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Dynamical Theory for Strong Interactions at Low Momentum Transfers
but Arbitrary Energies*
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Starting from the Mandelstam representation, it is argued on physical grounds that "strips" along the
boundaries of the double spectral regions are likely to control the physical elastic scattering amplitude for
arbitrarily high energies at small momentum transfers. Pion-pion scattering is used as an illustration to show
how the double spectral functions in the nearest strip regions may be calculated, and an attempt is made to
formulate an approximate but "complete" set of dynamical equations. The asymptotic behavior of the
solutions of these equations is discussed, and it is shown that if the total cross section is to approach a
constant at large energies then at low energy the S-dominant 77m. solution is inadmissible. A principle of
"maximum strength" for strong interactions is proposed, and it is argued that such a principle will allow
large low-energy phase shifts only for l ~& 1, , where I „~1.
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I. INTRODUCTION

'HE power of the Mandelstam representation as a
basis for a dynamical theory of strong inter-

actions is now widely recognized. ' Chew and
Mandelstam showed how the representation leads to a
one-parameter theory of the pion-pion interaction if at
low energies only the 5-phase shifts are large. ' The
basic approximation used by these authors, as well as
by Cini and Fubini, was to represent absorptive parts
by the leading terms in a polynomial expansion or,
equivalently, to replace double dispersion integrals by
single integrals. This procedure can be justified when the
only strongly scattered J values are 0 or —,', but when
states of higher J interact strongly at low energies, it
is not possible to ignore the two-dimensional nature of
the dispersion integrals in a consistent dynamical

approach. If one does, the asymptotic behavior of the
amplitude becomes distorted in a manner convicting
with unitarity. 4 The same difhculty appears in the x-S
problem' and presumably in all other strongly inter-
acting combinations. It is a diKculty that cannot be
ignored, since nature has chosen to give us a J=—,

' x-X
resonance, a J=1 S-E bound state, and very possibly
a J=1 m-m- resonance. ' In this paper we describe the
beginning of an attempt to understand the dynamical
role of the double spectral functions with respect to
low-energy resonances and bound states. In so doing
we find ourselves immediately involved in a considera-
tion of total cross sections and diGraction scattering at
very high energies. Indeed, it will be seen that if one
can make a consistent theory of low-energy phenomena,
such a theory automatically covers low-momentum
transfer eGects at arbitrarily high energies.

We employ the m.-x interaction as the basic illustra-
tion for our approach, but the essential aspects may be
generalized. For a preliminary orientation, consider the
Mandelstam diagram7 in Fig. 1 for one of the three
independent x-x amplitudes as a function of s, t, and N. '
The physical regions for the three different channels are
labeled by that variable which is the square of the
energy for the channel in question, while the shaded
areas are the unphysical regions in which the double
spectral functions fail to vanish. The six numbered
strip regions are of central importance in our approach.
We shall argue (a) that these double-spectral strips
dominate those parts of the physical regions which lie

FIG. 1. The Mandelstam diagram for 7l-m scattering.
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The notation and units (e.g. , ns =1) of reference 2 are used
here. It is assumed that the reader is familiar with the concepts
introduced in this reference as well as in reference 1.
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in strips of comparable width along the boundaries,
and (b) that the "strip" double spectral functions can
be calculated through relatively tractable elastic uni-
tarity conditions. Thus we are proposing a theory not
only for low energies but also for arbitrarily high
energies at low momentum transfer. The quantitative
reliability of the approximation formulated here is
uncertain; it may turn out that one needs to calculate
the second strip (between 16m ' and 36m ') more
carefully than proposed here in order to achieve an
accurate theory. We feel con6dent, however, that the
general approach is sound and that much will be learned
by studying the erst strip in detail.

The physical motivation for the strip approach lies
in two well-established general features of strong inter-
actions: (a) the existence of large phase shifts at low
energy in states with J)—,'; (b) the occurrence at high
energies of forward diBraction peaks, showing a strong
concentration of the imaginary part of the amplitude
for momentum transfers &4m . Even though no direct
observations of m-m scattering have been made, we shall
assume that these two general features are shared with
x-X and Ã-X scattering.

