spins
and if H is real, the hypervirial theorem for every real
Hermitian 8' is satisfied by any real trial wave func-
tloil pp.

a. Here the Hamiltonian may be function of a or else
the parameter may simply be a variational parameter
embedded in f.Differentiating the definitional equation
for the energy with respect. to u and making use of the
Hermitian character of H,

BE BH q
(4,lt) —

I 4
Ba E Ba )

/B$ q ( Bfq=
I

—(H E)O—I+1 (H —»~t —I.
&Ba' ) & Ba)

For exact wave functions, for which (H E)/=0—, the
right-hand side of Eq. (3) is zero and Eq. (3) becomes
a statement of the generalized He/lmame-Feymman
theo~em. ""For approximate wave functions, let us
suppose that

BP/Ba = (i/h) WP

Then, making use of the Hermitian property of the H
and W, Eq. (3) becomes

BE f BH i
(4A) 14, 4—1=(i/h)(4 LH W34)

Ba
'

& Ba i
Thus, a sufhcient condition that an approximate wave
function should satisfy the generalized Hellmann-Feyn-
man theorem is that it satisfy Eq. (4) and the corre-
sponding hypervirial theorem, Eq. (2). The remainder
of the present paper has no further bearing on the
Hellma, nn-Feynman theorem.

Instead, we seek the variational functions which lead
to the hypervirial relations. Hence, in the remainder of
this paper, a is considered to be a variational parameter
and H is independent of a. Thus, if ao is the value of u

for which BE/Ba=0 and if fs is the approximate wave
function for this optimal value of a, Eq. (5) becomes

II. FORMAL VARIATIONAL FUNCTIONS (les, LH, W]gs) =0. (2)

I.et us suppose that the approximate energy of the
system, E= (iP,HP)//(P, P), is a function of a parameter

7 If p0 belongs to a degenerate irreducible representation, then
W need not have a component which remains invariant under the
group operations. For example, in an atomic problem, if Ilt 0 has the
symmetry of a P function, then (in accordance with the Clebsch-
Gordan theorem), 8'p0 can have the same symmetry as p0 if 8'
transforms in the manner of the S, P, or D representations.

E. P. Wigner, Group Theory, translated from German by
J. J. GriSn (Academic Press, New York, 1959), see Chap. 26;
also, E. P. Wigner, Nachr. Akad. Wiss Gottingen Math. -physik
Kl. Bl, 546 (1932).

9The effect of time reversal on operators and wave functions
involving spin is somewhat more complicated. For example, if )It 0

is an electronic wave function having the form
0'0 —+ ' ' ' ~ C'&I ' ' 'aw. (&lpylplpll ' ' j &n&vnq e&&a)&

~1=+5 ~u-+k

and 8 is the time-reversal operator, then
i-2(a I+ ~ ~ .+g„)

~n-+k

XC'&i' ' '&n (&'i& y&, », —S&, ' ' '; ~n, ynp ~~ni &n).

Thus, lit 0 is invariant with respect to time reversal if $0=+0.

This result may be summarized: If, among other uaria-
tioria/ Paranieiers, we introduce a Paranieter a such that

Eq. (4) is satisfied, then the oPtimal 1I satisjies )ho hyPer
nirial theorem for W. Or conversely, if tPp satisfie the

hypervirial theorem for W, then the energy is stationary
for a sari atiori as prescribed by Eq. (4).

Approximate wave functions can be selectively im-

proved by using the hypervirial theorem in the con-
verse sense. A parameter (or set of parameters) in the
approximate wave function can be adjusted so as to

"H. Hellmann, l'.znfuhrung in di e Quan/enchemie (Franz
Deuticke, Leipzig, 1937), p. 285; R. P. Feynman, Phys. Rev. 56,
340 (1934); and T. Berlin, J. Chem. Phys. 19, 208 (1951}.For a
related discussion, see A. A. Frost and P. G. Lykos, J. Chem. Phys.
25, 1299 (1956).

