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Measurements of the cross-section d'0 j(dQ,dh ) for the in-
elastic electron-deuteron scattering process e+d —+ e+n+p have
been used to determine the electromagnetic structure of the
neutron. The effects on the theoretical cross section of interactions
between the outgoing nucleons are examined in detail using the
methods of a previous paper. The transition matrix elements con-
necting the initial state of the two-nucleon system (the deuteron)
to a final state with specified total, orbital, and spin angular
momenta are calculated using approximate wave functions which
are matched to the experimentally determined neutron-proton
scattering phase shifts. While individual matrix elements may be
drastically changed by the distortion of the final-state wave func-
tions by the neutron-proton interaction, the over-all corrections
to the peak value of the cross section are found to be small
(—1 to —2%%) for electron momentum transfers in the range
q=3.4—2.6 f '. The precise magnitude of the corrections is some-
what uncertain because of the approximate nature of the wave
functions, but it is unlikely either that they are large, or that the
corrections could become positive. The effects of final-state inter-
actions on the cross-section d'o/(dQ, dE, ') are also examined for
final electron energies near the upper limit of the inelastic con-
tinuum. In this region, the nucleons emerge with low relative
momenta, and, in agreement of the predictions of Jankus, the
cross section is found to be drastically changed by the strong
interactions in the final 5 states. However, it is shown that the
presence in the neutron-proton interaction of a strongly repulsive

core results in a considerable diminution of the cross section rela-
tive to the predictions of Jankus for large values of q. This lowering
of the cross section has been observed by Kendall et a/. Results
obtained with approximate repulsive core wave functions provide
a reasonable fit both to the inelastic cross section near the end
point, and to the deuteron electromagnetic form factor obtained
from elastic electron-deuteron scattering. Finally, the relativistic
theory of inelastic electron-deuteron scattering is examined using
the methods of dispersion relations. It is found that in the region
of the large peak, the cross-section d'o/(dQ. dE.,')'is given essen-
tially correctly by a nonrelativistic calculation using a modified
Hamiltonian, provided the results are interpreted correctly with
respect to the kinematics. The approximations inherent in the
calculation are examined in detail. The resulting cross section
divers significantly from the modified Jankus cross section which
has been used in the analysis of the high-energy electron-deuteron
scattering data obtained by the Stanford group. It is found that
the apparent values of the neutron charge form factor J'I„are
reduced essentially to zero for q' in the range 5 f '& q'& 20 f 2 when
relativistic corrections, the e6ects of the deuteron D-states catter-
ing, and the effects of final-state interactions are taken into
account. Corresponding reductions in the value of the neutron
anomalous magnetic moment form factor F~„range up to about
30%%uo, and bring Ps„ into closer agreement with F2r. A complete
re-analysis of the experimental data will be necessary.

INTRODUCTION

j~ONSIDERABI. E effort has been devoted in recent~ years to the determination of the structure of the
neutron and the proton as reflected in the electromag-
netic interactions of those particles. In particular, the
high-energy electron-proton scattering experiments of
Hofstadter' and Wilson' and their co-workers provide
a direct measurement of the charge and anomalous mag-
netic moment form factors F»(q') and F»(q') which

appear in the matrix element of the proton electromag-
netic current operator, '

(p'
l J.I p) = —te~(p') LFr.v.

+ (x„/2m) Fs„o.„„(p' p) „jg(p)—
)Here xr is the anomalous part of the proton magnetic
moment, nz is the proton mass, and q=p' —p is the
4-momentum transferred to the proton. $ Information
on the corresponding form factors Ft~(q') and F,„(q')

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

f Now at Yale University, New Haven, Connecticut.' E. E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454
(1956).'F. Bumiller, N. Croissiaux, and R. Hofstadter, Phys. Rev.
Letters, 5, 261 (1960);R. Hofstadter„F. Bumiller, and M. Crois-
siaux, ibid. 5, 263 (1960); R. R. Wilson, K. Berkelman, J. M.
Cassels, and D. N. Olson, Nature 188, 94 (1960).

3 See, for example, the discussion of the nucleon form factors
given by D. R. Yennie, M. M. Levy, and D. G. Ravenha11, Revs.
Modern Phys. 29, 144 (1957).

for the neutron charge and anomalous magnetic
moment distributions has been obtained by using the
deuteron as a source of "quasi-free" neutrons. However,
the interpretation in terms of free-particle form factors
of the high-energy inelastic electron-deuteron scattering
cross sections measured by the Stanford' and Cornell'
groups, and of the elastic scattering cross sections meas-
ured at Stanford, '7 is considerably complicated by the
presence of the extra nucleon in the deuteron. Thus the
determination of the nucleon form factors at large
values of q' using the measured elastic scattering cross
sections requires detailed knowledge about the behavior
of the deuteron wave function for small separations
between the nucleons. Friedman et al.v have suggested
that this difhculty may be circumvented by considering
the ratio of the cross sections for large and small electron
scattering angles at a fixed value of q'. On the basis of
the nonrelativistic theory of Jankus, s this ratio should

M. R. Yearian and R. Hofstadter, Phys. Rev. 110,552 (1958);
111,934, (1958). S. Sobottka, ibid. 118,831 (1960).R. Hofstadter,
C. deVries, and R. Herman, Phys. Rev. Letters 6, 290 (1961).
R. Hofstadter and R. Herman, ibid. 6, 293 (1961).

~ D. N. Olson, H. F. Schopper, and R. R. Wilson, Phys. Rev.
Letters 6, 286 (1961).

6 J. McIntyre and R, Hofstadter, Phys. Rev. 98, 158 (1956).
J. McIntyre, ibid. 103, 1464 (1.956). J. McIntyre and S. Dhar,
ibid. 106, 1074 (1957}.J. McIntyre and G. Burleson, ibid. 112,
2077 {1958).

7 J. I. Friedman, H. W. Kendall, and P. A. M. Gram, III,
Phys. Rev. 120, 992 (1960)~

V. Z, Jankus, Phys. Rev. 102, 1586 (1956).
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depend only on the form factors for free nucleons. " It
is not clear that this would be the case in the relativistic
theory, since for large values of q', the contributions to
the scattering of mesonic currents within the deuteron
are expected to be large. It should furthermore be noted
that the nucleons are in this case considerably oR the
mass shell, so that the measured form factors may differ
significantly from those for free nucleons. The theoreti-
cal situation is considerably more favorable for inelastic
electron-deuteron scattering if the final electron energies
are restricted to the region of the large peak which
corresponds to quasi-elastic scattering from a single
nucleon. Less detailed knowledge about the deuteron
wave function is required than in the case of elastic
scattering, the nucleons being on the average rather far
apart. Mesonic corrections to the cross section are there-
fore expected to be rather small, and the nucleons are
nearly on the mass shell. A number of relativisitic cor-
rections can furthermore be calculated quite easily. The
major new complication is the presence of strong inter-
actions between the outgoing nucleons.

The basic nonrelativisitic theory of inelastic electron-
deuteron scattering was given by Jankus, ' who calcu-
lated the cross-section d'a/(dQ+E, ') using a Hulthen
5-state model for the deuteron wave function, and plane
waves for the wave functions of the outgoing nucleons.
The effect on the cross section of interactions between
the outgoing nucleons was considered approximately,
using a central force model for the two-nucleon inter-
action, and treating its effect on the final nucleon wave
functions in first Born approximation. The change in
d'0/(dQ, dE, ') in the region of the quasi-elastic peak was
found to be negligible. However, very large final state
effects were shown to exist for final electron energies
and scattering angles such that the neutron and proton
emerged predominantly in the 'S~ and 'So states with
low relative momenta. A more complete formulation of
the problem of calculating final state effects was given
by the present author in a paper in which relativistic
corrections to the work of Jankus and the influence of
the D-state component of the deuteron wave function
on the scattering were also considered. Rough estimates
made at that time indicated that the corrections to the
cross section resulting from final-state interactions could
be much larger than estimated by Jankus, ' decreasing
the theoretical value of the cross section at the quasi-
elastic peak by perhaps 5% or more. Because electron
scattering from the neutron contributes only a small

part of the peak value of d'o/(dQ, dE, ') for most of the
values of q so far studied, an error of a few percent in
the theoretical value of the cross section may alter
appreciably the value of the neutron form factors ob-
tained by matching the theoretical to the experimental
cross section. It is, therefore, of some interest to con-
sider these effects more thoroughly. In addition, recent

"Loyal Durand, III, Phys. Rev. 115, 1020 (1959); referred to
hereafter as (I).

experimental results of Kendall et al.' on the cross-
section d'0/(d. QjE„') do not agree well with the simple
Jankus theory in the region in which large effects re-
sulting from interactions in the 'S~ and 'So final states
are present, suggesting that previous calculations of
these effects be re-examined.