Dealing erst with the low-energy question, we recall
that the imaginary part of the amplitude in the s
physical region of Fig. 1 is

1 t' p„.(u', s) 1 t' p.~(s,t')
i du' +— dt', (I-1)

u' —u s. & t' t
'—

p, ~(s,t) ~t ~'~, where $Renf (I-2)

9 There exists much confusion about the meaning of subtractions
in the Mandelstam representation. In this paper we mean by a
"permissible" subtraction one that is also "necessary, " and vice
versa. That is to say, a permissible subtraction term in our sense
is independent of the behavior at infInity of the dispersion integral
that remains; if it is directly correlated with the remaining integral
by asymptotic conditions imposed by unitarity on the full ampli-
tude, then the subtraction is not necessary inasmuch as it is
uniquely determined by the double spectral function through
analytic continuation (see Froissart, reference 4).

apart from subtractions (or in other words, single-

spectral functions). It appears necessary and permis-
sible' to subtract from (I-1) the S-wave imaginary part;
however, one may not treat I' or higher wave parts as
independent of the double spectral functions without
developing asymptotic trouble, as shown by Froissart
and by Chew and Mandelstam. 4 Thus, if large phase
shifts occur for 0&l&~ l at low energy we require that
the partial wave projections of (I-1) be large for l~& 1,„
over an interval of low s, while the projections for l&l
are small.

Now, what behavior of the double spectral functions
at low s could give a sudden decrease in the order of
magnitude of the partial-wave projection in going from

t„ to l +13 A simple guess is that for t large compared
with the lower limit of the integrals we have

with a similar behavior for p„,. Then, since

~+1
d cos8 P~(cose) Lt'+2q'(1 —cose)j ' q"/t"+'

g floss

the order of magnitude of the low-energy phase shifts
for /) fRen), „will be determined by the lower limits
of the dt' and dN' integrals, i.e., by the "range" of the
interaction. For l((Renj, however, the lower limit
is of secondary importance and the contributions from
high values of t' and e' determine the magnitude of the
phase shifts. (On the basis of analogy with nonrelati-
vistic potential scattering, one expects, as explained
in Sec. V, oscillations arising from Imo, and these per-
mit the integral to have a meaning. ) Thus we arrive
at the tentative and qualitative conclusion that the
existence in the s channel of low-energy resonances
(or near resonances) for J~&1 requires the strip regions
Nos. 1 and 4 in Fig. 1 to be important out to large values
of t and e, respectively.

If strips No. 1 and No. 4 are important, it follows
from the substitution law that strips Nos. 2, 3, 5, and 6
are also important. How can we argue, however, that
the interior regions of the double spectral functions are
less important' These regions have no direct connection
with low-energy resonances, but one would like dehnite
evidence that the double spectral functions become
systematically less important as one moves in direc-
tions perpendicular to the boundaries. Such evidence is
furnished by the forward diffraction peaks at high
energies. Referring again to (I-1), we see that the con-
centration of the imaginary part of the amplitude in the
region —20& t&0 when s is large implies that the most
important part of the dt' integral is for t'&20, which is
just strip No. 2 of Fig. 1. If the interior regions of p, &

were of major importance, it would be dificult to under-
stand the sparsity of large-angle elastic scattering at
high energies.

This line of argument leads one to expect in general
a backward elastic peak at high energies due to strip
No. 3, although there are reasons why backward peaks
may be less prominent than those in the forward direc-
tion. We are not arguing here, of course, that a knowl-
edge of the strip double spectral functions is sufhcient
to describe what happens in the interor of the physical
region at high energies (e.g. , at angles =90' in the
barycentric system). This domain lies outside the
present scheme of approximation; it also happens to be
a region about which almost nothing is known
experimentally.

In the following two sections, formulas originally
derived by Mandelstam' and obtained through an in-
dependent method by Cutkosky" are adapted to the
calculation of m-x double spectral functions in the strips,
and we write down suKcient additional formulas so as

'0 R. Cutkosky, Phys. Rev. Letters 4, 624 (1960) and J. Math.
Phys. 1, 429 (1960).
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(a) (b)

unitarity condition. ' If for each channel we decompose
the absorptive parts into elastic and inelastic compo-
nents and make a corresponding decomposition of
the contributing double spectral functions, then
Mandelstam's formulas are exact for the elastic part of
the double spectral functions. In other words, the
Cutkosky diagram Fig. 2(b) represents the complete
p«"('), and Cutkosky's formula for this diagram" is
exactly that given by Mandelstam. The basic approxi-
mation of our method occurs in the calculation of the
inelastic part: What we call the "strip approximation"
is the assumption that

in (a) p
el ( f,) etc.

FIG. 2. The two Cutkosky diagrams needed to calculate the
double spectral functions in the strip reins.

to achieve a "complete" set of dynamical equations.
Section IV then deals with the iterative solution of these
equations in the S-dominant case, which is shown to be
physically uninteresting because of the total-cross-
section behavior at high energies. In Sec. V the interest-
ing case of a constant high-energy limit for the cross
section is discussed in a tentative way.