"A. C. Hurley, Proc. Roy. Soc. (London) A226, 170, 179, and
193 (1954), points out that the generalized Hellmann-Feynman
theorem is also satisfied by approximate wave functions which
do not depend upon the parameter a, so that Op/so=0 He used.
such "floating" wave functions to calculate molecular energies and
obtained results which were not encouraging.
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enable the resulting iso to satisfy the hypervirial theorem
for a particular W (or simultaneously, for a particular
set of W's). The resulting energy of the system is
stationary with respect to variations of the approximate
wave function of the form iPo+eiWPo so that the
optimum value of the parameter e is zero. Thus, the
choice of the 8"s determines in what sense the approxi-
mate wave function is improved.

It is easy to generalize our results so as to apply to
cases, such as the Hartree-Pock calculations, where
whole functions are determined on a variational basis.
If 8f = ei Wig is included in the set of possible variations,
then the energetic optimum fo satisfies the hypervirial
theorem for t/I/'.

A formal solution to Eq. (4) is, of course, "
P= exp(iaW/A)C,

where C is a function independent of a and where, in
order that this formal solution should be acceptable, f
must satisfy the continuity-boundary conditions as
given in footnote 5. In the next two sections, we de-
termine the exp/icit functional form of if for certain
special H/"'s.

Equation (6) leads to a simple criterion that the
energy corresponding to ao should not only be stationary
with respect to the type of variation indicated by Eq.
(4), but should actually be a miizimzzm. Writing iP in the
form /=exp/i(u —rzo)W/5)po and making use of the
unitary property of the exponential operator,

E= go, exp) —i(a—ao)W/IzjH

PL ( — )W/KA)/(if 4') (~)

Expanding the exponential operator in Eq. (7) in
powers of (a—ao) and making use of Eq. (2), we obtain

(rz —ap)'
8 o,9' LW»3]lt'o)/(lf'oA'o)+ . (g)

2A2

Thus the energy corresponding to Po is stable with re-
spect to the variation as indicated by Eq. (4) if

Qo LW LW»j)A) &0. (9)

111. THE SPECIAL CASE: W= ,'(Pf+fP)-
The most important class of hypervirial relations cor-

responds to setting W= ,'(pf+fp). Here-p= ()z/i)B/f)x
is the momentum operator corresponding to a Cartesian
coordinate x and f(x) is an arbitrary real function of x
and the other coordinates of the system, which need
not be indicated explicitly. The f(x) should not involve
any momenta. For this case,"8' is most conveniently

"If, in place of Eq. (4), we had assumed that BP/Ba =Wg, then,
instead of the hypervirial relation, we would have obtained the
following equation which is satisfied by the optimal function,

(Po,WZ&o)+ (&go,IiWiPo) =2E(iso,W&o).

In this case, the formal solution is P exp(aW)Ci.
"The generalization to orthogonal curvilinear coordinates is

given in Appendix I,

(~/d'a) (f'0) = (~/~S) (f0)
The general solution to Eq. (12) is

P(x,a) =f :(x)o—(a+S(x))

(12)

(13)

Here 0' is an arbitrary function of rz+S(x).
Let us define the new variable a(x,cz) by fIze require

@seel that as
a ~ 0, o (x,a) —+ x, (14)

azzd by either of the eqzzztalezzf relatiols

f)o/r)a= f(o),

S(o)=a+S(x).

Equation (13) can then be written in terms of o,

4(x &) =f*'( )af '*(x)C'(a)

Moreover, the Jacobian of the transformation from o.

to xis
Ba/Bx= f(a)/ f(x)

Thus, P is derived from C by the point transformation" "
x ~ o.(x,tz). This is indeed a generalization of the coordi-
nate scaling in the case of the usual virial theorem for
which (in one dimension) f(x) =x, S(x)=log, ~x~, and
o (x,a) =xe'.

