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The Mandelstam relations for pion-nucleon scattering are used to obtain equations for the s-wave partial
wave amplitudes in the two isotopic spin states. The solutions of these equations are investigated in the
approximation where only the one-nucleon contributions and the unitarity integral are kept. It is found
that there are no solutions of the form N/D without complex zeros, and that this is a consequence of the
large size of the one-nucleon terms. A comparison with experiment is made which suggests that the dominant
contribution to the 7'=$ s-wave amplitude (other than the one-nucleon contribution) comes from a region
of the complex energy plane that is outside the physical region for the related processes (r— into NN and
“crossed” m—N scattering). An Appendix is devoted to discussing the available experimental data and
they are found to be consistent with a scattering length (5/% at threshold) of 0.098+4-0.004 in the T'=$ state.

I. INTRODUCTION

HIS paper may be considered as an extension of
the recent work by Frautschi and Walecka!
investigating p-wave (J=3$) pion-nucleon scattering
from the viewpoint of the Mandelstam relations.
These authors were able to show that the simplest
possible equations for phase-shifts deduced from the
Mandelstam relations implied the qualitative results
of the static model.? In particular it was shown that a
2, 2 resonance could be obtained without the benefit of
an empirical cutoff, although the position of this
resonance was not in agreement with experiment.

It seems remarkable that the qualitative features of
the experimental results are consequences of the
simplest possible version of the theory. The p-wave
solutions take their essential features from the state-
ment that the partial scattering amplitudes are analytic
functions of the total center-of-mass energy except for
certain cuts whose discontinuities are known. One set
of cuts is derived from the ‘“one-nucleon term,”3 and
the discontinuities merely incorporate the knowledge
of the spins, masses, and parities of the interacting
particles. The discontinuity across the other cut
(the “physical” cut) is prescribed by unitarity. The
inclusion of other features implied by the Mandelstam
relations (e.g., crossing symmetry) affects the details
but not the gross features of Frautschi and Walecka’s
results.

We shall now proceed to carry out an investigation
of the s-wave scattering to see whether a similar
situation holds. To put it differently, we shall calculate
the s-wave scattering in the approximation where only
the one-nucleon term and unitarity are kept in order
to obtain a measure of the importance of the processes
that are ignored. These are: ‘“crossed” pion-nucleon
scattering, two pions annhilating to make a nucleon
anti-nucleon pair, and all processes involving more

* Supported in part by the National Science Foundation, the
U. S. Atomic Energy Commission, and the U. S. Air Force.
(119§(.))C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486

2 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

3This is modern parlance for the field-theoretic Born
approximation.

than two simultaneous particles (so-called “anelastic”
processes?).

Analysis of pion-nucleon scattering experiments
suggests that the s-wave phase shifts are small over a
considerable range of energy above threshold. The
phase shifts for the two isotopic spin states are of
opposite sign with the isotopic spin § phase shift being
negative (see Appendix II). Lowest-order relativistic
perturbation theory, or, to use a different language,
calculations using only the one-nucleon contribution
to the scattering, predict very strong s-wave scattering
with negative phase shifts for both isotopic spin states.
The one nucleon contribution to the s-wave scattering
amplitude is, in fact, much larger than is permitted by
unitarity of the scattering matrix and there seems to
be little sense in attaching any significance to an
estimate made in this way.

The Frautschi and Walecka analysis of p-wave
scattering suggests that the disagreement may be a
consequence of the particular way in which the one-
nucleon contribution has been identified with experi-
ment. The suggestion is that this contribution may, in
fact, dominate the s-wave scattering, but it is necessary
to take unitarity into account also when calculating
the partial-wave scattering amplitude. The manner in
which this is to be done is outlined in Sec. IT, where it
is shown that the inclusion of the unitarity requirement
leads to an integral equation for the partial wave
amplitude.