Before we proceed to detailed matters, it is appro-
priate here to relate our approach to ideas recently
expressed by Salzman and Salzman" and by Drell" as
well as by Berestetsky and Pomeranchuk. " If we
continue to focus attention on the s physical region of
Fig. 1, the double spectral function in strip No.
corresponds to diagrams in which only two particles
are present in intermediate states but any number may
be exchanged. In other words, this piece of p, ~ is cal-
culated from the Cutkosky diagram" shown in Fig. 2(b)
and represents purely elastic effects in the s channel.
On the other hand, the piece of p, ~ in strip No. 2 is cal-
culated from diagram 2(a), in which any number of
particles is allowed in intermediate states but only two
are exchanged (it is elastic in the t channel). Obviously,
then, we are calculating here the diRraction scattering
associated with inelastic transitions in which a single
pion is exchanged. This is the mechanism of Salzman
and Salzman, Drell, and Berestetsky and Pomeranchuk
although our method of calculation is quite different.
We believe that the Mandelstam-Cutkosky approach
through the double-spectral function is more syste-
matic, since it raises no questions it cannot answer about
cross sections in unphysical regions. It may lead to very
diferent numerical results.

This formula is exact in the strip region, 4&t&16, but
for t) 16 there will be additional contributions to p, &'"(').

Because of the great symmetry of the ~-x problem,
only three independent elastic double-spectral functions
are required to describe the three amplitudes A, 8, C
of reference 2. We shall call these functions pr s s(x,y),
where by convention the erst variable is associated
with that channel for which p is the elastic part of the
complete double spectral function. In Fig. 3 the assign-
ment of p~ 2 3 appropriate to the amplitude 8 is shown.
A and C may be obtained by the usual substitutions, '
which maintain the relative orientation of p~ 2, 3 but
exchange the channel labels.

The Mandelstam formulas for p~, 2, 3 involve three
linearly independent absorptive parts which we shall
designate by I&,&, s(x,y). Here the first variable corre-
sponds to the channel for which I is the actual im-
aginary part in the physical region, while the second is
a particular choice of one of the remaining two linearly
dependent variables. We make the choice so that we
have

A, (S,t,u) = Ir(s, t),
B,(s,t,u) =Is(s, t),
c,(s,t,N) =l, (s,t).

IL EQUATIONS FOR THE DOUBLE
SPECTRAL FUNCTIONS

In his erst paper Mandelstam derived formulas for
double spectral functions on the basis of the elastic

Physic aI

"F. Salzman and G. Salzman, Phys. Rev. Letters 5, 377 (1960)."S.Drell, Phys. Rev. Letters 5, 342 (1960).
'3 V. Serestetsky and I. Pomeranchuk, ProceeCkngs of the 1960

Anna/ international Conference on High-Energy Physics gt
Rochester (Interscience Publishers, New York, 1960), p. 333.

FIG. 3. The assignment of the three independent elastic double-
spectral functions to the amplitude J3 of reference 2. A is obtained
by interchanging s and t and C by interchanging t and u.
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We may note
Ir(x,y) = It(x, 4—x—y),
Is(x,y) =Is(x, 4—x—y),
Is(x,y) =Is(x, 4—x—y).

In terms of these absorptive parts, the Mandelstam
equations' for pi, 2, 3 turn out to be as follows, when

proper allowance is made for the normalization of

A, 8, C used in reference 2:

Is*(y',x) [-,'Is(y",x)+It (y",x)+Is(y",x)]+c.c.
»(x,y) =—[V'(V'+1)'] '

i
dy'dy"

lt" (x; y,y', y")

p&(x,y) =—[q (q '+1):] ' dy'dy" [Ir*(y',x)l&(y",x)+I&*(y',x)Is(y",x)]/Et(x; y,y'', y"),
7r

Ips(x, y) =—[q,(q,'+1)'*] ', dy'dy" [Er*(y',x)ls(y",x)+c.c.]/E'(x; y,y', y"),
7r

(II-6)

where

&(x y y', y")=y'+y"+y"'
—2(yy'+yy" +yY)—yy Y'/V'

g~ =ps 1.

The upper limits of the integrations over dt' and dt"
are determined by the condition K=0. Specifically, one
integrates only over that region for which

„y'y"
y&y'+y" + +2(y'y")'[(1+y'/4C')(1+y"/4V*')]'*

2
(II-S)

so that E is positive and vanishes only at the upper
limit. It is easy then to verify that pr s s(x,y) vanishes
for y&16x/(x —4).

We now need formulas for Ii,2, 3 in terms of p~, 2, ~.