The idea of using a point transformation to improve
approximate wave functions is not new. Both I.owdin"
and Hall'~ have used point transformations to improve
atomic wave functions. However, their transformation
functions were not derivable from the hypervirial rela-
tions and, as a result, they experienced considerable
difficulty in optimizing the energy.

Only a very limited class of functions can satisfy
our definition requirements for the transformation func-
tion o.(x,a). Indeed, it would be difficult to select, at
random, a function o (x,a) whose partial derivative with
respect to a is a function only of 0. and does not other-
wise involve either x or a. Although any function f(x)

'4 An alternate derivation of Eq. (16) is given in Appendix II
which exhibits this point transformation from the outset."B.S. DeWitt, Phys. Rev. 85, 653 (1952), discusses the rela-
tionship between point transformations in quantum and classical
mechanics."P.0, Lowdin, Proceedings of the Eikko Symposzlm orI Molec-
&cfar Physics (Maruzen Ltd. , Tokyo, 1954), p. 116.

'r G G. Hall, Proc. Phys. Soc. (London) 75, 575 (1960). Hall
used the radial coordinate transformation function,

written in the form W= (fi/i) f~(r)/rfx) (f') so that
Eq. (4) becomes

f)P/r)a =ff8 (ffg)/f)x.

Multiplying Eq. (10) by f' and changing variables
from x to

S()= I' "/f("),
we obtain
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will generate a transformation function (for at least
some values of a and some values of x) most of these
o's have pathological properties'8 (such as discontinui-
ties and values of x for which o is not defined) which
make them unusable for our purposes.

For the most satisfactory transformations, o(x,a)
and Bo/Bx are continuous functions of x and, also,
o (x,a) should be a monotonically increasing function of
x and have the same range as x, that is, from —~ to ~.
In this case, the transformation x~ o (x,a) is a simple
1-1 mapping and it is clear that if C(x) is a suitable
trial wave function, then P(x,a) is equally suitable.
One example of this class of transformations is

o (x,a) =xo+sinh 'Pa+sinh(x —xo)7, (19)

which results from taking

S(x)= sinh(x —xo) or f(x) = 1/cosh(x —xo). (20)

Another equally satisfactory transformation function is

$~(x,a)7'=Ei -' fa+Ei(x')). (21)

Here Ei' '&(z) is the inverse of the exponential integral
Ei(s). This transformation results from

S(x)=Ei(x') or f(x) =—,'x exp( —x'). (22)

The sufficient conditions for the function f(x) to
generate satisfactory transformations are:

(1) f(x) is continuous and finite for finite values of x.
(2) At any point xo where f(xo) =0, df/dx is zero or

finite.
(3) f(x)/x is finite or zero as x —+ &~.

With these conditions it is easy to discover a wide
variety of satisfactory transformations.

Sometimes it is desirable to confine the distortion of
the wave function to a specified region of space. For
example, suppose that it is desired to leave the wave
function undisturbed for values of x greater than x~.
This may be accomplished by selecting a function f(x)
such that f(x) and df/dx approach zero as x —&xi.
Then at xi, o =xi and Bo/Bx=1. Thus, a physically
satisfactory transformation would correspond to using
such a function f(x) for x&xi and f(x) =0, correspond-
ing to 0=x, for x&x~.

It is also possible to use the 1-1 transformations which
result from the satisfaction of conditions (1) and (2)
but not (3). In this case, the —~ to oo range of x is
mapped into the —n(a) to P(a) range of o (x,a). How-
ever, the C (o.) is required to be identically equal to zero
outside of the range —n'&o. &P', where n'&n(a) and
P'&P(a) for the desired range of values of a. In order
that C (o) should satisfy the requirements for an accept-
able trial wave function, both C (o) and its first deriva-
tive must approach continuously the value of zero in
the vicinity of both o.=n' and o =P'. The method of

' Some topological observations regarding the transformation
functions and their properties are given in Appendix III.

convolutions" can be used to construct approximate
wave functions which satisfy these boundary conditions.
A typical example of this type of transformation is