At this point we seem to be on the verge of having a
well-defined theory for the scattering amplitude. The
theory is made unique by imposing the formal require-
ment that the amplitude not have complex zeros
(otherwise the solution would contain undetermined
parameters), and it becomes possible to formulate a
procedure for obtaining numerical solutions. Section IIT
is devoted to a description of this procedure.

We now discover that we have so overdetermined
the system that it has no solutions. The one-nucleon
contribution turns out to be too large to be consistent
with unitarity and the aforementioned uniqueness

4This term was introduced by M. Cini and S. Fubini, Ann.
Phys. 3, 352 (1960).
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requirement, and we are led to the suspicion that the
processes that were ignored must be equally important
as the one nucleon terms. It would seem desirable to
seek confirmation of this suspicion by making a
numerical deduction from experimental data. Section
IV is devoted to establishing a basis for performing
such a deduction, and the comparison with experiment
is discussed in Sec. V. Section VI contains the
conclusions.

The notation follows that of reference one and is
summarized in Appendix I. Appendix II is an analysis
of the s-wave scattering data.

II. s-WAVE EQUATIONS

Following MacDowell® we shall work with the
“helicity” amplitudes® ¢; ¢, defined in terms of the
partial-wave amplitudes f,. by

¢1= (f+1f1)S7,
= (fur—f1).

These amplitudes depend only upon the square of the
center-of-mass energy, S. It will be convenient to
define a new, dimensionless, energy variable, x, by

x+1=SM~+u) 2

(1a)
(1b)

It is clear that x ranges over all positive values for
physical pion-nucleon scattering and is proportional
to ¢? for small ¢%

Neglecting for the moment the “one-nucleon” terms,
which may be treated exactly, we know that ¢; and ¢/
are analytic functions of the complex variable, .S (and,
it follows, x) except for the following cuts®:
x>0, the unitarity cut;

v < —4Mu(M-+p)~2, the “crossing” cut;

1= (M —p) (M )¢, 0< ¢ <2 3)
the 7m— NN cut.
x<—1.

It follows immediately that if we keep only the
“unitarity” cut we may write

I '
b= l+f I

x’ —x——z

where B, is the appropriate projection of the one-
nucleon terms.® A similar equation may be written for
¢¢ in terms of the projection B;'.

We may now combine the ¢; and ¢;" expressions and
set [ equal to zero in order to obtain an equation for
the s-wave amplitude in terms of the imaginary parts
of the sy and p; partial amplitudes. This is easily seen

5 W. W. MacDowell, Phys. Rev. 116, 774 (1959).
8 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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to be

x/

jorsirsd, [ (o) o

x+1
1=

x+1

~3[S'BAB.] ©)

The contribution of the p; amplitude to the s-wave
amplitude is readily bounded by setting Imfp; equal
to its “resonance’ value, 1/¢(x). The result is negligible
when compared with ®,, and the p-wave contribution
will, accordingly, be ignored in the remainder of this
work. This is actually a minor convenience; if the
p wave were important it could be retained in the
following formulation and Eq. (5) solved to obtain
both the s-wave and p-wave amplitudes.

To simplify the writing of equations in the remainder
of this work we will also set

H{1+HL+1)/ ' +1) 14,

equal to unity. Explicit numerical calculation shows
that this approximation has very small influence upon
the results.

To conclude this section we record the reduced form
of (5) which we propose to solve, and the explicit forms
of ®; for the two possible isotopic spins. These are
(using unitarity)

/

)5] Ty () }d— ®

X —X—1€

where

f=et | x_x_ulf(x)lg @
®= = ()

1—B/a 1 8/a
e ()
4. x+1 (x+1)3 a+t(x+1)*
— X (@)o()— X (—a, —B)A(x)]}, ®)
®si=—2g2(M+p)!
X[ X () o(2)+X(—a, =B)1(x)], (9)
with the definitions

X(e8)=[(x41)t—a]

XAL(@+1) 4ol — 62 /4v(v-+4af), (10a)
20—
10<x>=1n{ (x+1)%%}, (10D)
1 20—
N(x)=2— [ (H )”‘La B)] To(x), (10¢)
X

a=M/(M~+p)=1-4.
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The coupling constant g? is the rationalized (and
renormalized) pseudo-scalar coupling constant which
we take to have the value 14.5.