In Sec. I of the present paper the principal results of
(I)' concerning the treatment of final state interactions
will be reviewed, and the final results for the cross-
section d'o/(dQ+E. ,') in the presence of such inter-
actions will be recast in a form more amenable to nu-
merical calculations. A set of approximate calculations
of the effects of final state interactions on the peak
cross section will be discussed in Sec. II. Despite the
changes in the contributions of individual final states of
the neutron-proton system to the cross section con-
siderably larger than previously estimated, ' the over-all
change in the peak value of the cross section is found to
be small. The theoretics. l value of d'a/(dQ, dE, ') is de-
creased by 2.2% for an initial electron energy of 500
Mev, a scattering angle 0= 75' in the laboratory system,
and a momentum transfer q= 2.6 f '. For E,=500 Mev,
0=135', and q=3.4 f ', the cross section is again de-
creased, but by only 0.9%. These calculations are
based on approximate wave functions for the final state
of the two-nucleon system, but wave functions which
are matched to the experimental values of the neutron-
proton scattering phase shifts. It is therefore believed
that the present results are at least indicative of those
which would be found using wave functions calculated
from one of the semi-phenomenological potentials which
fit the scattering data. In Sec. III, the effects of final
state interactions on the cross-section d'o/(dQ, dE, ')
near the threshold for deuteron breakup will be
examined. It will be shown that the discrepancies
between the Jankus theory' and the experiments of
Kendall ef al." can be attributed to the presence of a
hard core in the neutron-proton interaction in the 'S~
and 'So states. Repulsive-core wave functions matched
to the low-energy neutron-proton scattering data and
the measured deuteron form factor are found to give a
reasonable fit to the data, but the calculations presented
are again primarily exploratory in character. It is
nevertheless evident that a careful study of the in-
elastic scattering cross section near threshold can yield
important information about the structure of the 'S~
and 'So wave functions of the neutron-proton system
for small internucleon separations. Calculation of the
necessary matrix elements using wave functions ob-
tained from the semiphenomenological two-nucleon
potentials which fit the high-energy neutron-proton
scattering data would therefore be of considerable
interest.

"H. W Kendall, J. I. I'"riedman, and P. A. M. Gram, III,
Bull. Am. Phys. Soc. 5, 270 (1960).The author would like to thank
Professor Kendajl for sending him details of the measurements of
the inelastic cross sections near threshold.
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The calculations of the preceding sections are based
on a semirelativistic Hamiltonian for the interaction of
the nucleons with the electromagnetic field of the scat-
tered electron, but the wave functions for the initial and
final states of the two-nucleon system are treated non-
relativistically. Relativistic corrections are considered
in Sec. IV using the methods of dispersion relations;
this discussion of relativistic effects extends considera-
bly that given in (I). In particular, it is shown that, in
the absence of final-state interactions, the semirelativis-
tic results for the peak cross section agree with those of
the relativistic theory except for a kinematical factor
and other relatively small corrections when the electron
3-momentum transfer in the laboratory system is re-
placed by the 3-momentum transfer in the center-of-
mass system of the outgoing nucleons. Calculation of the
effects of final state interactions would require an exami-
nation of the double spectral function in the Mandelstam
representation for the transition matrix element.
Anomalous thresholds are present in the double dis-

persion relations, and. it appears likely that the spectral
function in the anomalous region can be related to the
nonrelativistic wave functions. However, no detailed
calculations have been undertaken because of the
smallness of the eQects of final-state interactions indi-
cated by the semirelativistic calculations of Sec. II. The
situation is more complicated for the cross section near
the threshold for deuteron breakup. Final-state inter-
actions are very important, as was noted by Jankus, '
and one may also expect relativistic and mesonic cor-
rections to the simple theory to be large. A detailed
calculation of these e6ects would be of consid. erable
interest, but is not undertaken here.

The present situation with respect to the theory of
inelastic electron-deuteron scattering is summarized in
Sec. V, and the eGects of the known corrections to the
cross section on the determination of the neutron form
factors are examined. It is found that relativistic cor-
rection to the cross section, the e8ects of final-state
interactions, and the corrections for scattering involving
the deuteron D state, lead to large systematic changes
in the values of the neutron form factors' obtained from
the experimental cross-sections d'o/(dQ+E, ') on the
basis of the modified Jankus theory '' The .neutron
charge form factor P&„ is greatly reduced in value for
q' in the range 5 f '&q'&20 f '; it is consistent with
the present results to have Fi„=0 in this range, contrary
to the conclusions based on the Jankus cross section. '
The corresponding reductions in the value of the
anomalous magnetic moment form factor are somewhat
smaller, ranging up to 30%, and bring F~„ into closer
agreement with F». A complete reanalysis of the ex-
perimental data will be necessary, but has not yet been
completed. The results of the exploratory calculations
are summarized in Table VI.

p'= m(E, E,' e) —i4q'— — (2)

Here m is the nucleon mass, and e.=2.226 Mev is
the deuteron binding energy. The cross-section
d'o/(dQ+E, ') has a threshold. for a fixed incident energy
E, and a scattering angle 0 at the value of E,' for which
the emerging nucleons are free, but have zero relative
momentum, p=0. Combining Eqs. (1) and (2), the
threshold. value Eo of E,' is seen to be

Eo= (E. e)L1+(E,/m) sin'—(-',0)]—'. (3)

For comparison, the electron can scatter elastically
from the deuteron at an energy

(E,').,=E,P+ (E./m) sin'(-,'8) j-', (4)

separated from Eo by slightly less than the deuteron
binding energy. The inelastic scattering continuum cor-
responds to values of E,' less than the end-point energy
Eo (the threshold for deuteron breakup with respect to
p). Finally the large inelastic peak corresponding mainly
to scattering in which the entire momentum transfer q
is absorbed by a single nucleon occurs at a final electron
energy for which p'=i~q',

The calculation of d'o/(dQ+E, ') including the effects
of the strong interactions present between the outgoing
nucleons was considered in Sec. I of (I).' The electron
was treated. as an ultrarelativistic particle, and its inter-
action with the two-nucleon system was calculated in
the first Born approximation. However, it was noted
that the standard. nonrelativistic Hamiltonian used by

I. THEORY OF FINAL-STATE EFFECTS

The theory of the inelastic electron-deuteron scatter-
ing process e+d —+ e+e+p including the effects of
interactions between the outgoing nucleons was de-
veloped in detail in a previous paper (I).' We will here
be concerned with the cross-section d'o/(dQ+E, ') for
the scattering of an electron of initial energy E, through
an angle 8 into the element of solid angle dQ„ the elec-
tron having finally an energy in the interval dE,' about
the energy E,'. All the foregoing quantities are to be
measured in the deuteron rest system (laboratory
system). The desired cross section is obtained by
integrating over the direction of emission of the nu-
cleons in their center-of-mass system the cross-section
d'o/(dQQQAE, '), and depends, therefore, on the final
center-of-mass momentum of the nucleons, but not on
their angular distribution. The necessary kinematic
relations are easily derived. The 4-momentum q trans-
ferred from the electron to the neutron-proton system in
the scattering is given in units with A=a= 1 by

q'=4E&, ' sin'(-', g),

while the momentum p=
~ yt of either of the nucleons

in their final center-of-mass system is connected to the
electron energies and the scattering angle by
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Jankus' to describe the interaction of the nucleons with
the field of the scattered electron contains only terms
through O(m ) in an expansion of the relativistic inter-
action in inverse powers of the nucleon mass (powers
of the nucleon velocity). Since the magnetic moment
terms which dominate in the cross section at large mo-
mentum transfers appear there multiplied by m ', it is
necessary for consistency to retain in the Hamiltonian
terms of this order. The necessary modifications of the
interaction Hamiltonian are easily derived by using
wave functions of the Breit type to describe the initial
and final states of the two-nucleon system, and approxi-
mating the current operator for a bound nucleon by the
free nucleon operator. ' Form factors for the nucleons
appear naturally in this procedure. An alternative
derivation of an effective interaction to be used with
nonrelativistic wave functions for the nucleons is given
in Sec. IV of the present paper. Contributions to the
cross section involving the D-state component of the
deuteron wave function were neglected in the main
body of (I), but were considered separately in an
Appendix. The nonrelativistic deuteron wave function
was therefore chosen to correspond to a pure '5~ state,

Pd"=(4ir) l» 'N(»)Xi (si,s2), (6)

with u(») satisfying the normalization condition

u'(») d»= 1.

The final state of the neutron-proton system was de-
scribed by wave functions distorted by the two-nucleon
interactions, but coupling between states of the same
total angular momentum J and the same parity, but
having different orbital angular momenta L, was
neglected. Thus the wave functions for a final state were
expressed in terms of th usual orthonormal angular
momentum eigenfunctions 'JJrsILs(r, si,s,) for definite
J, L, and spin angular momentum 5 as

MIMI 8 (p») FrLS(p») t JML (8) »1)$'$2)y

with the radial wave functions FILs(p») subject to the
asymptotic condition

FrLS(p») ~ sin(p» ——,'Lm. +8ILs), p»&&L.

A straightforward calculation using the foregoing
wave functions and the semi-relativistic interaction
Hamiltonian led to the result for the inelastic electron
scattering cross-sect. ion d'o/(dO+L~, ') given in Eqs. (7)
and (10) of (I):

KJLs P J~ FJLs(P»j)(Lg q)»i(r)»d» (13)

where u(») and FILs(P») are defined in Eqs. (6) and (g),
and jz, (z) is the spherical Bessel function of order L,
jL(s)= (~/2s)'IL+-. (s).