~—x(1+(x/b) n—17- /i(n i)— (23)

Here, n is an odd integer and b" '= —1/a. This trans-
formation is generated by f(x)=(n 1)x—", for which
S(x)= —1/x&" ".In this case, n(a) =P(a) = b

The analysis in this section is not limited to one-
dimensional problems. In a many-dimensional problem,
the x would represent the jth Cartesian coordinate and

p would be the corresponding momentum. The f(x)
might represent a function of all of the coordinates and
S(x) becomes the integral of 1/f(x) over the coordinate
x; (holding all of the other coordinates constant). Thus,
0- can involve all of the coordinates. For example, in
the transformation given by Eq. (19), the xo might be
a function of all of the coordinates except x;. The func-
tion f(o)is the s. ame as f(x) with the exception that
wherever x; occurs it is replaced by 0-. The same inter-
pretation is to be placed on C (o.).

The special case of spherical coordinates" with
W= (f'/r) (5/i) (8/Br) (rf1) merits special att:ention.
Here f is a function of r, 8, and p. Defining o- again by
Eqs. (11), (14), and (16), with the exception that now
r everywhere replaces the variable x, the approximate
wave function can be written in the form

P(r,8, p; a) =r 'fl(o, 8,q)f I(r,8, y)C (o,
—
8, q) (24).

For the most satisfactory transformations, o(r,8, y; a)
and Bo/Br should be continuous functions, and also
o-(r,8,q) should be a monotonically increasing function
of r and have the same range as r, i.e., from 0 to ~.
With this simple 1-1 mapping it is clear that if C (r,8,q)/r
is a suitable approximate wave function, then $(r,8, rp; a)
is equally suitable. This type of transformation is
generated by functions f(r,8, y) which satisfy the condi-
tions: (1) f(r) is continuous and finite for finite values
of r; (2) At any point ro where f(ro) =0, 8f/Br is finite
or zero; (3) f(r)/r is finite or zero both in the limit as
r —+0 and as r —& ~. One example of this type of
transformation is

2~= (a+r nr ')——

+Pa'+2a(r o.r ')+ (r—+nr—')'71. (25)

o.=Ei' "(a+Ei(r)). (26)

Here again Ei~ "(z) is the inverse of the exponential
integral Ei(z). This transformation is generated by
f(r) =re ' or S(r) =Ei(r).

~9 J. O. Hirschfelder and G. V. Nazaroff, J. Chem. Phys. 34,
1666 (1961).

Here n is positive and either a constant or else a function
of 8 and y. This transformation is generated by f(r,8, p)
=r'(n+r') ' or S(r,8, p)=r ~r '. Another example i—s
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/=Ps ~ A n q s ~ exp(iW'a/h), (33)

IV. OTHER SOLUBLE W's write down any number of particular solutions of Eq.
(A) The analysis of the last section is readily ex-

tended to the case
n

W=2 Q (puffs+ feps),
Ic 1

(27) where the constants A n are independent of a and other-
wise arbitrary.

where now fs depends only on xz (and, if the system is
more than e dimensional, on the coordinates not repre-
sented in the summation and which are not indicated
explicitly). One easily ascertains that the solution in
this case is'"

V. SIMULTANEOUS HYPERVIRIAL THEOREMS

We wish to satisfy the two hypervirial relations

(&pe, t H, Wi)fs) =0 and (lt'2, LH, W2)fo) =0 (34)

P(xi, , x„;a)

f2'(~2) fs '*(xs) c(ai, , ~.), (28)

simultaneously (the generalization to more than two
will be obvious). Then we may introduce, possibly
among others, two variational parameters a~ and a2
such that

Bf/Bar (i/h)——Wgf and B$/Bas ——(i/h) WsiP. (35)
where o.

