COSMIC-RAY PHOTONS BELOW

cm™? sec™! above 25 kev. Their average energy is also
somewhat lower than the subcascade photons discussed
here thus making a small crystal a desirable choice. The
experimental results concerning the cascade photons
could be improved by making the size of the scintillation
crystal larger. A reduction in the size and uncertainty of
the photoconversion efficiency correction and improve-
ment in the statistical accuracy would improve knowl-
edge of the flux versus depth curve including a better
determination of the intensity maximum. Knowledge of
the angular distribution of the photons would provide
more accurate absolute flux values than those reported
here. That measurement, however, would require a
much more refined experiment than the present one
which involves only a single unshielded crystal.

(6) Omnidirectional particle fluxes as determined
from a thin-wall Geiger tube and the vertical directional
fluxes from a thin-wall counter telescope have been re-
ported here. These were determined during August of
1959, a time when solar activity was still generally high
and the primary cosmic-ray flux depressed. The last
Forbush decrease before the measurements occurred on
July 18, and for about 5 days before the observation the
Deep River neutron monitor was quite level. The flux
values determined from the two counters as a function
of atmospheric depth appear in Fig. 1.

(7) Although the results here are in general agreement
with the rocket observations of Northrop and Hostetler,
they do not seem to bear out results also obtained in
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Fre. 7. Comparison of the present balloon results with rocket
observations obtained by other workers.

rockets by Kuperian and Friedman* during 1955 at a
geomagnetic latitude of 41°. In particular these workers
find a well defined maximum in the differential photon
energy spectrum at 100 kev when the rockoon system is
floating at a depth of 35 g cm2 At this depth the
present results do not reflect a corresponding marked
flattening of the integral spectrum.

“.]. E. Kuperian, Jr., and H. Friedman, IGY Rocket Report
Series, No. 1, 201 (1959).
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A detailed analysis is made of the possible conversion of muonium into antimuonium in various environ-
ments. An assumed fefie weak interaction of the usual form and strength gives a probability of 2.5X 10-5
in vacuum, even in the presence of reasonable external electric fields. In a solid the probability is less by
at least 10, and probably 20, orders of magnitude. In an inert gas the probability is roughly to be divided
by the numbers of collisions during a muon lifetime, and hence is quite small unless the pressure at room
temperature is less than about 107 atm. Lowering the temperature does not help. A possible experiment

is suggested.

I. INTRODUCTION

T has been suggested!? that muonium may be able
to turn into antimuonium spontaneously. A specific
example? of an interaction with this effect is

* This work was supported in part by the U. S. Atomic Energy
Commission and by the United States Air Force under a contract
monitored by the Air Force Office of Scientific Research of the
Air Research and Development Command and the Office of
Naval Research.

T Alfred P. Sloan Foundation Fellow.

1 B. Pontecorvo, Zhur. Eksp. i Teoret. Fiz. 33, 549 (1957).

2 G. Feinberg and S. Weinberg, Phys. Rev. Letters 6, 381 (1961).

3 S. L. Glashow [ Phys. Rev. Letters 6, 196 (1961) ] has remarked
that only the charge-conjugation-invariant part of 4 can con-

H=C‘l_’ﬂ’)\(1+75)‘I’e§zﬂ7)\(1+75)\1’e; (1)

which would yield a matrix element for_conversion of
M(=pte”) into M(=ue) equal to (M|H|M)=5/2,

tribute to (M|H|M), so that interactions may be constructed
which forbid M — M while allowing clashing beam reactions
like e”+e~— p~+p~. Such interactions have the property of
conserving parity, if the relative e—u parity is chosen imaginary;
they allow M — M if M has odd /, and M even I, or vice versa.
The possibility of essentially imaginary relative parities can only
arise when some quantum number (here, muon number) is
multiplicatively conserved, as emphasized by G. Feinberg and
S. Weinberg, Nuovo cimento 14, 5?1 (1959).
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where

0=16C/ma*=2.1X1071 ev. (2)
[This applies in both the F=1 and F=0 1S hyperfine
states. Here ¢ is the Bohr radius (m.e?)~, and C is
taken equal to the usual §-decay coupling constant
Cy.] We shall discuss the M — M charge-exchange
process in detail, with emphasis on effects due to the
environment of the muonium; these effects are im-
portant because 6 is so small.