The formula for I(8,E,') given in Eq. (12) is too
cumbersome to be used for practical calculations, since
for the energies and momentum transfers characteristic
of the Stanford scattering experiments, ' the number of
states contributing significantly to the sum is very
large. It is therefore more convenient to work with the
difference between I(8,E,,') and the function Io(8,E,')
which is obtained by neglecting the effects of final state
interactions between the nucleons. In the absence of
such interactions, the radial wave-functions FIL8(p»)/p»
reduce to the spherical Bessel functions j L(P») The.
matrix elements defined in Eq. (13) are then independ-
ent of J and 5, and EJ1,8 —& El, for all J and 5, where

KL j L (p»)j r. (-,q»)ii(»)«». (14)

of a relativistic electron by an external Coulomb field, "
oM, ir, = ~n'E, 2 sin 4(~i8) cos'( —',8). (11)

We have here nelgected the electron mass energy rela-
tive to E, and E,', and have used units with A=c=1
and n= 1/137. E is the energy of either of the outgoing
nucleons in their center-of-mass system. The angular
distribution function I(8,E, ) is given in the neighbor-
hood of the quasi-elastic peak by

I(8)E.') = s P I,L (21+1)(Kr, L,,)'(L1—(q/2r»i)')

X [Fi„+(—1)LF ]'—2 (q/2m)'

XLF .+(—1)'P -)I:"F~

+ (—1)LiI„F&„))+-',(q/2m)'L2 tan'(-', 8)+1]
XPL {~LPi„+(—1)'Pi,+iI,P2,
+ (—1) K„Pn„]'l (3L+4) (KL+, , L,,)'
+ (2L+ 1)(KL L I) + (3L+1)(KL—i,L, I) ]
+[8,„( 1)LF—,—„+iI~F.„(—1)—x„P2„]'

X(2L+1)(K...) ). (»)
Here ~„and ~„are the anomalous parts of the proton
and neutron magnetic moments expressed in units of
the nuclear magneton. The proton and neutron charge
from factors I"~„and F~„and the anomalous magnetic
moment form factors Ii2~ and I'2„are functions of the
square of the invariant, 4-momentum transfer
q'=4E, E,' sin'(28), and are normalized to unity for
q'= 0, with the exception of Ii i, which vanishes at that
point. Finally, the radial matrix elements EJI g labeled

by the total, orbital, and spin angular momenta of the
final state of the neutron-proton system are defined by
the relation

„—i~p(~/E)I(8E ~) (10) The expression for I(8,E,') with KL substituted for

where O-M,« is the Mott cross section for the scattering
"W. Heitler, Quantuns Theory of Radiation (Clarendon Press,

Oxford, 1954), third edition, p. 241.
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EJj8 can be written in the form

Ip(0,E,') =3f(P,q) IiFip2+Fi„2+ (q/2m)'

X [Kp'Fpp'+K 'F2„']+2(q/2m)' tan'(-', 0)

X[(Fi„+K„F2„)'+(Fi„+KF2.)'])
+E(p, q) pp(q/m)2 tan'(-', -8)

X[(Flp+KpF2p) (Fln+KnP2n)]

+[2——', (q/m)']Pi, Fi„—-', (q/m)'

X [KnPipP2w+KpF2pP1 n]
+ p (q/m)2KpK, F2pF2„) ) (15.1)

where
p

7l

M(P, q) =PL (2L+1)EL2——— F'(0)d(cos8), (15.2)
2 p

~ V', q) =Z. (2L+1)(—1)'&"

I'(0)F (4r 0)d (cos0),—(15.3)
Jo

aild
F(8)=pL (2L+1)PL(cos8)ICL

jp[( ', q'+P2 P-q cos8)*'—r]N(r)rdr. (15.4)
0

Introducing next a quantity 6Jz,z,

+JLS (It JLS) (+L) I (16)

and a set of coefficients CJLs, we write I(0,E,') in the
useful form

I(8,l'' ') =Ip(8&E')+ Q CJL25JLS (17)
JLS

The coefficients CJ~ ~ are as foll.ows:

CL+i, L, i ——(2I+3)[ai+(—1) a2]
+ (3L,+4)[a4+ ( 1)La4], —

CL I,——(2L+1)[ai+a,+(—1) (a2+a4)],
CI i, I.,i ——(2L—1)[ai+(—1) a2]

+ (3L—1)[«+ (—1)'«]
CL,I , p= (4L+2) [ap . (—1)La4], —

where

al= 2[1 (q/2m)2][P1 2+F 2]
'. (q/2m) [K pF

—„—F2„+K„F,„F2„],
a2 ———',[1—(q/2m)']Fi~F, p

——', (q/2m)'

X[K„Fi F2p+K F2„Fi,],
«=-p'(q/2m)2[2 tan'(-,'0)+1][(F„+,,P,„)2 (19)

+ (Fi +K.F2„)'],
a4 ——-', (q/2m)'[2 tan'(-,'8)+1](F,„+K„F2„)

X (Fi +K P2 ).
The CJz, z are precisely the coefficients with which

each possible final state of the neutron-proton system
contributes to the cross section; we can obviously write
I(0,E,') in the form

I(0P-g ) =Q JLS CJI S(EJLS) )

which is useful in cases in which only a few matrix
elements differ from zero (see Sec. III).

In the following sections we will be concerned with
calculations of I(8,E,') and of the difference between
I(0,E,') and Ip(0,E,') caused by the presence of sig-
nificant interactions between the outgoing nucleons. It
will be necessary to consider only a limited number of
final states for the neutron-proton system, since the
quantities AJL, g vanish unless the radial wave-function
FJLS(Pr)/Pr differs appreciably from jL(Pr); this will

only occur if the corresponding neutron-proton scatter-
ing phase shift 5JL,q is large.

II. EFFECTS OF FINAL-STATE INTERACTIONS AT THE
PEAK IN d'42/(dQ, dE, ')

The main diAiculty in calculating the effects of inter-
actions between the outgoing nucleons on dpo/(dQ, dE, ')
is in the evaluation of the radial matrix elements EJJ 8,
Eq. (13).This requires knowledge of both the deuteron
wave function and the free state wave functions for
given I, L, S and. nucleon center-of-mass momentum p.
While calculations using numerical wave functions
computed from one of the phenomenological neutron-
proton potential models" " would appear to be de-
sirable, it was felt that the fundamental features of the
corrections could be understood using a very simple
model. The 'S~ component of the deuteron wave func-
tion was represented by a Hulthen wave function
matched to the observed low-energy parameters of the
neutron-proton system. In treating the wave-functions
FJLS(pr) for the final states, it was noted that outside
the range of the internucleon force, FJLS(pr) has the
folm

FJLS(pr) ~ cosp JLSFL(pr)+sin8 JLSGL(pr), (20)

where 5»8 is the asymptotic phase shift appearing in
Eq. (9), and FL(pr) and GL(pr) are the regular and
irregular solutions of the Schrodinger equation in the
absence of nuclear forces, FL(x) = (prx/2) VL+~(x),
GL(x) = (—1)L(2rx/2)~I I, ;(x). The phase shifts 8JI s
are known with reasonable certainty in the range
0—300 Mev from the results of recent analyses of the
nucleon-nucleon scattering experiments. " ' For the
electron energies and scattering angles typical. of the
Stanford electron-deuteron scattering experiments, the

'2 J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291, 1337
(1957)."P. S. Signell and R. E. Marshak, Phys. Rev. 106, 832 (1957);
109, 1229 (1958). P. S. Signell, R. Zinn, and R. E. Marshak, Phys.
Rev. Letters, 1, 416 (1958).' R. A. Bryan, Bull. Am. Phys. Soc. 5, 35 (1960), and Nuovo
cimento (to be published). The author is indebted to Dr. Bryan
for supplying the phase shifts listed in Table I, and for information
on the corresponding fits to the neutron-proton scattering data.

'~ G. Breit, M. H. Hull, Jr. , K. E. Lassila, and K. D. Pyatt, Jr. ,
Phys. Rev. 120, 2227 (1960). M. H. Hull, Jr., K. E. Lassila,
H. M. Ruppel, F. A. McDonald, and G. Breit, ibid. 122, 1606
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proton and neutron-proton scattering data below 350 Mev.

'6 M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp, Phys.
Rev. 116, 1248 (1959).
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Thar.z I. The phase shifts (in degrees) of the Bryan-Signell-
Marshak fit to the neutron-proton scatte'ing data at laboratory
energies for the incident nucleon of 150 and 240 Mev. The 'SI,
'D, 'EI, and 'F3 phase shifts are those calculated by Signell and
Marshak'; the remainder are those given by Bryan. The com-
bined set gives a reasonably good fit to the relevant scattering
data. The center-of-mass wave numbers are p=1,34 f ' for
E=150 Mev, p=1.7 f ' for E=240 Mev. The coupling between
states of the same J and L=J&1 represented by the coupling
parameters eg was omitted in the calculations described in Sec. II.

E(Mev) L BL+g, L, g

150 0 22.6
1 13.7
2 9.4
3 1.2

240 0 7.8
1 166
2 14.9
3 2.6

4, L, 1

~ ~ ~

—16.8
25.4—2.0

~ ~ ~

—23, 1
33.2—3.0

~ ~ ~

4.7—23.1.