& is defined by the requirement that as

a-+0, rA, —+Xp,

S2(as) =a+S2(xe), (30) P= exp(iaiWi/h) exp(ia2W2/h)C (36)

Hence, we must solve the pair of equations (35)
(29) simultaneously. If Wi and W2 commute, the solution is

simple, namely

Se(x2) = dx'/f2(x').

The usual virial theorem, for which f2=xs, $2(xs)
=log, ~x2~, and o2 ——x2e, is an example.

(B) The explicit functional form of the solution of
Eq. (4) is known to be for W a quadratic function" of
the P& and xs. In this case, P and C are related, by an
integral transform. However, if the W does not contain
any terms linear in the p& so that W is real and invariant
with respect to time reversal, as noted in Sec. I, the
hypervirial theorem is satished by any real trial function.

(C) The case where W = f(xi, , x„)yields a simple
gauge transformation

where the
S;(~,) =a;+S(x;),

and the S, are related to the f, as before.
We now turn to the case where the W~ and W2 do rot

commute. In this case we do not know how to a priori
select both W~ and W2 and obtain a formal trial
function such that the function which results from
optimizing ai and a2 satisfies Eq. (34). Indeed, if Wi
and W2 were independent of the variational parameters,
then one readily sees that the two relations of Eq. (35)
are not integrable, since B2$/BaiBa2 would not be equal
to B'2P/Ba2Bai. However, if we let W2 be a function of
u&, we can obtain hypervirial theorems for 5'& and
W2(aio), where ais is the oPtimum value of ai. The
W2(ai) is given by

P(xi, . , x„;a)=exp(iaf/h)4(x. . ..x„). (32)

However, as noted in Sec. I, the hypervirial theorem for
this 8" is trivially satisfied by my real trial function.

(D) Representing the wave function in momen-
tum, rather than coordinate, space, it follows that
W=-'2+2 (x2gs+g2xs), where the g2 is a real function
of p2, generates a point transformation in momentum
space. Also, W=g(pi, , p„) generates a gauge trans-
formation in momentum space

(E) In our discussion we have been concerned with
the determination of general solutions to Eq. (4) in
closed form. However, it should be noted that there are
many S"s for which, although we cannot find such a
closed form, we can find some, or all, of their eigen-
functions: Wy~ ——W'p~. If this is possible, we can

W2(ai) = exp(iaiwi/h)W2 exp( iaiW, /h—) (39).
Here Wi and W2 are independent of the variation param-
eters and hence can be selected a priori

Clearly, from the discussion of Sec. II, Eq. (34) is
satisfied with W2 replaced by W2(a&s) if Eq. (35) is
satisfied with W2 replaced by W2(ais). But from Eq.
(39) we readily see that the relations of Eq. (35) are
now integrable and have as their solution

iP(x ' al a2) =exp(iaiWi/h) exp(ia2W2/h)C (x)
=exp(ia2W2/h) exp(iaiWi/h)C (x). (40)

'~ Note added crt proof. The generahzation corresponding to f2
an arbitrary function of the coordinates is considered in a forth-
coming paper by J. O. Hirschfelder and C. A. Coulson in J.
Chem. Phys.

22 M. Kolsrud, Phys. Rev. 104, 1186 (1956).
To summarize: If me use a trial functi on of the form giwn
by Eq. (40), then the optimal furtction satisfies the hyper

In particular, if W;=22[P;f, (x;)+f, (x;)P.,j, then
(31)

1$(xi,x2 i ai)a2)
=fi'(&i)f2'(a2)fi '(»)f2 '(x2)c'(~i&~2)~ (37)
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nirial theore~ for Wi grid W2(gto). Note also that

W, (at) =W2(x,p),
where

(41)

be extended by noting that if x and p are related to x
and p by a unitary transformation, then

W= ~ P P~fk(*~)+fa(*~)p~$ (44)
x=exp(iatWt/k)x exp( i—aiWt/It),

(42)
p= exp(iatW&/A) p exp( i—atWt/I't )