Making a subtraction of the S-wave imaginary parts,
we And

1
Ir"(y x) = rs[lmA t'&'(y) —ImA t'&'(y)], &+— dx' pr(y, x')

x'- x x' —(4—x—y)

1 p 4tt 'q
(11-9)

2g„' E x' I
1 fI (y, x) =-,'[ImA &'&'(y)].,+— dx' p, (y,x')

1 1 ( 4q s)
X — in] ly

x' —x 4q' ( x')
1

+— ~ dx' ps(y, x')

1 ( 4gs)
X — lnj 1+

x' —(4—x—y) 4q„s E x') '

(II-10)
with Is"(y,x) given by (II-3).

ImA'"'(s) =,IA'"'(s) l'+I (V'+1)' ~ '"'(s)
(V'+1)'

(II-13)

where o.; t" r (s) is the inelastic partial-wave cross
section. Now, (II-13) cannot be satisfied unless we have

and

-""() & 1/4V. ', (II-14)

, ,( )r(s) = ImAitlr(s) & 1/q, s, (II-15)
V (V'+1)'

' V. A. Kolkunov, L. B.Okun, A. P. Rudik and V. V. Sudakov,
Proceedings of the 1960 Annzsal International Conference on High-
Energy Physics at Rochester (Interscience Publishers, New York,
1960), p. 24'tt.

In order to calculate the inelastic absorptive parts
we need the approximation (II-1), which leads us to

1
Ir'"(y, x) =- dx' ps(x', y) +

x' —x x' —(4—x—y)
(II-11)

1 t' pr(x', y) 1 t ps(x', y)I,'-(y, x)=-, ~ d*' ' —+-, *'—(4——y)
(II-12)

with Is'" given by (II-3). Whether or not the inelastic
S wave must be subtracted here is a point that will be
considered later. In general, if phenomenology is to be
introduced, these last two equations seem a logical
place. The double spectral functions occurring therein
are correct only outside a boundary calculated by
Kolkunov et a/. "which asymptotically approaches the
straight lines x'= 16 and y= 16. One may therefore wish
to add phenomenological contributions to the region
inside this boundary.

It should be realized that although unitarity is not
completely satisfied in our approximation the inelastic
absorptive parts are bounded if a solution can be found.
That is to say, for an individual partial wave in the s
physical region it follows from our equations that
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so if we succeed in finding a solution of our dynamical
equations we can be sure that our inelastic and total
cross sections have the proper upper bounds.

1
ImA""(s) = ~ dt

s(0 2q 2

XRe(Ir(t, s)+Is(t,s)+3Is(t,s)}, (III-1)

ImA(o)s(s) =
s(02' 2 j dt Re (1r(t,s)+Is(t,s)}.

It seems to us probably not important whether any
inelastic e6ects are included on the 5-wave right-hand
cut. At energies su%ciently high that inelastic scattering
becomes substantial, the S wave is unlikely to represent
a significant part of the over-all amplitude. It is
probably only in the low-energy elastic region that the
S wave must be treated accurately.

With no prejudice at this stage as to whether the
constant ) defined in reference 2 can be assigned an
arbitrary value in the present approach, we give here
for future reference the relations between X and a0, 2, the
S-wave amplitudes at the symmetry point, s= —', :

|'5) 2 t
~ (3) I:«' l)+» (

&2) ~ j &O)

1 t' gy+'sIn] 1——
[

'. (III-2)
t' —-', ( 3t']

It goes without saying that if all the equations set down

in this section and the last are satisfied we shall have a
solution with complete crossing symmetry.

IV. DISCUSSION OF THE DYNAMICAL EQUATIONS—
8-DOMINANT SOLUTIONS

IIL THE 8-WAVE OR SINGLE-SPECTRAL
FUNCTION

It is apparent that the problem of calculating the S
wave is distinct from that of all waves for J~&1, the
latter being obtainable by quadrature from the double
spectral functions once these are known. This distinc-
tion was recognized from the beginning by Mandelstam'
and is the basis for the S-dominant theory of Chew and
Mandelstam. ' We may, in fact, lean almost entirely on
the latter work in our handling of the S wave. There is
only one change to be made in the 1V/D technique de-
veloped in reference 2: We shall no longer make a
partial-wave expansion in evaluating the discontinuity
across the left-hand S-wave cuts, but use instead the
complete formulas,

The absorptive part I is I"+I'",where

and

, p(*',y)
I'"(y x) =—

~ dx'
x' —x

(~~-2)

I"(y x) =I""(y)+— dx' p(y x')

1 1 ( 4qs')—
X — »( 1+

~

. (1V-3)
ix' —x 4q& E x')

In I"the S wave has been subtracted out of the double
spectral function, and appears as a separate term I"&'),
which is to be determined by the procedure discussed in
Sec. III above. The absence of an S-wave subtraction
in I'" will be explained shortly.