0.3
~ ~ ~

—41—32.0
0.7

18.7—22.1
5.2—3.9
5.2—27.3
9.2—5.5

~ ~ ~

3.9—13.5
26.5

~ ~ ~

2,8—11.0
19.5

a See reference 13. b See reference 14.

"The fact that for those values of q of the most interest, the
center-of-mass energy of the emerging nucleons lies in a region in
which the scattering phase shifts are known to be large is in itself
sufficient to cast considerable doubt upon the validity either of
neglecting entirely the effects of final-state interactions, or of
treating these effects in Born approximation. The argument may
be made somewhat more precise as follows. Contributions to the
cross section from states with high orbital angular momenta are
small, the largest value of L which can appear being given roughly
by the requirement that the classical turning point in the scatter-
ing process lie inside the deuteron, L =p/a, where e is the
deuteron "radius. "Similarly, the largest value of L for which there
can be important effects of final-state interactions is determined
by the requirement that the classical turning point lie within the
range of the neutron-proton interaction, L, t,=p/p. Thus, the
ratio of the number of final states in which interactions are strong
to the total number which contribute significantly to the cross
section d'o/(dQ, dE, ') is roughly n/p= —',,

.independent of p and q.
Detailed calculations give a slightly larger fraction, on the order
of 0.4—0.5. Thus, while the large separation of the nucleons in the
deuteron reduces the over-all effect of final state interactions, the
reduction is only by a factor of 2—3, and significant corrections to

values of the momentum p of the nucleons in their
center-of-mass system are in fact equivalent to those
obtained in neutron-proton scattering experiments in
this energy range. For example, the quasi-elastic peak
occurs for incident electrons of 500 Mev scattered
through 135' at an energy E,'= 261 Mev, corresponding
to a value of p of 1.69 f '; this relative momentum for
the nucleons is attained in a neutron-proton scattering
experiment for an energy of 237 Mev for the incident
nucleon. Similarly, for E,=500 Mev, 0=75', the quasi-
elastic peak is at 357 Mev, p= 1.30 f ', and the equiva-
lent scattering energy is 141 Mev. The n pphase shifts-
at 150 and 240 Mev given by the Bryan-Signell-
Marshak fit" '4 to the nucleon-nucleon scattering data
are listed in Table I. For both energies, a number of the
phase shifts for the states with X&2 are quite large. The
corresponding wave-functions FqLB(Pr) therefore differ
significantly from the FL(Pr), and it may in general be
expected that the matrix elements EJI g will be poorly
approximated by the matrix elements El. calculated
with the neglect of interactions between the outgoing
nucleons '7

Investigations by Bryan" using a semiphenomeno-
logical potential model of the nucleon-nucleon inter-
action indicate that at 300 Mev, the greater part of the
phase shift for states with I.=0, 1 and 2 originates in
the region of internucleon separations 0—1, 0.4—1.4, and
0.8—1.8 f, respectively. For the lower scattering energies
of interest here, these regions will be shifted to larger
values of r, but it is likely that the wave functions with
L&2 will in any case attain the asymptotic form given
in Eq. (20) for r&rs ——2 f. Moreover, the region r& 2.0 f
contributes 28%, 54%, and 87% of the matrix elements
Eo, &r, and &s for p=1.3 f ', and 35%, 37%, and 68%
of the same matrix elements for p = 1.7 f '. Considering
the magnitude of the phase shifts bJz, q for L&2, it is
evident that the contributions of this exterior region
will be changed significantly if FL(Pr) is replaced by
the correct asymptotic form of FzLB(Pr), Eq. (20). The
exact wave-functions FJLB(Pr) whi'ch enter the defini-
tion of E»z will, of course, differ appreciably from the
free-particle wave functions FL(Pr) for r& re as well. In
this region our knowledge of the wave functions is
quite limited unless a specific potential model is used,
but it would appear to be a reasonable approximation
to replace the correct wave functions by those corre-
sponding to a constant potential,

FJLB(pr) ~ 7JLBFL(~JLBr) (21)

requiring, however, that pJz, g and XJzg be so chosen
that this interior wave function join properly at the
radius rs to the external wave function of Eq. (20) with
the experimentally known phase shift 6Jzg. This re-
quirement is expressed in the well-known equations

()t/p) FL'(Xro)/FL ()pro) = [FL'(pro)+ tan8GL'(pro) j
X[FL(Pro)+tanbGL(P~c)] ', (22)

and
y= [cosBFL (Prs)+sinBG„(Prc) g[FL (Xrs) g ', (23)

where FL'(x) and GL'(x) are the derivatives of FL and
Gl., and we have for simplici. ty suppressed the sub-
scripts on y, X, and 8. Since the phase shifts are known,
we are in effect matching a square well potential to
8JL,g and calculating the associated wave function; this,
"equivalent square well potential" will in general vary
with J, I., and 5, and with the momentum p, and is not.
to be regarded as physically significant.

Some justification for the foregoing model may be.
found by observing that the matrix element EJI.g in-
volves a factor FL(~qr)/( —', qr) which vanishes for 1.&OI

as (—',qr)L/(2L+1)!! for r —+ 0. Since u(r) and the wave-

the cross section may be present. We remark also that the treat-
ment of final-state interactions given in reference 8 uses a centrall.
potential to describe the interactions, neglecting entirely the very-
strong noncentral forces which lead to the large variations in sign,
and magnitude of the phase shifts listed in Table I. It should also
be noted that the apparent smallness of the effects of final-state.
interactions near the threshold for the dissociation of the deu-
teron, ' p=0, is irrelevant to discussion of such effects at the.
quasi-elastic peak, p =—,q; some confusion on this point has existedl
in the past. The effects near threshold are discussed in detail in.
Sec. III.
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functions F~Ls(Pr) for L)0 also vanish for r —+ 0, the
integrand in Eq. (13) is weighted toward large values
of x. This may be seen in Pig. 1, which shows the inte-
grand obtained for L=1, P= sq=1.3 f ' and 5=+21',
0', and —22' using the foregoing approximation for the
final-state wave function and a Hulthen model for the
deuteron ground-state wave function. The integrand in
each case has its erst maximum at a value of r very
close to the matching radius ro, taken here as 2.0 f.
However, for r near ro, the possible variation in the true
interior wave function from the form assumed in
Eq. (21) is small for reasonable potentials, being limited
by the necessity that the wave function join properly
at r = r p to its known asymptotic form. Since the asymp-
totic phase shifts are known, the major uncertainty is
probably in the proper choice of ro. It is furthermore
evident from Fig. 1 that the approximations which have
been made should be somewhat better for small than
for large values of P (srq=P at the quasi-elastic peak),
and for negative than for positive phase shifts, either a
small p or a negative phase shift tending to reduce the
importance of the interior as compared to the exterior
region. Similar (and stronger) arguments apply to the
states with 1.=2. For the states with 1.=0, the argu-
ment is less convincing, but it is fortunately not neces-
sary to know very accurately the changes in the matrix
elements associated with final state interactions, the
5 states contributing only 10% and 5% of the peak
cross section at p=1.3 f ' and p=1.7 f ' compared to
22% and 18% for the F states, and 16% and 11% for
the D states.

The matrix elements EgL, 8 were calculated using the
final-state wave functions of Eqs. (20) and (21), and
assuming a Hulthen model for the deuteron wave
function, "

g (r) +[g ar e
—srl—

Noting that jL(—',qr) = (sqr) 'FL(—',qr), we have from
Eq. (13)

0.3

~8 =+zl'

0.2—

0. t

X, = 2.6

nite interval 0&r( ~ may easily be expressed in closed
form when N(r) consists of a sum of exponentials as in
Eq. (24). The necessary relations, specialized to the
condition —,q= p corresponding to the quasi-elastic peak
in the cross-section dso/(dQ+F, ), are

NFL(g)$2e
—aug —id' —rQ (1+rG2)

g= pr, p= l3f

~FIG~1. The integrand for the matrix elements EfLs(p, g) for
p = -', q = 1.3 f ' as computed using the approximate initial and final
state wave function given in Eqs. (20}, (21}, and (24}, with
EzLs(p, g)= (4X/q) Jo" Er(x,bgLs)dx. The interior and exterior
wave functions were matched at a radius r0=2.0 f, F0=2.6. The
matrix element for s= —22' is 13% smaller than that computed
in the absence of final-state P-wave interactions between the
nucleons Lh=0j, while that for 4=+21' is 0.5% larger. Complete
curves of the fractional change in the matrix elements versus b are
given in Figs. 2 and 3.

p00

EJLs (p, q) = 'FJ Ls (pr)—FL(2qr)N (r)r 'dr
pq "o and

4O

goo

fcosogLsF L (pr)
pq"o

+sin8zLsGL(pr)]FL( sqr)N(r)r 'dr

T0

+ [VJLSFL(~JLSr)
pq ~o

coso JLsFL(pr) sinfizL&GL(pr)$—

XFL('qr)N, (r)r 'dr. (25)—
The integral over the 6nite segment 0&r&rp is most
simply evaluated numerically, while that over the infi-