As an example, let Wi ——~$pfi(x)+fi(x)pj and
W2= ~ Lpf2(x)+ f&(x)pj. Then the first hypervirial leads
to the point transformation x-+ o.i(x) and the second
leads to the transformation oi(x) ~ o.2(at(x)). Thus,

$(x 81 G2) eXp(LG1W1/5) eXp(tG W2/A)4(x)

f t(~ (t)x)f 2C~2(~t(x)))
e(~,( , (x))P. (43)

fi :(x)f.—:(--i(x))

VI. DISCUSSION

It is clear that one of the principal applications of the
hypervirial relations will be to selectively improve atomic
and molecular wave functions in regions of con6gura-
tion and momentum space which are important for
determining the expectation values of specific physical
problems. Thus, many of the variational parameters in
the trial functions will be determined by the require-
ment that an appropriate set of hypervirial relations
be satisfied. ."Hypervirial relations which are designed
to improve the electron correlation would be most
useful.

As mentioned in connection with Eq. (5), the gen-
eralized Hellmann-Feynman theorem" is applicable to
approximate wave functions which satisfy certain hyper-
virial relations. However, we do not know how to select
the operator TV so as to insure that the approximate
wave function will give the correct dependency of the
energy on the Hamiltonian parameter. Good approxi-
mate wave functions which satisfy the Hellmann-
Feynman theorem would be very useful in the cal-
culation of intermolecular forces, chemical binding
energies, etc.

The hypervirial relations may also be useful in varia-
tional approaches to meson theory" and we (S.T.E.)
hope to initiate some research along these lines.

Further, it may be of interest to indicate some possible
generalizations of our results. One obvious generaliza-
tion would be the introduction of spin and relativity
(the Pauli and Dirac equations). The formal results of
Sec. II would still apply and the essential problem would
be the determination of the soluble W's. Quite apart
from spin and relativity, the class of soluble H/"s may

~' If the trial function has the form It = c;Z j;, where the p; are
known functions, then the satisfaction of a set of hypervirial
relations leads to a set of simultaneous quadratic forms which
must be solved for the coeKcients c;, g;, ;c;c;J;;(k)=0 with
k =1, 2, ~, n. If e is three or more, it is dificult to determine the
coeKcients. An improved procedure for numerical calculations is
needed.

2' S. Fubini, Nuovo cimento 3, 1725 (1956l and Suppi. Nuovo
cimento 14, 283 (1959) used hypervirial theorems to derive various
exact results in axed-source meson theories.

APPENDIX I. GENERALIZATIONS TO ORTHOGONAL
CURVILINEAR COORDINATES

I et us consider a set of generalized orthogonal coordi-
nates q; and their corresponding metric scale factors g;.
It is convenient to let g=g~g2 ~ . The most important
class of hypervirials corresponds to W=-,'(p&f+fp&),
where Pi, ——(5/i)(8/BtII, ) is the operator for the kth
generalized momentum and f may be a function of all
of the coordinates. In the following development, only
the qI, is indicated explicitly. In order that 8' be
Hermitian, it should be expressed in the form

W= (fig) '*(&/~) (~/~a~) (f'g*' ). (A.1)

The derivation of the explicit solution to Eq. (4) is
very similar to that which was given for the Cartesian
coordinates. Thus,

&(c~,~)=g 'f'(~)f '(c~)c'(~) (A.2)

The definition of the transformation function 0 is the
same as in the Cartesian coordinate case, with the
exception that qI, replaces x. The most satisfactory
transformation functions are continuous monotonically
increasing functions of ql, and have the same range as qA, .
The transformation ql, —+ o-, in this case, is a simple 1-1
mapping and if g &C (tii) is a suitable trial wave func-
tion, |P(qq, u) is equally suitable.

23 S. Ehrenson and P. E. Phillipson, Bul.l. Am. Phys. Soc. 5, 155
(1960).

generates a point transformation in x space. In particu-
lar, as we have already remarked, W=-', P Lx&gk(pk)

+g~(p~)xi) generates a point transformation in mo-
mentum space.