II. MUONIUM IN VACUUM

First we consider the case of muonium in a vacuum,
in the presence of static external electromagnetic fields
which break the original M—M degeneracy by an
amount A. The true energy eigenstates are then not
M M but instead:

| My)y=[2W (W —8) 7G| M)+ (W—4)| 1)),
| M) =[2W (W+A) T (=0 M)+ (W+4)| 1)),
with energies differing by an amount
Ey—Ey=W= (|6]+42)" @)

If at {=0 the system is pure muonium, then at time ¢
it will have developed an antimuonium component
equal to

(M | (1)) = (B | MM | M)e i1t
(M | M )M 5| M)ye— %2t
=ie—%(E1+Ez)t(6*/2W) SinVt (5)

and the probability that the muon decays as u~ rather
than ut is

)

o[>

PAD= [ AT =
e 2(Jo ]2+ a24)
where A=3X107 ev is the muon decay rate.
In the absence of external fields,

P(I)~(|8]2/220) =2.5% 1077, )

a probability that does not seem too low for experi-
mental observation. The signature of an M —M
charge exchange is the emission of a fast e~ with an e*
left behind, instead of the reverse. The probability that
the e+ emitted when the ut decays in ordinary muonium
should give up >10 Mev of its energy to the bound e~
may be estimated semiclassically by folding the Bhabha
cross section into the Michel spectrum shape, and
comes out ~101; hence a fast ¢~ is a sure sign that
M was formed. B

Clearly external fields will quench the M — M
conversion unless

AL =3X1072 ev. (8)
It may be surprising that charge exchange is un-

quenched for A> |3] as long as AN\ ; the reason is that
as A increases beyond 8, M, approaches M and M,
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approaches M, but also the interference “beat” between
My and M, speeds up.

In estimating A it is important to note that a constant
electric field gives no contribution. This is because the
only scalars that the energy may depend upon in a
state with angular momentum J are E? and (E-J)?
(since E-J is pseudoscalar) ; both scalars are even in E
so that they are the same for M and M. In the presence
of an additional constant magnetic field H, A will still
be zero for states with H-J=0, since the energy can at
most depend upon E2, (E-J)2, (E-H)2, H2 and
[J-(EXH)TP, all of which are even in E and H. The
1S M and M states with F=1, F,==1 are split by a
constant field in the z direction by an amount |A|
~¢H/2m.; thus, in order to avoid quenching in these
states, H, must be kept below about 0.01 gauss.

In an inhomogeneous electric field, A will contain
only odd powers of E, and since M and M are neutral
the lowest term will be of order £3; to lowest order in
gradients this term is?

A= (213/8)e~*a’E- v (E2). )

For fields varying in distances of order 1 mm, this gives
AL for £<108% v/cm, and so we may safely ignore A
for any reasonable external field.

III. MUONIUM IN CRYSTALS

If muonium is trapped in an ionic crystal, A [as
given by (9)] will be of the order of several ev, lowering
P(M) by a factor ~10~%. However, in substances
composed of neutral atoms, such as molecular crystals
of the inert gases, this term in A will be many orders
of magnitude smaller. In such substances the main
contribution to A will arise from the overlap of the
muonium and crystal atom wave functions, in the same
way that the repulsive force between crystal atoms
arises from the overlap of their wave functions. If we
write the energy of M in a crystal as +Ly=—Ey
—Eg+Ex, where the three terms represent energies
due to Van der Waals forces, ordinary electrostatic
forces (due to overlap), and exchange forces, then the
energy of M is —Ey+Eg, so A is —2Eg+Ex. If for
illustration we assume that these energies have the
same ratios as for the neon-neon interaction,® then
Ex~A4FEp and Ex—Ep~3Ey so A~%|Ey|. In any
case it seems reasonable to estimate A as being not less
than the crystal binding energy per electron, which for
neon (where it is particularly low) is 0.40 kcal/mole
=1.7X10"3 ev/electron. Even here the M — M con-
version is quenched by a factor <107,

Several new features enter for muonium trapped in
other materials. For example, in semiconductors® the

4 The numerical factor here was computed together with C.
Schwartz, using a method developed by him in Ann. Phys. 2,
156 (1959).