We now wish to argue that I". plays the role of a
"potential". If we consider scattering by a superposition
of Vukawa potentials, "

U(r)= —
~t dy po(y)(e ""/r),

rigor, of how one might try to solve these equations and
what features we expect to arise in the solution.

A erst consideration is how many parameters the
theory contains. From conventional Geld theoretical
arguments, one would guess that the minimal set of
parameters includes the particle masses and one real
dimensionless constant such as X. Vnstable zero-spin
"elementary" particles of the Castillejo-Dalitz-Dyson
type" could also occur, but we shall assume that none
exist. It has been previously emphasized that no further
free parameters are permitted in a consistent S-matrix
theory of pion-pion scattering, 4 but in an incomplete
approach such as ours it may become necessary to
introduce additional, less fundamental, parameters to
represent the effect of regions where formulas (lI-11)
and (II-12) are not exact. On the other side of the coin,
we must keep in mind the possibility that physically
interesting solutions do not allow a continuous range of
X and that the value of this parameter may be uniquely
determined by requirements of consistency.

For reasons of simplicity isotopic spin and exchange
terms are ignored in the discussion of this section, since
these complications are inessential to the arguments we
shall make. The elastic double spectral function is then
given by

1 r I*(y',x)I(y",x)
p(x,y) = dy'dy"

irq. (q.'+1)'* j & E~(x; y,y', y")
(IV-1)

In Secs. II and III we have written down coupled "L «sti&lejo, R. H. Da1itz, and F. J. Dyson, Phys. Rev. 101.,
45' (1956).equations for the double sPectral function~. We now "H. g]angenbec)er, M. L. Go]dberger N. N. Khurie and

turn to a tentative discussion, making no pretense of S. B. Treiman, Ann. Phys. 10, 62 (1960).
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the nonrelativistic equations turn out to be identical
with (IV-1) and (IV-2) if we omit the factor (q,'+1)
from (IV-1) and replace I'(y, x) by the real function

pp(y). Our problem differs, then, in that it has rela-
tivistic kinematics and contains a complex energy-
dependent "potential, " allowing inelastic scattering.
Furthermore, our potential is not given at the begin-
ning but must be calculated in a self-consistent way
from the scattering amplitude.

It is known" that if the potential is considered as
given one may solve Eqs. (IV-1) and (IV-2) in terms of
a series of functions, each of which has its threshold
displaced from the preceding threshold and each of
which can be calculated by quadrature from functions
with lower thresholds. The possibility of this decomposi-
tion follows from the property (11-8) of the integration
region in (IV-1). Precisely, if we write

where
I&(y,x) =I"(y x) (IV-5)

(IV-6)

then for

u-(x, y) =
1 f

dy'dy"
7rq, (q,'+1)'* ~

Q I„.*(y',x)I„„(y",x)
n' =I

X
E'*(x; y,y', y")

(IV-7)

it is easy to verify that we have satisfied (IV-1) and
(IV-2) with

I'"(y x) = g I (y,x), I„(y,x) =0 for y(4e'.
n=2 (IV-9)

Thus the solution builds up, step by step, by a "boot-
strap" mechanism starting with the "potential, "
Ie~

One may in fact attach a direct physical signi6cance
to the individual terms I„.These are the contributions
to the absorptive part from intermediate states con-
taining 2e pions, " so 4mq, '(qP+1) '*1„(s,0) is the
cross section for a process leading to 2e pions. It is

perhaps puzzling that in our theory only pions are pro-

'~ In problems involving different quantum numbers, the inter-
mediate states are not necessarily restricted to 2n particles. For
example, in simple Yukawa potential theory II would represent
single-particle exchange and p„would represent n-particle
exchange.

p(x,y) = Q p„(x,y), p„(x,y) =0 for y&4rP, (IV-8)
n=2

aI1d

duced, since the basic approximation seems to allow

any inelastic process that can be achieved through single
pion exchange. Because of the bootstrap nature of our
equations, however, if we are to achieve production of,
say, EX pairs, we must start with the matrix element
for m+m —+ N+N. This latter process, however, cannot
be achieved through single pion exchange, so EN pro-
duction never gets started. The same statement may
obviously be made for other baryon pairs as well as for
ICE; thus if single pion exchange actually plays the
dominant role we have assigned it, then production of
particles other than pions should be small no matter
how high the energy.