)" FL(x)GL(x)e *x 'dx—-
L p

t
" cos(2L+1)gdg= 2(—1)' (27)

E(G'/4)+cos'0l'*

Here QL is the Legendre function of the second kind.
The remaining integral in Eq. (27) is easily reduced to
a collection of inverse tangents and polynomials. The
resulting expressions for the infinite integrals in Eq. (25)
are rather lengthy, but are straightforward to derive.
We note also that the matrix element KL, Eq. (14),
which enters the definition of AzLs, Eq. (16), is given
for arbitrary p, q by:

' L. Hulthen and M. Sugawara, FIandbuch der I'hysik, edited
by S. Flugge, {Springer-Verlag, Berlin, 1957), Vol. 39. I:L(p q) = (&/pq)LQL(*) —QLb')3 (28)
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~(p,q) = L&'/(pq)'] L*'—11 '+Ly' —1?'

and

1 &x+1 y —1
ln (29)

y —x . x—1 y+1

1P 1 x+1 1 y+1
1V(p, q) = -', —ln +—ln

(pq)' x x—1 y y —1

2 x+1y+1
ln

x+y . x—1y—1J
(30)

Those terms in the function Is(0,E,'), Eq. (15.1), which
involve 1V(p,q) arise from interference between elec-
trons scattered off the proton and those scattered off
the neutron. These interference effects are entirely
negligible at the peak of the inelastic electron spectrum,
and will be omitted. As shown in the Appendix, the
function 3f(p, q) may be approximated at the peak by

~(p q)
—I QT2/p2)$&

—2+p—2 2(p2 &2)
—I ln(p2/&2)]

=(2.962&&10 "cm)p ', sq=p. (31)

The foregoing expression for M(p, 2p) is accurate to
within 1.4% for p= —,'q= 1.0 f ', and the errors decrease
as p ' for larger values of p.

where Lcompare Eqs. (83)]

x = (422+ p'+-,'q')/pq,

y = (&'+p'+-:q')/pq.

Finally, one obtains for the functions M(p, q) and X(p,q)
defined in Eqs. (15)

Numerical results for the change in the peak value of
the cross-section dstr/(dQ+E, ') caused by interactions
between the outgoing nucleons were obtained as follows.
The matrix elements EJl.g and EI, and the quantities
AgLs which enter in Eq. (17) for the corrected cross
section were calculated using the approximate wave
functions given in Eqs. (20), (21), and (24). The phase
shifts 6JI,& were taken from the Bryan-Signell-Marshak
fit to the nucleon-nucleon scattering data below 300
Mev (see Table I],"I4 but the coupling between states
of the same J and 5 with I.= J-tf-1 was ignored. This
should introduce little error in the results. Lacking at
those values of p which were of interest here detailed
information about the radius rp of which the wave-
function FzL&(pr) attains substantially its asymptotic
form, we have used in our calculations the value rp= 2.0
f. This is undoubtedly too large for the S states, but
appears to be a reasonable value for the I' states and
probably the D states as well. As a practical matter, it
was simplest in using the matching condition of Eq. (22)
to assume a set of values for the parameter A. and to cal-
culate the corresponding values of 8JI g and +Jgg. The
value of the matrix element corresponding to the experi-
mentally determined phase shift was then obtained
graphically. The quantity Rl. which gives the fractional
change in the matrix elements of order L caused by final-
state interactions,

+L [IfJLS Ifj]/Jf Ly

is plotted in Fig. 2 for p=1.3 f ' and 1.=0, 1, 2; the
same quantities are shown in Fig. 3 for p= 1.7 f '. It is
seen that the changes in the matrix element associated
with phase shifts on the order of those in Table I are

O. I O. I

L=2

I

I
CL

-0.1
-O. l

-0.2

-0.4
t

0
8 (radians)

t

0.4

-0.2—
1

-0.4
t

0
8 (radians)

0.4

FIG. 2. The fractional change E(5) in the matrix elements
Ezz, z(p, q) relative to the matrix elements EL, (p,q) defined for
vanishing final-state interactions, calculated for p=-,'q=1.3 f '
using the approximation given in Eq. (25).

FIG. 3. The fractional change R(sl in the matrix elements
E~I,g(p, q) relative to the matrix elements EL, (p,q) defined for
vanishing final-state interactions, calculated for p=~~q=1. 7 f '
using the approximation given in Eq. (25).
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in some cases remarkably large. In Tables II and III
we give the values of the quantities Dqt, s Ag——t,s/(Ez)'

crt.s= Czz. sKz'/Io(e, E,') for the parameters
corresponding to the quasi-elastic peak for momentum
transfers q=2.6, 3.4 f ', and scattering angles 0=75',
135'. The numbers DJI g are the fractional changes in
the squares of the matrix elements associated with 6nal
state interactions, while the coeKcients cJ1.8 are the
fractional weights of each state in the cross section
without 6nal-state interactions. The over-all change in
the peak cross section, (tI(8,E,') Io(8,E—,')]/(Io(0, E,'),
is obtained by multiplying the numbers in the same
locations in the two tables and summing. In calculating
Io(O,E,') and the coeKcients cJ'i, s we have assumed that.
I"I~=F2„=I'"2„, and that FI„=O, in accord with the
results of the Stanford experiments. ' Our results are in-
sensitive to small deviations from these conditions.

The dependence of Ez(8) on 5 shown in Figs. 2 and 3
is easily understood. As may be seen from Fig. 1, the
value of the integral giving the matrix elements EJL,8
is largely determined by the 6rst peak in the integrand.
It is convenient to consider separately the dependence
of this peak on the deuteron wave-function u(r) and
on the function F~za(pr)Fr, (sqr)/( ', qr). We s—hall take
p= sq and x= —',qr. If interactions between the outgoing
nucleons are neglected, Fzz, s(x) is replaced by Fz, (x),
and the second factor in the integrand becomes simply
x '/Fr(x)]'. This function has its first maximum at
x=1.17, 2.46, and 3.64 for L=O, 1, and 2, while, for
p=-', q=1.3 f ', u(r) reaches its maximum value at:
x=1.98. Thus a small positive phase shift in Fqzs(x),
by shifting the first maximum in x 'Fzr, s(x)Fz(x)
away from that in x 'LFi, (x)]' and in the direction of
smaller x will bring the peaks in the two factors of the
integrand more nearly into coincidence for L=1 and 2,
and will decrease the overlap of the peaks for L=O.
Consequently, for small positive phase shifts, KJ&z will

be larger than EI., hence, RI.)0, for L=1 and 2, while
for L=O, %Jog will be smaller than E~, and Ro(0. Ke
remark however, that the function x 'Fgr, s(x)Fz(x)
assumes negative as well as positive values for non-
vanishing phase shifts b«8. In fact, for suKciently large
positive L= 1 and L= 2 phase shifts, the increase in the
integrands in the region of the first peak will be offset

TAELE II. The quantities DJI8 nJLs/(Et, )' which give—the'
fractional changes in the radial matrix elements EgLg associated
with the e8ects of interactions between the outgoing nucleons.
The matrix elements are calculated for parameters —,'q=p corre-
sponding to the peak in the spectrum of inelastically scattered
electrons.

TABI,E III. Representative values of the coefficients cJLg
—CJLgEL /Ip(H, E, ) giving the fractional contribution of the final
state of the neutron-proton system labelled by angular momenta
J, I, S to the peak cross section in the absence of anal-state inter-
actions between the nucleons. The coefficients were calculated in
the approximation Fi„——0, F2„=F1„=F2„.

q (f ') a +li Li 1 Ly Li 1 L ii Li 1 Ly Ly 0

2,6

2.6

3.4

3.4

75

135'

75'

135

0 0.046 ~ ~ e 0 054
1 0.120 0.034 0.004
2 0.034 0.015 0,085

0 0.015 ~ ~ 0.069
1 0.141 0.040 0.005
2 0011 0.005 0.108

0 0.020 ~ ~ o 0 039
1 0.089 0.026 0.003
2 0.020 0.009 0.083

0 0.006 ~ 0 043
0.100 0.029 0.003

2 0.006 0.003 0.092

~ ~ ~

0.055
0.024

~ ~ ~

0.061
0.007

0.038
0.014

0.043
0.004

TABLE IV. Corrections to the function I(8,E,') at the quasi-
elastic peak resulting from interactions between the outgoing
neutron and proton.

by decreased and negative contributions from other
ranges of x, and EJL,q will become smaller than EI..
For negative phase shifts in the L=1 and L=2 states,
the situation is reversed, and EJI.& decreases rapidly
with increasing ~8z&s~ as a consequence both of di-

minished overlap of the peaks of the two factors, and
of the presence of the oscillating components in the
integrand. The integrands for A=1, p=-', q=1.3 f ',
and 8=+22', 0', and —21' are plotted in Fig. 1, and
the effects of the phase shifts may easily be seen. The
roles played by positive and negative phase shifts in the
foregoing are interchanged for the L=0 states, but the
analysis is otherwise unchanged. The expected behavior
of R&(5) clearly reflected by the curves of Fig. 2. The
situation is similar for p=-,'-q=1.7 f ', and will not be
discussed in detail. However, it is interesting to note
that the maximum in u(r) now corresponds to x= 2.58,
a point very close to the first maximum in x '[ Fi(x)]'
at x= 2.46. As would be expected, Rt(5) is nearly sym-
metric about 8=0.