III. SOLUTION OF THE INTEGRAL EQUATIONS

It shall now be shown that a particular solution of
the nonlinear integral equation (7) may be obtained
in terms of the solution of a linear integral equation
that will be derived. The following discussion applies
explicitly to the amplitude for isotopic spin equal to
one-half.

It is clear from Eq. (8) that ®,* has poles in the
variable x at points (—1) and (—1—a), as well as
certain cuts on the negative real x axis. We suppose
that all of these cuts are to the left of the point (—ux)
and that the total discontinuity across the left-hand
cuts is @(x)/(x+1)(x+1+a). These quantities need
not be further specified. Next we dispose of the poles
by multiplying through by (x4+1)(x+14a) and
defining a new function,

()= (x+1) (v+14-a)f d=n(x)/D(x). (11)

In the last equation we have introduced the Chew-
Mandelstam ansatz’ that %(x) may be written as a
ratio of two functions with specified analytical proper-
ties. The conventional assumptions then lead to the
relations (the reader is referred to reference 1 for the
detailed argument)

Imn(x)=a(x)D(x) for x<xo, (12a)
ImD(x)= —qx)n(x)/ (x+1) (x+14a) for x>0. (12b)

It is an obvious consequence of unitarity and the
definition of %, that in the limit of large x the asymptotic
behavior of % is not stronger than a2 We shall then
write ‘“dispersion” relations for # and D under the
assumption that » has the same behavior as %4, and
that D approaches a constant for large x. The two
functions are further defined by their values at the
poles. At each of these points we require that # equals
the residue of the pole and D is equal to unity.
The result is (the —i7e in the singular integrand is
understood)

{
n(x)=(x+1)(x+a+1)[p(x)+ﬁ f P
a(x"ND(x'
(«)D(x") ]’ (132)
(&' —x) (' +1) (&' +a+1)

1 0
D) =1— (e batt) f ax’

q(2")n (=)

. (13b)
(&' =) (@ +1)2(«'+a+1)2
7 G. F. Chew and S. Mandelstam Phys. Rev. 119, 467 (1960).
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The newly defined function, p(x), is the pole term
(the first term in curly brackets) of Eq. (8).

At this point we reverse the usual procedure! and
substitute the expression for D(x) into the first of the
equations (13). The advantage of this approach
becomes apparent when the order of integrations is
inverted to give “dispersion” integrals over a(x). Such
integrals will be recognized immediately as integral
representations of the “Born” terms, B (less the pole).

a(x)dx'

. (14)
(&' —2) (@' +1) (&' +140a)

1 =
®iW=p+= [

Use of this equation and a little juggling leads us
directly to the results®

n(x)

N@E)=———
(x+1) (x+at+1)

1 p* x YN («

i [ 2N

X[K( ) (x+1)(x—}—1+a)K( )] (15)
&) R(X) |,
(' +1) (&' +14a)
1o (x41) (2+1+a)

g )N (+)

T
X dx’ , (16
L Y eyt

where K (x) is the “Born” term less the pole.
Equation (15) and its counterpart for the isotopic spin
% case were solved numerically on the MURA IBM 704
at Madison. The integral equation was replaced by a
finite set of algebraic equations, thus reducing the
problem to the inversion of a matrix. It was found
convenient to transform the independent variable to

v=a/(x+1), (17a)

in order to work in a finite range. The number of mesh
points was varied from 10 to 40 without appreciable
modification of the results.