8V. Deitz, J. Franklin Inst. 219, 459 (1935). W. E. Bleick and
J. E. Mayer, J. Chem. Phys. 2, 252 (1934).

% G. Feher, R. Prepost, and A. M. Sachs, Phys. Rev. Letters
5, 515 (1960).
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M — M conversion is stopped more often by u—e
system being broken up than by muon decay. A
generalization of the argument leading to (6) gives in
this case

P < 6] /MA=2.5X10"5(7/24), (10)

which is larger than before but still much too small.
(This upper bound is attained only if every M breakup
leads to an observed u~ decay or absorption, and if
every M breakup leads to M being formed again, and
if the average breakup rate of M and M is equal to A.)
Another effect which slows down the M — M process
arises in materials with a large dielectric constant e;
a is increased” by a factor ¢, decreasing § by ¢ and
also increasing A. An effect which could, in principle,
increase the chance of seeing antimuonium is the direct
decay of M into M or free u~, et. Since the energy, A,
available is so tiny, this process is extremely slow
compared to ordinary muon decay, for any coupling C
comparable to the weak interactions. In fact, it will
also be slow compared to M — v,+7, whose rate is
~107° that of u decay. The reason we are so much
better off looking for a “Gell-Mann-Pais’ effect is that
8% goes as Cy? while \? goes as Cy*, as pointed out by
Pontecorvo.!

One may also ask what happens if we try to drive
muonium into antimuonium by adding a time-varying
external contribution to A. It can easily be shown that
we can never do better in this way than with A=0.
If A has a constant part Ao which we try to counteract
with a varying part A;sinwt, and if |A¢—nw|<Kw for
some integer 7, then

_ 18] |
P(M)ﬁ' -]nl(Al/w)-

—— (11)
2[A2H (Ag—nw)?]

It is probably impossible to find any practicable values
of #, w, and A; with which we could eliminate the
quenching due to a Aq of order 103—10 ev. _

Evidently it is hopeless to look for M — M conver-
sion in a solid or liquid, if é is as small as estimated in
(1). Since & could conceivably be much larger, it might
be worthwhile to check whether M — M is actually
absent in a molecular crystal.

IV. MUONIUM IN GASES

In treating the M — M process in a gas we shall
assume that the muonium system is scattered inco-
herently by the gas molecules, except of course for the
coherent forward scattering responsible for the index
of refraction. However, we do not want to assume that
in general the muonium simply moves classically from
molecule to molecule. In this situation it seems essential
to use a statistical matrix treatment.

Suppose that we refer to the sequence of elastic
scatterings up to time ¢ as a “history”” H, with proba-
bility P(H). [The sum of the P(H) is the probability

7G. Feher, Phys. Rev. 114, 1219 (1959).
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that a decay or inelastic collision has not yet occurred,
and hence vanishes as {— «.] Each history gives rise

to a 2-dimensional state vector #(H) with components
uy=(M | ¥) and %,=(M | ¥), normalized in the sense that

lloell>= | aea |2+ | w2 |*=1. (12)
The statistical matrix p(¢) is defined as
p()=2r P(H)u(H)u'(H). (13)

At time ¢/=(+-di, the history H’ might consist of either:
(i) A history H followed by elastic scattering through
an angle 6, giving

w(H')=F@)u(H)/|[FO)u(H)|, (14)
P(H')= |F@)u(H)|2P (H)nudt, (15)
where F(0) is the matrix
@ 0
ro= (7, o) (16)

and # is the number density of gas molecules, v is the
muonium velocity (assumed fixed), and f and f are
the M and M elastic scattering amplitudes.