The effects of anal-state interaction on the peak value
of d'o/(dQ, dE.') are summarized in Table IV for q= 2.6,
3.4 f ', and various scattering angles. In every case, the
peak cross section is decreased, the correction varying
only slightly with 0. These results are based on the phase
shifts given by the Bryan-Signell-Marshak fit to the

1.3 0
1
2

0
1
2

1.7

p(f ') I. DL+1, L, 1

—0.219
0,036
0.071

—0,053—0.075
0.096

~ ~ ~

—0.176
0.073

~ ~

—0.144
0.016

DL—1, L, 1

~ ~ ~

0.024—0.328
~ ~ ~

—0.004—0.513

DI, L, p

—0.174—0.252—0.044
—0.037—0.212

0.077

2.6

3.4

45'
75'

105'
135'
45'
75'

105'
135'

—0.0245—0.0221—0.0191—0.0165
—0.0120—0.0113—0.0106
—0.0101
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nucleon-nucleon scattering data at 150 and 240 Mev.""
A separate calculation for q=2.6 f ' and 0=75' using
the Gammel-Thaler phase shifts" led to a 1.4%%uo de-
crease in the peak cross section instead of the 2.2%
decrease listed in Table IV. The difference in the results
for the two fits is associated mainly with differences in
the 'So 'D~, 'SI, 'D~, and 'Ds phase shifts. Breit et al. '5

have remarked that neither value of the 'D& phase shift
agrees well with that determined from their complete
phase shift analysis of the proton-proton scattering data
between 10 Mev and 345 Mev and that the Bryan-
Signell-Marshak value of the 'So phase shift is definitely
too large. The corresponding analysis of the neutron-
proton scattering data undertaken by Hull et al."indi-
cates that both the Gammel-Thaler and the Bryan-
Signell-Marshak values of the 'SI phase shift are too
small, and the values of the 'DI and 'D3 phase shifts,
too large, in magnitude. The "best" value for change in

the peak cross section for p=-', q=1.3 f ' and 0=75'
would appear to be about —

2%%uo. The corrections at
other angles wouM also be changed somewhat. The
discrepancies between the Bryan-Signell-Marshak and
the Gammel-Thaler results are illustrative of the un-
certainties introduced into the present calculations by
errors in the assumed phase shifts. In addition the
analyses of Breit et al."and Hull et al."lead to rather
large phase shifts in the F and G states at the higher
equivalent scattering energy 240 Mev (q=3.4 f '), and
it is probable that changes in the associated partial wave
matrix elements should be taken into account.

As may be seen from Tables II and III, the un-

expected smallness of the final state corrections results
primarily from the small weights corresponding to those
states with the largest values of 6Jis Le.g. , the 'So +1,
'PI, 'PI, and 'D~ states for the case q=2.6 f ', and the
'Pi, 'Pi, and 'Di states for q= 3.4 f ']. The final values
are also reduced by factors of roughly 1.5 and 2 for
q= 2.6 f ' and q= 3.4 f ' by cancellations between posi-
tive and negative terms associated with phase shifts of
different signs. It is interesting in this context to note
that the sign of the over-all correction to the peak cross
section is not obvious a priori The weights C.zr.s with
which a given 6nal state contributes to the cross sec-
tions, Eq. (12'), are positive )compare (I),' Eq. (7.3)j,
and we have seen that it is possible either to increase
or decrease the matrix elements K»z by choosing a
final state phase shift of the appropriate sign. Thus,
with some choice of phase shifts, the peak value of the
cross section couM be made to increase; the phase shifts
determined from nucleon-nucleon scattering experi-
ments lead instead to a small decrease in that quantity.
It should, in addition, be remarked that, had we
written the cross section as in Eq. (15.1), that is, as a
sum of an interference cross section and a "direct" cross
section corresponding to scattering off of a single
nucleon, the interference cross section would no longer
be negligible as was the case in the absence of final state
interactions. In fact, for q=2.6 f ', and 9=75 the

interference terms contribute 2.3% of the peak cross
section, while for q=3.4 f ', and 9=135' their contri-
bution has increased sharply to 4.9%. The interference
terms are positive in each case. Conversely, the con-
tributions to the peak cross section which correspond
to the scattering of the electron by a single nucleon are
decreased by 4.5% for q=2.6 f ', and by 5.8% for
q=3.4 f ', to give the small over-all corrections quoted
above. The foregoing numbers would be changed some-
what by an alteration in the radius ro at which the
interior and exterior final state wave functions are
joined, or, indeed, by changing the entire model for the
deuteron and the final-state wave functions. It never-
theless seems probable that the over-all corrections to
the peak cross section would remain negative and about
the same magnitude as calculated here, our results being
in large part determined by the phase shifts derived
from experimental studies of neutron-proton scattering.
However, more precise calculations using wave func-
tions derived from one of the two-nucleon potentials
which fit the high-energy neutron-proton scattering
data would be of great interest either in substantiating
or modifying the present, largely exploratory, results,
and should certainly be undertaken. It is apparent also
from the large changes in individual matrix elements
associated with the effects of final state interactions,
that the results given in (I) for the angular distribution
of the emergent nucleons may be significantly altered,
but the proposed backward-to-forward ratio method for
determining the ratios of the neutron to the proton
form factors should remain valid for the reasons noted
there.

III. EFFECTS OF FINAL-STATE INTERACTIONS NEAR
THE THRESHOLD FOR DEUTERON BREAKUP

For a fixed energy of the incident electron and a,

given scattering angle, the range of possible final
energies for an electron scattered inelastically from the
deuteron is bounded above by Eo, Eq. (13).This energy
represents the threshold for the dissociation of the
deuteron, the nucleons emerging with vanishing mo-
menta p in their center-of-mass system:

p'= m(Eo —E,') L1+(E,/m) sin'(-,'0)j. (32)

Kendall et a/. "have recently made an extensive study
of the cross-section d'0/(dQ, dE, ') for final electron
energies within a, few Mev of the threshold. In this
region p is small, and the cross section is dominated by
the contributions of final S states for the nucleons.
Moreover, Jankus' has shown that the S-state matrix
elements EJO& are greatly increased by the strong
attractive interactions of the nucleons in the final state,
causing the cross section to peak sharply near p=0.
The results of Kendall et al. '0 confirm that the peak is
present, but the measured cross sections, averaged over
a 1-Mev range of energies just below threshold, are
generally smaller than predicted by the Jankus theory.
This may be seeTi in Fig. 4.
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Fro. 4. The ratio of the cross-section d'rr/(dQ, dE, ') integrated
over the interval 0&E0—E,'&1 Mev, to the corresponding
quantity calculated from the Jankus theory using the Bargmann
wave functions for the initial and final states of the neutron-
proton system. The function I(8,E„QE) describing the integrated
cross section is de6ned in Eq. (50). The parameters are E,=500
Mev, DE=1 Mev. The experimental data are those of Kendall
et a/. ,

' while the solid curves are calculated for the models con-
sidered in Sec. III.

' V. Bargmann, Revs. Modern Phys. 21, 488 (1949).

In both the original calculations of Jankus and sub-
sequent calculations performed at Stanford, the 5-state
matrix elements E~oq were evaluated using deuteron
and 6nal state wave functions corresponding to an
Eckart (Bargmann) potential. " This choice has the
attractive feature that the wave functions are known
in closed form. The scattering phase shifts furthermore
satisfy exactly the shape-independent effective range
expansion. On the other hand, the integral which de-
termines the matrix elements contains a factor js(—', qr)
in addition to the product of the wave functions
PEq. (13)j. This factor weights most strongly small
values of the internucleon separation r when q is large,
and it is precisely for small separations that the
Bargmann wave functions may be expected to be least
accurate. The facts that the experimental cross sections
are smaller than predicted, and that the discrepancy
increases with increasing q, suggest strongly that the
discrepancy is associated with the neglect of the re-
pulsive core which is present in the two-nucleon inter-
action. " "The core was shown by McIntyre et al. ' to
decrease markedly the value of the deuteron form factor
Fq observed in elastic electron-deuteron scattering.
Since the low-energy S-state scattering wave functions
behave for small r roughly like the deuteron wave
function, one may similarly expect the core effects to
be important in the inelastic scattering near threshold.

I(H,E,') ~ L(Pi„+Fi„)'—2(q/22rz)'(Fi„+Fi, )
X (lr„P2„+lr P2„)+-;(q/22rs)'L2 tan'(28)+1)
X (Fry+Pi +Ir,F2~+Ir P2 )'jI r2

+-', (q/2222)'L'2 tan'(-'0)+1j
X (Fly Pln+IryF2y IrnFsn) It s . (33)

This expression may be further simplified if one uses
the relations F~„=I'2„=Fi„andF,„=Owhich are found
experimentally to be valid over the range of q of present
interest. ' The '5~ and 'So matrix elements E~o~ and E000
will henceforth be denoted by E& and Ez as above.