It would be useful to establish the conditions for the
validity of "off-diagonal" hypervirial theorems. "That
is, if X~ and X2 are exact wave functions, then

(Xt,LH, W]X2) = (Et—E2)(xi,WXg). (45)

Under what conditions would Eq. (45) apply if zt and
X2 were replaced by approximate wave functions and
the E'& and E2 were replaced by the corresponding
variationally determined energies?

Finally, there are a wide variety of generalized hyper
retrial thearems of the form

(+oP'C~ WjJA) = o

where F, G, and J are functions (or possibly func-
tionals) of H. Furthermore, G and W are Hermitian.
Obviously, any true (bound state) eigenfunction of the
Hamiltonian satisfies Eq. (46) for arbitrary F, G, J, and
S'. Thus, some of the parameters in an approximate
wave function might be adjusted by requiring the satis-
faction of such generalized hypervirial relations.
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The hypervirial relations, corresponding to the 5' of
Eq. (A.1), can be expressed in a very significant form'i
if g is real,

I f4', (Htt/tt) I
=0.

aq~ )
(A.3)

The derivation of Eq. (A.3) is easy. Since H and tl are
real, 8' is pure imaginary, and H and TV are Hermitian,

(P,HWP) = (HP, Wf) = —(WP, HiP) = —Q,WHQ). (A.4)

Thus, for this case, the hypervirial relation becomes

APPENDIX II. ALTERNATIVE DERIVATION
OF EQ. (16)

We will use a one-dimensional notation throughout,
indicating the generalization to more than one dimen-
sion at appropriate points. We use the Dirac notation

~

B=B') to denote an eigenket of the operator B, with
eigenvalue B'. Since B~B=B')=B'~B=B'),we have

C(x') =(x=*'iC),
P(x',a)=(x=x'~exp(iaW/It) ~C)=(XU ——x'~C),

(8.1)

where

(f,$H, W]P) = 2(HQ, W@)=0. (A.S) Xo——U 'xU, U=exp(iaW/It). (8.2)

But, from Eq. (A.1) it follows that

8
W~t = (2gtl') ' (fgP).

gI

Substituting Eq. (A.6) into Eq. (A.S),

(A.6)

So far this has been quite general. Now let us assume
that U generates a point transformation, i.e., that XU
depends only on x but not on p, and indeed that this is
a transformation which provides a simple 1-1 mapping
with Xp being a continuous monotonically increasing
function of x. This implies that when XU has a sharp
value x', the x also has a sharp value; call it O'. Thus,
we infer that

I g V 'H0 (f6') I=o.
aqua )

(A.7)

Equation (A.3) results from Eq. (A.7) after integration
by parts. If P is the true wave function satisfying the
Schrodinger equation, Hf=EP, Eq. (A.3) would be
obviously true. Indeed, the hypervirial relation may
be obtained by inverting this derivation.

The Hamiltonian for a system of E particles each
having the same mass m is

(Xp=x'i =Ii'(x=o'i, (8 3)

where X is the normalization factor. To determine N,
we have

(Xo x'iXU ——x")=a(x——' x")=a(—a' ~") da'/dx'

= (x=a'i x= a")do'/dx'. (8.4)

From Eq. (8.4) it is clear that 1V= (do'/dx') l and hence

IP(x',a)=(d '/dx')(x= '~e)=(d '/dx')C( '). (8.5)

A2 3& 8 8Zg' gg
'

28$ i=& Bgz Bg~

Let us de6ne the hypervirial operator,

J(W) = (i/&) LW,Hj.

+V. (A.8)

dX p/dx= f(Xo)— (8.6)

For a point transformation in more than one variable,
the do'/dx' would be replaced by the Jacobian of the
transformation.

The only remaining problem is to determine o'(x').
With W= ,'(pf+fp), w-e find

Then, if W is a function of the coordinates, W= f, Thus,
EXP

ds/f(s) =S(X,) —S(x). (8.7)i7i » a af af a
J(f)= E g' gg ''-+2g '

28$ ~=& Bg, Bg~. . Bg~ Bg~.