It is possible to augment our double spectral function
with terms corresponding to single-baryon or single-
kaon exchange so as to generate production of baryons
and E mesons, and undoubtedly such a modification
will eventually be tried. Such terms occur only in the
interior region of the double-spectral function, however,
so it is not immediately apparent that at the same time
consideration need not be given to multipion exchange.

Even though our "potential" I&=I" is only deter-
mined a pos(eriori by formula (IV-3) we expect that for
small values of ) an iteration procedure will converge
rapidly because I"&') X' while p~) . Thus the "po-
tential" will be dominated by the 5-wave part of I',
with the higher waves constituting only a perturbation.
In fact the 5-wave dominates I"(f,s) at all t, and this
will be taken as the defining property of an 5-dominant
solution in our treatment of arbitrary energies, since it
leads to the characteristic features of the low-energy
5-dominant solutions studied by Chew et al.' In the
numerical calculation of Chew et aL the l=1 contribu-
tion alone was kept from the higher waves and with an
adiabatic increase of ) turned out to be negligible in
comparison to the 5 wave throughout the range of A. that
was physically interesting. This situation may change
for large X when all higher waves are included in our
present treatment, or it may change even for small X

if the iteration is begun with a "potential" that includes
contributions beyond the elastic 5-wave; these possi-
bilities are discussed in the following section. Here we
wish to make a negative argument that, from the point
of view which considers high-energy diffraction scat-
tering at the same time as low-energy elastic scattering,
5-dominant solutions are physically inadmissable.

Our argument is based on the asymptotic behavior
of I(t,s) for s=0 as t tends to infinity. If total and
elastic cross sections asymptotically tend to constants,
then since in the t channel

Iin(i 0) (i 4)/~)&i~(~)
16'

it follows that both I'"(t,0) and I"(),0) should increase
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linearly for large t. If the first diffraction peak ap-
proaches a constant width, this statement may be
extended to —20 m '&s&0, a circumstance noticed
independently by Gribov" and the present authors.
Gribov goes on to argue that a strict linear behavior is
difficult to reconnle with the unitarity condition in the
s channel and that the cross section probably decreases
asymptotically faster than ~ (lnt)

—'. We are inclined to
doubt such a circumstance (see below), but logarithmic
factors do not in any case affect our argument concern-
ing S-dominant solutions.

The argument is simply that if the S-wave dominates
I"(t,s) for all t then I"(t,0) cannot increase at infinity
because ImA, ti'&(t) is bounded by unity. The S domi-
nant case corresponds, then, to o"(t) falling off as t '.
Now, it might be argued that there could be S domi-
nance at low energies but not at high. However, if
I'"(t,s) is to go linearly with t for —20m '&s&0, then
according to (IV-2) and our assumption of strip domi-
nance there must be at least some values of x in the
range 4' '&@&20m ' for which the average behavior
(there may be oscillations) of p(x, y) is at least linear in

y. Then in (IV-3), according to the argument in the
introduction, the P wave would be expected to be im-
portant already at low energies.

Ke cannot be sure, of course, that there must be a
P resonance. However, the low-energy situation with a
double-spectral function that gives the required high-
energy limit in the crossed channel is certainly nothing
like that in the solutions found by Chew et al.' To be
more specific, when ) is small and there are no other
parameters, our starting term in I" is ImA, t101(t),
which behaves ~ (lnt) ' as t ~ ~ when calculated by
the N/D method in the purely elastic approximation. ' "
It has been shown by Gribov" that the successive
iterations p2, p3, . calculated from this starting term
will also behave ~ (lnt) '. According to (IV-6) and
(IV-9), I' (t,s) will have a similar behavior, provided
the sum over e does not go more strongly than an indi-
vidual term, so the inelastic S wave which is present i~
our new framework cannot be so large as to change the
asymptotic situation. Furthermore, it is easy to show
from (IV-7) that in any 6nite order, p„(a,y) ~, „x '.
There are two immediate consequences: the S-wave
term dominates I"(t,s) PEq. (IV-3)7, and I'" converges
without subtraction LEq. (IV-2)7.