The nature of the numerical solutions is roughly
characterized by their values at threshold (x=0), the
scattering lengths. These turned out to be of the same
sign as the Born terms but reduced in magnitude by
factors of 4 and 7 (for the two different isotopic spins).
Of considerably greater importance, however, was the
discovery that the N/D solutions, when substituted
back into Eq. (7), did not satisfy that equation.

8 Dr. T. W. B. Kibble has commented upon (private communi-
cation) the resemblance of these equations to the determinantal
method of Marshall Baker, Ann. of Phys. (N. Y.) 4, 271 (1958).
;I‘he essential difference lies in the treatment of the denominator
unction.
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IV. DISCUSSION OF THE “SOLUTIONS”

The source of difficulty is probably well understood
in the light of the analysis by Castillejo, Dalitz, and
Dyson® of a comparable, although mathematically more
complaisant model. The key point is the assumption,
implied in the paragraph preceding Eq. (12), that f(s)
is devoid of complex zeros. In the discussion by
Castillejo et al., it is shown that this assumption has
the consequence that there is a critical value of the
coupling constant; when this is exceeded solutions
(devoid of complex zeros) of equations such as Eq. (7)
no longer exist.

Some additional insight into the matter may be
gained from the study of a trivially soluble model that
was recently described by Zachariasen.!® In this case
we find that the critical coupling constant is associated
with the appearance of a bound state or, depending
upon the sign associated with the one-nucleon pole
term, a resonance at infinite energy. It is not surprising
that the critical coupling constant is just equal to the
radius of convergence of the perturbation solution
(in powers of the coupling constant). Confirmation for
the notion that the Zachariasen model analysis is
applicable to the case in hand is derived from the
observation that the numerical solutions mentioned in
the previous section actually do possess resonances at
very high energy. In addition, it is found that if the
coupling constant is made sufficiently small, then the
N/D solutions satisfy Eq. (7) (and the high-energy
resonances disappear).

If the coupling constant is very small then the
solutions of Egs. (15) and (16) are well approximated
by the ‘“damping approximation” :

¢ tand=®,, (18)
and this circumstance will turn out to be very useful
to us. This comes about as a consequence of recognizing
that the identification of ®,(x) with the one-nucleon
projection in the derivation of Egs. (15) and (16) has
only been a convention. Explicitly stated, if ®, were
the exact s-wave projection of the contribution from
all the singularities to the left of the imaginary % axis,
then the form of Egs. (15) and (16) would be unchanged.
Further, inasmuch as the quantity tand is known to be
small for energies appropriate to a partial-wave
decomposition of the scattering (say 0-300 Mev), we
conclude that the approximation (18) is applicable
(using the new identification of ®;) to the experi-
mentally determined s-wave scattering amplitudes.
Consequently, we have available to us an experimental

9 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956). The amplitude f(x) of the present work does not
satisfy the ‘“generalized R-function” conditions of the CDD
analysis which is why our understanding of the difficulties in the
s-wave problem is described as “qualitative.” The reader is also
referred to D. B. Fairlie and J. C. Polkinghorne, Nuovo cimento
8, 345 (1958).

1o |, Zachariasen, Phys. Rev. 121, 1851 (1961).
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determination of the left-hand contributions from
which the one-nucleon contribution may be separated.
The energy dependence of the remaining part will then
provide us with a clue as to its source. If we are
fortunate, we will then be able to assess the relative
importance of the pion-pion and crossed pion-nucleon
scattering contributions to the s-wave scattering.

V. DEDUCTIONS FROM EXPERIMENT

The comparison technique described at the end of
the last section makes use of the experimentally
determined s-wave amplitudes. Appendix IT contains
a brief review of the available information in the
region 0-300 Mev and it is concluded there that the
two s-wave amplitudes are consistent with the relations:

sin28;= —2¢[ W/ (M+1)7(0.098+0.068Z), (19a)
sin26,=+2¢[ W/ (M+1)]
X (0.139—0.084240.0642%), (19b)

in terms of the variable
Z=W—(M+1).