(A.9)

As a result, S(o-')=S(x')+a, and we have rederived
Eq. (16). For a point transformation in more than one
variable, Eq. (8.6) would be replaced by a set of first-
order partial differential equations.

If, on the other hand, W is given by Eq. (A.1) and we
indicate this W by the abbreviation fp&, then

APPENDIX III. TOPOLOGICAL STRUCTURE OF
THE TRANSFORMATION

BU A' »
J(fpi,)=f — Q Bk,+ J(f) + J(t)—. (A.10)—

Bgy 28$ i=& z BgA, 2z

Here,

a a a agp' ) a
g

'
(gg ') +I I, (A11)

. aq, aq,
'

aq& ( aq& ) aqui'

and the J(t) is the same as the J(f), except that f is
now replaced by t=g '(a/aqua, )(fg)

24 This is a generalization of a derivation given by M. S. Wert-
heim in reference 2.

Let us make some observations regarding the topo-
logical structure of the x —+ o.(x) transformations which
can result from the defining equations for 0.. Depending
upon the generating function f(x), the o can have a
rather wide range of behavior. For present purposes,
let us focus our attention on S(x).

1. If S(x) is a continuous monotoiiically increasing

flection of x, then, for those values of x for which o (x)
is defined, o (x) is also a continuous monotonically in-
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creasing function of x. For this case, f(x) cannot be
negative. At points where f(x) =0, S(x) has an inflection
point with dS/dx= oc. At points where f(x) = oc, S(x)
has an inQection point with dS/dx=0. Furthermore:

(a) If S(x) is bounded, and if (a~)S(oe)—S(—oe),
o.(x) is not defined for any value of x. However, if a is
positive and less than S(~)—S(—oe), there is a maxi-
mum value of x above which no value of 0- is defined
and there is a finite lower limit for 0- corresponding to
x= —oo. For a negative and —a(S(oe) —S(—~), the
o- is not defined for x less than a lower limit, and o.(oo)
is 6nite.

(b) If S(oo ) = ~ and S(—~ ) is bounded, for positive
values of a, there exists a value of o. corresponding to
each value of x, but o (—~) is finite; for negative values
of a, there is a smallest value of x for which o- is de6ned.

(c) If S(oc)= ~ and S(—oc)= —~, for all values
of g, cr is defined for all values of x. Furthermore,
o(oo)= oo and o(—oc) = —oo.

2. If S(x) has a finite maximum at xp, then since
dS/dx= 1/f(x), the function f must have an infinite
discontinuity at xp sllcll that x ~xp, f(x) ~ oe and
x+ —o xp, f(x) ~ —oe. The situation is quite dependent
upon the sign of a. If:

(a) a is positive, there may be a gap in the values of
x for which 0. is defined. Also, there may be a range of x
for which r is double-valued. The multivalued mature

of o. can generally be resohed by introducing the re-
quirement that o(x.) —+x as a —+0. In this case, the
branch with o(x)(xp would be associated with x(xp
and the branch with o(x))xp would be associated
with x&xo.

(b) a is negative, o- may be double-valued for a range
of x in the vicinity of xo. Introducing the requirement
that o-(x) —+x as a —+0, leads to the resolution: For
x&xo it is the lower branch of 0. that we shouM use,
whereas for x&xo it is the higher branch. Thus, at xo

there is a discontinuity in the value of 0-.

3. IfS(x) has a singular point at xp, then" f(xp) =0.
In this case, there may be no connection between the
integral defining S(x) for x(xp and the corresponding
integral for x)xp. Thus, o.(x) may have diferent
functional forms on the two sides of the singular point.
However, o'(xp) =xp, so that the presence of singular
points in S(x) need not introduce discontinuities or
singularities in o (x).

oo If f(&o) =0, S(xo) need not be singular.