(ii) A history H followed by no decay or collisions,
except for the unavoidable coherent forward scattering.
This gives

uw(H)= (1+Ad)u(H)/|(1+Ad)u(H)|, (17)
P(H')=1—u(H)'Bu(H)dt, (18)
where
2winy )
f(0)—iky— — —1—
A= , (19)
&% 2winy _ _
—i— —f(0)—iE,— »J
2
we+A 0
B= [ ) ] (20)
0 W+

Here Eo and E are the M and M energies between
collisions, k#=~m,v, and w, and &, are the total (elastic
plus inelastic) M and M collision rates. It follows from
the optical theorem that A+ A47= —B, so that

PH")=[(1+Ad)u(H)|q.
Now at time ¢ the statistical matrix is

p() =2 P(H yu(HYu(H")!

(1)

:ZII -PH

wodt f FO)u(H)u(H)F(6)de
+(1+Adz)u(H)u(H)f(1+Adz)T}

— I f F(O)p()FH(6)d2

+(1+A4dD)p(t) (1+4d)1, (22)
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and hence, finally,

dp/di= Ap+pAi-+mo f FOF 0)d2.  (23)

We have derived here four coupled linear differential
equations for the four components of p(£). It might be
necessary to go through the straightforward but tedious
task of solving them if (as in an experiment with gated
counters) it were necessary to know the time depend-
ence of p(£). We shall only solve for P(M).

It will be assumed that an M — M conversion is
registered if either the muon decays as a = or an
inelastic collision breaks up the pe system into a u~
and et, the u~ subsequently decaying or being absorbed.
The rate for either occurrence is @=a;+\, where ws
is the rate for inelastic M collisions. (The corresponding
rates for M are wr and w=wr+4\.) Hence

P(M)=&(M|I|),

- f C oy,

If we integrate (23) from O to o, and use the fact that
p()=0, we obtain

(24)
where

(25)

10
(O O)zp(O):A[—{—IAH—m) f FOIFIO)d2, (26)

and solving these four lincar algebraic equations we
have

_ [8]2A
P(M)= (27)
20 A2+ A2 (A2]8]%/wa)]
[a[2A
o (28)
2w (A2 A?)
where now
A=Ao—Reé, (29)
A=Ay— (2rnv/k) Re[ f(0)— f(0)]—Im&.  (30)
Also _
Ag=FEy—E, (31)
is the M —I energy split between collisions,
A=A 3 (w4 w.) (32)

is the average rate of collisions or decay for M and M,
and

E=mv f (0 F*(6)dQ. (33)

The parameter & represents the degree of coherence
between the phase of the elastically scattered M and

M. We always have

| 8] <3 (wntam) <A, (34)
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where wg and @y are the elastic collision rates:

wyznvf[f(0)|2d9=wc+)\—w,
(35)
op=mny J [ 7(6) |2dQ= &, +\—a.

The terms in A involving f(0) and F(0) represent the
fact that a difference in index of refraction can act like
a mass splitting.

We will examine the behavior of P(#M) in both the
high- and low-temperature regions, defined by the
conditions that £R>>1 and kR<«1, respectively, where
R is an interaction range of the order of 1078 cm. At
room temperature £R~1 for thermalized muonium.

For kR>>1, many partial waves contribute to f()
and f(6). Since these may partially cancel in § but not
in wg or wg, we expect that inequality (34) becomes
| §|<<Aq, so that A=~A,. Furthermore,

21 THY
—k— Ref(0)=3" ;2—(214—1) Im[e2#7]. (36)

l

If every term in the sum had its maximum value (up
to I~kR), this sum would be of order m#vR?~w,. Since
there will be many cancellations, we expect that

(2mnv/k) | Ref(0) | Koo,

and likewise for f(0). Assuming also that |Ag|<<Ag
(see below) we have now |A|<KA, and (28) becomes

P(M)==|8|%/2wA,. (37)

(This result may also be obtained by assuming that
after each elastic collision the ue system is an incoherent
mixture of M and M.)