The meson mass, in the previous equations has been
set equal to unity. It is to be emphasized that we have
very little confidence in the result obtained for §;, and
any conclusions based upon Eq. (19b) are to be
regarded as tentative. For further discussion of this
point see Appendix II.

From Egs. (19) we now find the experimental
quantities (tané)/q for the two possible isotopic spins
and subtract from these the corresponding one-nucleon
contributions. We denote the difference by

A= (tand/q)— ®,, (20)

and approximate A by a single pole on the negative x
axis. The location of the pole is then determined by the
ratio of value to slope, taken at threshold (W=M-yu)
of the quantity A. We expect, then, that the position
of the pole, found in this way, will tell us which portion
of the left-hand region (and, in consequence, which
physical process) makes the dominant contribution to
the scattering. In particular we will learn whether the
technique of approximating the left-hand cuts by a
resonance in a particular state! is likely to prove useful
in this problem.

The arithmetic is straightforward and we merely
quote the results. If ST is the position of the pole in the
s plane, we find

Sob= +4IJ42’

Solm —1.8(M+u)

(21a)
(21b)

The second result is extremely noteworthy for it
implies that the energy dependence of the s-wave
amplitude depends upon singularities in a region that
cannot be described by a partial-wave expansion of
any physical process.
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VI. CONCLUSIONS

As stated in the Introduction, the objective of the
work described here has been to examine the utility of
a very special approximation in s-wave pion-nucleon
scattering. The original hope that led to this study was
that the coupling of the large one-nucleon contribution
with the unitarity condition would lead to sufficient
damping so that the predicted scattering amplitude
would be small, as required by experiment. What we
seem to have found, however, is that the one-nucleon
contribution is, in some sense, ‘“too large” to be con-
sistent with the unitarity condition—at least when
this condition is joined to the usual uniqueness require-
ment that there be no complex zeros. At this point we
are able to conclude that the missing terms in our
approximation are just as important as the one that
was kept—the one-nucleon contribution—and we look
for further information as to the nature of the neglected
terms.

The importance of the latter investigation has to do
with the technique by which the approximation for the
scattering amplitude is to be improved. We recall that
we have omitted the two-pion and crossed pion-nucleon
scattering processes and we must now ask how these
are to be put back into the theory. One popular pro-
cedure is to single out resonant states, in particular the
(3,%) plon-nucleon resonance and a conjectured (1,1)
pion-pion resonance, and insert these as poles at
appropriate positions on the left-hand cuts.!** The
efficacy of this procedure may be examined a priors if
we note that only limited portions of the cuts (for
negative x) of Eq. (3) have discontinuities that are
describable in terms of angular momentum decom-
positions, or, in fact, correspond to physical regions
for the two omitted processes. One finds that the
additional poles would have to be placed within the
regions (returning now to W? as the variable)

0<W?2< (M —p)?, crossed m—N scattering,
Wr= (M2~ Z)eid” ’—¢0<¢<¢07 TT—‘)NN,

where

(22)

¢02‘J66°.

On the other hand, we have deduced from the
isotopic spin § experimental data, which is the most
believable, that if the omitted terms are to be approxi-
mated by a single pole, that pole must lie far to the
left of the origin of the W2 plane. A pole at such a
location cannot correspond to a scattering resonance
in any simple sense. It is easy to see that the conclusion
only applies to a single pole; a pair of poles whose
residues are of opposite sign and that are located in
the regions given by Eq. (22) could give the required
result. One suspects, however, that the spectral func-
tions that are being approximated by the poles are not

1 This procedure has been applied to the s-wave problem by

W. Frazer and M. Goldberger (unpublished). I am indebted to
both for valuable discussions of theirs and related work.
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sufficiently wildly oscillating functions to give this
sort of an effect. The conclusion, then, is that the
s-wave scattering is dominated by the “nonphysical”
left-hand cuts and that the partial-wave analysis that
we have used is not a promising approach for the
understanding of low-energy scattering.