The matrix elements E~ and E~ have been calculated
for the following two models of the deuteron and Anal
S-state wave functions in addition to the Bargmann
model:

Hulthen: u(r)=Pe "(1—e &") (34.1)

Fe,r(Pr) = (1—e ~s "")sin(Pr+Be, r). (34.2)

Repulsive core: u(r) = Iqe «(1 e
—rr)--

X (1—e-s")2 (35.1)

Fe r(pr) = (1—e is, rr)(1 —e ~r)2

Xsin(pry&, ,,). (35.2)

The Hulthen model corresponds to a potential which
is attractive and singular at the origin; the wave func-
tions u(r) and Fz &(pr) satisfy the usual boundary
conditions at infinity, u(r) ~ Xe—', Fz z(pr)
—+sin(pr+8z&), and vanish linearly for r —&0. The
wave functions for the repulsive core model, on the
other hand, vanish as r' for r —+0, simulating thereby
the effects of a strong repulsion between the nucleons
with a range given roughly by (2p) '. When the re-

The results of the present calculations substantiate this
view.

For the remainder of this section, we will be con-
cerned with the calculation of the angular distribution
function I(8,E,'), Eq. (12), for Es—E,'&1 Mev. For
the 500-Mev incident electron energy used in the bulk
of the Stanford experiments, "the corresponding values
of p lie in the interval 0&p&0.19 f ', and the equiva-
lent neutron-proton scattering energies in the range
0&8&,b&3.1 Mev. There is no evidence of any signifi-
cant interaction of the nucleons in states with L& 1 for
energies in this range. Thus the matrix elements Eg~g
may be replaced for L&1 by the matrix elements El,
for noninteracting particles. The corresponding con-
tributions to I(0,E, ) are negligible for the energies of
interest, the free wave functions Fr, (pr) for small p
being strongly suppressed by the angular momentum
barrier in the region in which the function js(sqr)u(r)
is large. Retaining only the contributions of the Anal
5 states, and making modifications in the effective inter-
action Hamiltonian' appropriate to the discussion of
the cross section near threshold, one then obtains for
I(8,E,')
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and
zz(r) —+ t 1 nr+ —j(1—e

—&") (37.1)

cotlrFz (pr) —+ Ll —(r/az)$(1 —e ~z'"), r, p ~ 0.
(37.2)

Since the triplet scattering length a~ is given approxi-
mately by aT '=n, it is evident that the adjustment of

p and ) z to reproduce the triplet effective range rp z

will require y=) y, and the bound and free wave func-
tions will indeed be similar in shape for r small. The
same form has been used for the singlet and triplet free
state wave functions, since the corresponding potentials
are thought to be rather similar in character. ""Ke
have in particular used the same repulsive core parame-
ter p in each.

In the calculations which have been performed using
the model wave functions, the parameter y was deter-
mined by matching the deuteron wave function zz(r)
to the triplet effective range. The extra parameter p, in
the repulsive core wave functions was evaluated simul-
taneously by requiring that the calculated deuteron
form factor Fg(q'),

~ 00

Fp(q') =
) jo(~2qr)zz'(r)dr, (38)

maining parameters are properly chosen, the wave
functions also satisfy the conditions imposed by the
low-energy neutron-proton scattering data. Thus, each
of the wave functions should reproduce the appropriate
effective range. In addition, the functions zz(r) and
cot8»F&(pr) are expected to have essentially the same
shape inside the range of the neutron-proton forces.
Within this range, the small positive or negative
energies represented by p and n may be neglected rela-
tive to the potential energy, and the shape of the wave
functions for small r is determined predominantly by
the latter. The foregoing model wave functions have
this property. For example, using the effective-range
expansion for the cotangent of the phase shift,

cot4, r= —(p~s, r) '+ zp&o;s, r+ ', p ~ 0 (36)

one obtains for the Hulthen wave functions for small r

solutions of the combined matching problem (form
factor and effective range) were found in the region

p=p. It was consequently assumed in the final calcu-
lations with the repulsive core wave functions that
y=p, , and the single remaining parameter p was de-
termined from the triplet eRective range. The resulting
parameters in the two cases were as follows; Hulthen:
y=1.202 f ', Xq=1.215 f ', Ay=1.246 f '; repulsive
core: p p 2 13 f

y Xp 1 72 f
y

A, z 2 62 f
o.=0.232 f ' X'=0766 f ' The Hulthen and hard-core
deuteron wave functions are shown in Fig. 5, while the
deuteron form factors P~' calculated for the two models
are shown in Fig. 6 along with the data of Friedman
et ut. ' The theoretical form factor corresponding to the
Hulthen wave function fails completely to fit the data,
while that corresponding to the repulsive core wave
function provides a reasonable fit. That the agreement
of the theoretical and experimental results is not precise
is to be expected, considering the crudity of the one
parameter model for N(r). The fit could undoubtedly
be improved by going to a larger radius for the repulsive
core. As may be seen from Fig. 5, the radius of an
equivalent hard Dnfinitely repulsive( core is about 0.2 f
in the present model. This is somewhat smaller than the
radius 0.26—0.30 f indicated by the Gartenhaus wave
function" which was found by McIntyre e$ al. ' to give
a good fit to P~'. The curvature of P~' could probably
be corrected as well if the contributions of the deuteron
D state were included, since these tend to increase P~'

0,8

0.6

OA

give a reasonable fit to the recent data of Friedman et ul. '
on elastic electron-deuteron scattering. The value of p,

so obtained was used in the free state wave functions
Fs r(pr), and the remaining parameters Xq r were
matched to the appropriate effective ranges. In practice,
it was found that a reasonable fit to Pd could be obtained
with the repulsive core wave functions, but the precise
value of p, depended rather sensitively on the experi-
mental value taken for P~ and on the value of q at which
the form factors were matched. "However, satisfactory

"In the course of the calculations, we attempted to fit the
deuteron form factor I'q using for the deuteron wave function
N(r) =Fe "(1—e &")(1—e I""), The 6t obtained with this wave
function was not satisfactory, and it was necessary to add the
extra factor of (1—e &") which appears in the wave function given
in Eq. (35.1).

0.2

0
0 2

r (fermis)

' S. Gartenhaus, Phys. Rev. 100, 900 (1955). The Signell-
Marshak analysis of the nucleon-nucleon scattering data below
150 Mev" is based on the Gartenhaus potential, with additional
phenomenological spin-orbit potentials.

Pie. 5. Model wave functions for the deuteron. It is apparent
that the repulsive-core and Hulthen wave functions differ in-
significantly from the asymptotic wave function e ~" for r &4 f.



INELASTIC ELECTRON —DEUTERON SCATTERING

I.O functions g, ,(r) and g, ;(r) which approach unity for
r —+ ~, and write Fe,r(pr) in the form

Ii, (pr) = cosh.;g~;(r) sinpr

+sinh, g2, , (r) cospr, ~=S,T. (41)

The matrix elements Ks z are then given for small p by

K, (p, q)
—+ 2&V(pq)

—'{2(p/q) cosh, (p)k, ,, (q)
+sinh, (p) k2, , (q) ), (42)

where

0.01 k, ,=X—' jo(x)N(x)g&, , (x)xdx

k, „=X ~ " j,(x)~(x)g, , (x)dx.

O.OOI

q (f ermi}- I

FIG, 6. Theoretical values of the square of the deuteron form
factor Fd' calculated from the Hulthen and repulsive-core wave
functions for the deuteron given in Eqs. (34) and (35). The ex-
perimental data are those of Friedman et ul. 7

for large values of q. ' lt is in any case evident that the
effects of the repulsive core cannot be neglected, and
convenient to investigate these effects initially using
relatively simple wave functions.

Calculation of the matrix elements E~ and E7 is
straightforward and can be performed analytically
using the simple wave functions discussed above. Some
simplifications are nevertheless possible for the small
values of p with which we are concerned. The typical
integrals which enter Eg 7 for the model wave functions
are of the form

We have expressed the integrals in terms of the dimeo-
sionless quantity x=-,'qr and have removed also the
deuteron normalization factor iV= [2n/(1 —nrp z')]*' to
make k~; and k2; dimensionless. These functions depend

one alone; the entire dependence of the matrix elements
on p is contained in the phase shifts and the factors of p
which appear explicitly. The functions k&, ; and k2, ; were
calculated for g in therange 1.5 f '&q&5.0 f 'for both
the Hulthen and the repulsive core wave functions.
The results are shown in Figs. 7 and 8 for the singlet

0,4

and

jo(2qr) sinPre "'dr= (2q) '

y {ln[(-,'qy p) '+v'] —ln[(g' q
—p)'y v'])

~ p[l.q2+v2] p ~ 0 (39)

0.2

jo(-,'qr) cospre ""dr= q
'

&& {tan —'[(-,'q+ p)/v]+tan —'[(-,'q —p)/v])
—+ (2/q) tan —

'(q/2v), p ~ 0. (40)

In the present calculations, we have used the indicated
limiting forms of the integrals for p —+ 0; these are
suKciently accurate for the range of p which has been
considered, 0&p&0.19, f ' the errors in each case being
of relative order p'." It is convenient to introduce