At all reasonable temperatures in a dilute inert gas,
wr will probably be small compared to X. It is known
experimentally® that a good fraction of the muonium
formed in argon at room temperature and 50 atm
lasts long enough for the p* to decay. (The same is
probably not true for M.) Hence w~), so that

P(M)=~|5|2/20o=2.5X10"%/N, (38)

where N =Ay/\ is (for large N) the mean of the number
of collisions suffered during a muon lifetime for M and
M. Tt makes no difference whether the 3 collisions are
elastic or inelastic, providing that an M breakup is
detectable through y~ decay or absorption. We may
estimate NV roughly (for N>1) as

Ne~anoR2/N~m (kR) Rn/m,\

~n(kR)/(3X10% cm~3), (39)
so at room temperature we need #<K3X10% cm™ to
avoid quenching of the M — M process. (In the

8V. W. Hughes, D. W. McColm, K. Ziock, and R. Prepost,
Phys. Rev. Letters 5, 63 (1960).
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experiment quoted,® N was roughly 10° and hence C
would have to be 10 times larger than Cy to have
produced one M per 105 M.) Raising the temperature
improves our approximations but worsens the situation.

For kR<K1 the scattering amplitudes f(6) and f(6)
approach constants @, @. In this limit

A > A+ (w4 0)+2mnv|a—a|?

— MFar, (40)
A — Ay— (2nv/k) Re(a— @) —4wno Im[ ad@* ]
— Ag— (27n/m,) Re(a—a). (41)

In deriving (41) we are using the fact that there are
exothermic inelastic channels open to M (transfer of
the u~ to a low Bohr orbit about a nucleus) so &r
becomes constant as v — 0, while wg, w7, and &g all
tend to zero. Unless Ree and Rea happen to be equal
(which seems highly unlikely), A—Aq will be of order
wnR/m,, or roughly as large as w, or @, would be for
kR=1. We are assuming that A, is less than this, and
it seems reasonable that A4-3@; is not much greater
than this, so

520\ _2.5X10°
(wnR/m,)? ~ N’

P(M)~ ) (42)

where

N'=nRn/mM>~n/(3X10% cm?). (43)

Hence the index of refraction effect prevents the
lowering of the temperature (with # fixed) from being
of any help in preventing quenching.

We have been making the assumption that the M — M
energy split between collisions Ay is less than Ao, which
in turn must, to avoid quenching, be not much greater
than A=3X10"1 ev. This condition applies not only
to the part of A arising from external fields, but also
to the part due to the ‘“tail” of the interactions between
M or M and the gas molecules, and is needed to ensure
that the scattering is actually incoherent.

In order to see whether Ap<\ in an inert gas, we
must take account of two types of interaction between
we and the gas atoms. One is a ‘“‘dispersion” force,
arising as a term of second order in the dipole-dipole

INTO ANTIMUONIUM 1443
interaction (~77%) and of first order in the quadrupole-
quadrupole interaction (~#7%), and hence varying as
#~1, (There are no terms of total order 1 since the
systems are neutral and none of total order 2 since
they would not contribute to A, There are no terms
of third order in the dipole-dipole interaction because
they would not conserve parity.) If we assume that in
atomic units (a.u.) A= then A¢~A\ for »~10 a.u.,
or about 10~7 cm.

A second kind of interaction arises from overlap of
wue and gas atom wave functions. Such terms vary
exponentially with 7. If we assume that in atomic units
A", then A\ for =25 a.u., or again about 107
cm. This sets an upper bound on # of about 10% cm=3,
which is much less stringent than the limit set by
collisional quenching.

V. CONCLUSION AND PROSPECTS

It is clear that we can only hope to see muonium
become antimuonium in a very dilute inert gas, with
n<K3X 10" cm™3. (At room temperature this would
mean p<<10~* atm.) Since there seems little hope of
forming muonium in such a medium, we must look for
some way of forming it in a solid and getting it out
into the gas in a short time. The best chance seems to
be to pass a ut beam through a series of many thin plates
with dilute argon or vacuum in between, and hope that
a sufficient fraction of the muonium formed in the
plates can diffuse out and not be adsorbed. The energy
of the ut beam, plate spacing, plate thickness, and plate
material should be chosen to maximize this probability.

For a discussion of the implications of observing
M — M, see reference 2.
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