In the following section we investigate the extremely
important possibility that the infinite sum over e may
in some cases behave asymptotically with a higher
power than any individual term. If iterations are made
starting with small ), such behavior is conceivable as
X becomes large if the double-spectral function ever

&g V. N. Gribov, Nuclear Phys. 22, 249 (1961).
"This special characteristic of the one-parameter 5-dominant

case was pointed out to us by K. Wilson. He has independently
formulated the same coupled elastic unitarity relations as ours,
I (Harvard University Physics Department, 1960) (to be pub-
lished) j and has llndertaken a numericral calculatiott. of the one-
par@meter .S'-dogpnant case.

grows to such a magnitude that its effect becomes com-
parable to that of the S wave. We believe that approxi-
mations made in the earlier work of Chew, Mandelstam,
and Noyes' did not give the higher waves a real chance
to grow and that the possibility of success for the
adiabatic approach must still be considered open. We
now turn to a possible mechanism by which the infinite
sum over e may lead to asymptotic behavior of a truly
strong-interaction type.

I(t,s)
g—+oo

(V-1)

where n(s) is real for s&4nt ' and for attractive poten-
tials increases with the strength of attraction. We
believe that we have found within the iteration scheme
a mechanism for such asymptotic behavior that applies
as well to the relativistic case. The mechanism is illus-
trated by the following example: Suppose that the
asymptotic behavior of the "potential" is given to be

(V-2)

where no is real and greater than ——,'. As discussed
below, such a factorability of s and t dependence is not
likely to be realistic, but it is easy to analyze. Carrying
out the kind of asymptotic calculations with (IV-1)
performed by Gribov'8 for the case where logarithmic
decrease is absent, we then find

(int) "—'
p„(t,s) ~ t ' p„(s), - (V-3)

(n 1)!—
where

with

n'=1
(V-4)

(int)" '
I,„(t,s) ~ t™0 -I„(s).

(tt —1)!
"T.Regge, Nuovo cimento 14, 951 (1959); 18, 947 (1960).

(V-5)

V. THE STRONG-INTERACTION LIMIT

One may adopt at least two different points of view
about the strong-interaction requirement that I(t,s)
should increase linearly (or almost linearly) for large t
if s is fixed in the region —20m '&s(0. One may start
with this requirement as a boundary condition and
attempt to study its implications; this is the approach
of Gribov. "Alternatively one may seek a mechanism
that circumvents the asymptotic inhibitions discussed
in Sec. IV and allows an increasing behavior for our
amplitudes at infinity; this is the approach to be dis-
cussed here. We shall give reasons for believing that the
asymptotic power will continuously increase with the
"strength" of interaction up to a maximum power de-
termined by unitarity.

Our basic motivation arises in the work of Regge on
nonrelativistic potential scattering. "Regge shows for a
wide class of potentials that
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In the relativistic case,

where

(V-6)

F(ns) = dS (V-7)

while in the nonrelativistic problem one omits the factor
(g,s+1) '* in G(s). It of course follows from (IV-2) that
for e~&2,

(V-g)

has the property
&n+S

lim =4co-i.

Thus it is not implausible to conjecture on the basis of
(V-4) and (V-8) that at least in some average sense

(V-11)

independent of e. If such were the case, then

(in'}"—'
lim E(t,s) =t~' lim P '

l„(s)" n t(rs —1=) ~

(V-12)

may lead to an asymptotic 3 dependence

~]aped, (a) lnt ]a(s) (V-13)

where rr(s) =no+A(s).
Observe also that if the "potential" in our exampleIt=I" is changed by a scale factor, then d (s) changes

by the same factor. Thus the asymptotic power varies
with the strength of interaction, as implied by Regge's
analysis" which associates Ren(s) with the maximum
angular momentum for which there is a resonance in the
s channel. If, therefore, we can find solutions of our
equations which have the above qualitative behavior,
and arbitrary parameters occur, we expect by varying
these parameters to change the asymptotic power n(s).
The condition to be satisfied, for strong interactions is

n(s) = 1 for —20m '&s&0. (V-14)

I'roissart' has been able to show that a higher value than
unity for 0. in this region is inconsistent with the
Mandelstam representation; in some sense, therefore,
we shall be choosing our parameters to give the maxi-
mum possible strength of interaction.

We have not been able to deduce the limiting be-
havior of 1„(s) for large e, but note that the sequence
of numbers defined by

(V-9)

It is necessary to emphasize that a more detailed
study of potential scattering, to be published by one of
us (S.F.) independently, shows that the mechanism for
starting the logarithmic buildup to an increment of
power is probably not directly related to the asymptotic
behavior of the "potential". It seems likely instead that
the finite momentum components of the potential after
a few interations lead to a "starting" po~er no= ——,

' and
that the mechanism even beyond this point is a good
deal more complicated because the s and t dependence
is not separable. "Of course, Regge" assures us that for
nonrelativistic potential scattering the buildup of a
power increment is actually achieved.