ACKNOWLEDGMENTS

The list of those to whom I am indebted for
suggestions and comments is unfortunately too long
to append here. I am particularly grateful to Professor
A. Salam for the hospitality of the Department of
Mathematics, Imperial College, where this work was
begun in 1959.

APPENDIX I

We summarize here the notation and conventions.
Let p, p’ and k, k' be, respectively, the initial and
final nucleon and pion momenta, and let M and p
denote the nucleon and pion masses. Choose the metric
with
Po=p*— pot=—M>.

We then denote the square of the total energy in the
center-of-momentum system by

S=—(p+hY,

and the square of the spatial momentum of either
particle in the same system by

¢=pl*= [k-

The partial wave amplitude for orbital angular
momentum, /, and total angular momentum J=/+43%
is written

Jiz=exp(id1s) sindr/q.

We use a system of units with z=c=1.

APPENDIX II

The positive pion-proton s-wave scattering data in
the range 0-170 Mev has been analyzed by Hamilton
and Woolcock.”? They find a scattering length (without
the “inner” Coulomb correction).

fs#(0)=—0.087=0.005,
by extrapolating the quantity

Y-

M+4u
Hamilton’s value is in disagreement with the previously
accepted scattering length deduced from the low-energy
data which in turn is consistent with the assumption
that §/q is constant in the range of 0-40 Mev meson
laboratory kinetic energy. Since the time of the previous

F(W)=Re[

2 J. Hamilton and W. S. Woolcock, Phys. Rev. 118, 291 (1960).
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032,
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- F(W)
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F16. 1. S-wave pion nucleon scattering in the T=$ state. The
quantities plotted are defined in Appendix II, and the solid line
is a best least-mean-squares fit to the data. The sources of the
plotted data are: O—[G. E. Fischer and J. W. Jenkins, Phys.
Rev. 116, 749 (1959)]; A—[D. Miller and J. Ring, Phys. Rev.
117, 582 (1960)]; m—[W. B. Johnson and M. Camac, quoted in
reference 17]; O—[S. W. Barnes, B. Rose, G. Giacomelli, J. Ring,
K. Miyahe, and K. Kinsey, Phys. Rev. 117, 226 (1960)7;
A—[A. M. Sachs, H. Winick, and B. A. Wooten, Phys. Rev. 109,
1733 (1958)]; @—[Reported by B. Pontecorvo, Ninth Annual
International Conference on High-energy Physics, Kiev, 1959
(unpublished) .

analyses additional data in the 300-Mev region has
become available. If these points are considered along
with the low-energy data and the points at 98, 150,

JACK L. URETSKY

and 170 Mev are ignored,”® an excellent linear fit is
obtained (see Fig. 1). The x? criterion for this fit is
approximately unity and the result is

—Fy(W)
= (0.098-£0.004)+ (0.068=-0.003) (W — M —1),

in units of the reciprocal w-meson mass. The threshold
value of 0.098 is not very different from the previously
accepted value® of 0.110+£0.004.

The s-wave scattering data for the isotopic spin
one-half state present a much less pleasing appearance.
The experiments that were ignored in the isotopic spin
£ analysis were kept in this case on the theory that
the existing scatter of data was so bad that nothing
could make it worse. The best fit was the quadratic
(a linear fit would have been obtained if the 98, 150,
and 170 Mev points had been ignored)

F3(W)= (0.1394-0.031) — (0.084-0.069) (W — M —1)
+(0.064-£0.026) (W — M —1)2.

The large errors and the x? criterion of about 7 for this
fit suggest that a rather careful weeding of the experi-
ments is in order.

13 A phase-shift analysis of the 98-Mev scattering quoted in
reference 12 does not appear to have been published. There
seems to be some question concerning the phase shift solutions
at 150 and 170 Mev (see reference 12) although the phase shifts
used by Hamilton at these energies seem consistent with the
energy dependence of Appendix II.