The reader may wonder why we are not convinced by
Gribov's argument about the necessity of a logarithmic
decrease in the total cross section. "The answer is that
since I„(s) as given by (V-8) is complex for s)4m '
there is every reason to expect h(s) as given by (V-11)
to be complex in this region, a point emphasized by
Mandelstam. " (In Regge's analysis" of nonrelativistic
potential scattering the same complexity of the asymp-
totic power occurs. ) The imaginary part of tr(s) then
causes oscillations in the complete amplitude which
invalidate Gribov's arguments.

It should be stated here that the condition (V-14)
actually applies only to oat, of the three independent
absorptive parts in the xm problem, that corresponding
to non-charge-exchange scattering in the forward direc-
tion. In the notation of Sec. II, this is Is(t,s). It may well

develop that I~ and I3 do not increase so rapidly at
infinity, corresponding to the oft-conjectured circum-
stance that backward and charge-exchange scattering
become asymptotically negligible in comparison to the
forward coherent diffraction peak.

In the event that the adiabatic approach fails, we
have thought of several different possible ways of
starting the iteration procedure so as to achieve (V-14).
The most immediate idea is to include both I' and 5
elastic absorptive parts in the starting guess for the
"potential". Some kind of smooth cuto6 would have to
be inserted in order to represent the suppressive in-
Quence of the oscillations which appear only at a later
stage when all waves are included. It would be very
helpful if some a priori knowledge of the detailed nature
of the oscillations were available and could be put into
the "starting potential. " In the absence of such knowl-

edge, one must hope that the high momentum corn-
ponents of the "potential" are relatively unimportant.

The starting guess for the 5 and I' waves would be
characterized by a finite number of parameters—
probably through effective range formulas —and these
would be varied so as to give the best match with the
result of the erst complete iteration. One would then

gl jlson (private communication} has reached similar
conclusions."S. Mandelstam, Discussion at the Conference on Strong
Interactions, Berkeley, 1960 LRevs. Modern Phys. (to be
published) g.
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proceed to second, third, etc. iterations to see if con-
vergence could be achieved. The previous experience of
Chew and Mandelstam' suggests that there may
perhaps be no free parameters at all in the final result,
if this corresponds to the kind of P-dominant solution
discussed by these authors. Previously, that is, there
were two parameters, P and A, ~. The latter, however,
corresponded to a cutoff (which should no longer be
needed) and we have a new condition (V-14) to add to
previously recognized requirements. From past ex-
perience with strong-interaction theory, however, we
know not to count chickens before they are hatched.

VI. CONCLUSION

In conclusion, we refer to our Letter" on the same
topic as this paper in order to revise and amplify certain
remarks made there. On the question of the maximum
angular momentum for which the low-energy phase
shift may be large, we are still confident that this is
determined by LRenj, as explained in our introduc-
tion above. When the Letter was written we believed
that o. must be real and equal to unity. Now we must
add two qualifications: (1) Even if n(s) = 1 for
—20m '(s(0, if there are oscillations it need not
necessarily be true that Rea(s)=1 for s)4' 2. On
dimensional grounds it would nevertheless be sur-

prising if there were a substantial deviation of Re+ from
unity at low energies. (2) It is really only for the I=O
state of the low-energy xm system that coherent dif-
fraction in the crossed channel at high energy has im-

mediate relevance. In other words, the statement we
should have made in our Letter is that constant limits
for total cross sections imply a low-energy 7' force in
the I=O state of a strength that may produce large 5
and J' phase shifts but probably nothing higher. Of
course Bose statistics happen to exclude the /=1, J=O

"G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 5, 580
(1960).

state, but there is reason to expect forces of the same
order of magnitude in all three isotopic spin states.

In our Letter we made reference to the Pomeranchuk
theorem regarding equality of high-energy particle and
antiparticle cross sections as a guarantee that no arbi-
trary constant (such as a cutoff or Xi) could be asso-
ciated with the P wave. This point is implicitly con-
tained in Froissart's paper, ' where it is also pointed out
that any condition limiting "backward" direction scat-
tering amplitudes to an asymptotic power less than
unity will equally well provide such a guarantee. In
view of the now-recognized nonseparability of s and t
dependence, we, of course, no longer would attempt to
express the Pomeranchuk theorem through a formula.
such as Eq. (4) of our Letter.

In any event we still believe in the essential points
of the Letter, which were that: (1) Unitarity at high
energies in one channel puts on the interaction strength
a limit that is carried over by analytic continuation to
the low energy region of a crossed channel, and
(2) perhaps, nature approaches this limit as closely as
possible. It remains to be seen whether such a notion
of maximal strength for strong interactions allows a
determination of the low-energy coupling constants
heretofore regarded as arbitrary.
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