~ For p=0.10 f ', q=2.50 f ', and the Hulthen-type wave
functions of Eqs. (34), the approximate values of k1 and k2 were
found to be respectively 0.9% and 0.3% smaller than the exact
values for both the singlet and the triplet parameters. For the
hard core wave functions, the approximate values were 1.6% and
0.3% small. The corresponding errors in d o./(dQ, dE, ') were
—0.6% for both the Hulthen and hard-core wave functions. The

-0.2—

l.5
I

2.5
I I

l
35

q (fermi}

Fto. 7. Values of the dimensionless, parameters k1, g(q) and
k2, q(q) entering the de6nition of the singlet matrix element Xg,
Eq. (42). The curves labeled by k1, z correspond to the Hulthen-
type wave functions of Eqs. (34), those labeled by k;, z', to the
repulsive-core wave functions of Eqs. (35).

errors increase quadratically with p, reaching 2.5% for p =0.20 f '.
However, the approximate cross sections integrated over the
interval 0&p&0.20 f~ are only 0.8% too small, and the errors
cancel out essentially completely in the ratio of the hard core to
the Hulthen results. The errors increase slightly with increasing q,
but remain small in the cross section and negligible in the ratio.
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FIG. 8. Values of the dimensionless parameters k1, z (q) and
kz r(ql entering the definition of the triplet matrix element Xr,
Eq. (42). The curves labeled by k; z correspond to the Hulthen-
type wave functions of Eqs. (34), those labeled by k;, z', to the
repulsive-core wave functions of Eqs. (35).

and triplet final states of the neutron-proton system.
The E's are considerably diRerent for the two models,
and it is apparent that the theoretical values of the cross
section will also diRer significantly, especially for large
values of q. The complete integrand for E~ in the two
models is shown in Fig. 9 for p =0.10 f ' and ri = 2.50 f '.
The eRects of the suppression of the repulsive core
wave function for small values of r are clearly seen.

Similar calculations were carried out using the
Bargmann wave functions" in order that a comparison
with the work of Jankus could be made. In this model,
the deuteron wave function is given by

gg(r)
—ge ar(] e

—err) (1+P&&
——err) 1—

while the free S-state wave functions are given by

These terms could be integrated analytically, while the
remainders, which vanished rapidly with increasing r,
were integrated numerically. The resulting values
of ki, ; and k~, ; were found to lie as expected between
the values obtained for the other models.

Calculation of the angular distribution function
I(O,E,'), Eq. (33), in terms of the singlet and triplet
phase shifts and the functions k~, ; and k2, , is straight-
forward. We have assumed that IlI„=Il2„=Ii~„, and
that F~„=0,4 the nucleon structure then affecting the
results only through an over-all factor (F~)'. The
quantity PI(0,F.,')/(F~)2 is shown in Fig. 10 for the
following parameters: E,=500 Mev, I&'0 ——393 Mev,
0=90', and Eo—F,'&1.2 Mev. The variation in II over
this small range in E,,' is negligible, and q has therefore
been given its value for E,'=ED, g=3.20 f '. The con-
tribution of the 'So final state for the nucleons is seen
to be much larger than that of the 'SI final state for
values of E,' very close to Eo. The sharp peak in the
singlet contributions is easily understood. For P suK-
ciently small, cotbz may be represented by the first
term in the effective range expansion, Eq. (36),
cot8+ —+—(Pa&) ', and EB is given approximately by

Ks ~ 2X(pq)
—'(1+p'as') '

X(2(P/v)k, .+ IP~. lk,.),
l (P«,.) (P~s)«1 (47)

As a consequence of the large magnitude of the singlet
scattering length, uz ———23.8 f,"the quantity 2(P/g)kr q

0.2

O. I

F,(pr)=cos8, (1 Pe ~")(1+P,e "'") ' —sinpr

+sin6, (1—e '*')(1+p,e "'") ' cospr

+Sp P2I (4pz+ p,2) (4P2yg z)$ ie )„r——

X (1+P,e—"")—' sinpr, (46)

where i =S,T, and Xs ——1.57 f ', Xr ——1.96 f ', Ps=0 90, .

Pr=1.62, and v;=X, (P;—1)(P,+1) '. The Bargmann
wave functions are reduced in magnitude for small r
relative to the Hulthen-type wave functions of
Eqs. (34), but not as much as the repulsive core wave
functions of Eqs. (35). They therefore represent an
intermediate case in the study of core eRects. The last
term in the expression for F;(Pr) is very small for the
range of p of present interest, and was neglected. The
functions k~, , and k2, , were calculated by subtracting
from the integrands their asymptotic forms for large r.

- O.l

2
r (fermis)

FIG. 9. Integrand for the singlet matrix element E'z calculated
for the Hulthdn-type and the repulsive-core wave functions of
Eqs. (34) and (35) for q=3.0 f ' and p=0.1 f '. The singlet scat-
tering phase shift for this value of p is 58'. The marked difference
between the two wave functions for small r is clearly seen.
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details of the shape of the cross section.

The predicted peak in the cross-section d'rr/(dQ. dL. ')
was clearly observed in the experiments of Kendall et al."
However, the measured values of d'o/(dQ. dE, ') were
found to be smaller for large q than was expected on the
basis of the Jankus theory. ' The ratio of the measured
to the predicted cross section, each integrated over the
interval Fo—I+','&1 Mev, is shown in Fig. 4. The extent
to which the neglect in the Jankus calculations of the
effects of the repulsive core in the neutron-proton inter-
action accounts for the discrepancy may be determined
by calculating the ratio of the integrated cross sections
for the repulsive core to the Bargmann (Jankus) model.
The integrated cross section is given by

I

- I.O -0.5
E,'-E, (Mev)

+&0

~ Ep—b, E

where

dsa/(dQ, dE, ') = o M, ii(2/7r)I(O, E„dE)

X[1+(E /m) sin'( '8)$
—'-(49)

FIG. 10. The variation with E,' of the function pI(S,E,')/I'„'
which determines the effects of the structure of the deuteron and
final-state wave functions on d20-/(dQ, dE, '). The parameters are
E,=500 Mev, 8=90', E0=393 Mev, and the nominal value of q
over this energy range is q=3.20 f '. The sharp peaking in the
contribution of the final '50 state of the neutron-proton system is
clearly seen. The repulsive-core wave functions of Eq. (35) were
used in the calculation.

is always much smaller than
~ pas ~

&s, s for q in the range
considered, 1.5 f '&q&4.5 f ' [see Fig. 7$, and one
obtains as a rough but useful approximation

Es=2$r~as~q '(1+P'as') "Ass=,

The square of this matrix element appears in the func-
tion pI(8,E,') and in the cross-section d'o/(dQ+E, ').
multiplied by an extra factor of p. The resulting func-
tion p~as~ (1+p'as') ' vanishes for p=0, attains its
maximum value for p= ~as~ '=0.042 f ', and drops
again to one half of its maximum value for p= 0.16 f '.
Since Es E,' is proportional t—o p', the region of rapid
variation of the singlet contributions to pI(O, E, ) is
compressed in the energy variable into a small range of
final energies near Es, and the function pI (O,E.')
appears sharply peaked in this energy range in Fig. 10.
Similar considerations apply to the triplet contributions
to pI(O, E,'), but since the triplet scattering length is
relatively small, az ——5.38 f,"the peaking is less promi-
nent, and is not apparent for the limited range of
energies shown in Fig. 10. From the considerations
which lead to the approximation of Eq. (42) for the
matrix elements ECg 7, it is evident both that the ap-
pearance of a peak in the cross section for E,'=F0 is
essentially independent of the model used for the
deuteron and free state wave functions, and that its
shape is determined mainly by the known neutron-
proton S-wave scattering phase shifts. Considerable
information about the details of the wave functions is

I(O,E„BE)= I(O,E,')p'dp,
0

(50)

and p is the maximum included value of the momen-
tum p, corresponding to the minimum value of
F,,', F,'=ED—DE." The desired ratio of the cross
sections is given by the ratio of the functions I for the
two models. Since q does not vary significantly for
AE, &1 Mev, the functions ki, and k~;. as well as the
factors of rI which appear in Eq. (33) may be regarded
as constants as far as the above integration is con-
cerned. The entire dependence of I(O,I':,') on p then
arises from the phase shifts and kinematical factors
which appear in the definition of the matrix elements
Es z, Eq. (42). The required integrals are easily per-
formed analytically using the effective range expansion
given in Eq. (36) to determine the phase shifts.

The calculated values of the dimensionless quantity
I(O,E„AE) cos( ', )8/P~' are -shown in Fig. 11forE, =500
Mev and DE&=1 Mev. The predictions of the three
different models differ drastically for large values of 0

[large values of qj, the repulsive core wave functions
leading as expected to the smallest results. The ratios
of the repulsive core values of I to the values for the
Hulthen and Bargmann (Jankus) models are shown in
Fig. 4 along with the experimenta, l-to-Jankus ratios
determined by Kendall ef al."It is seen that the general
trend of the experimental-to-Jankus ratio is reproduced
by the repulsive core model, even though the wave
functions are somewhat inaccurate as indicated by the
lack of precision in the fit to Fs [see Fig. 6$. It in any
case seems clear that the discrepancy with the Jankus
theory found by Kendall et al." can be accounted for

"Note that for fixed values of E. and 8, the quantities q, p, and
E, are all determined if the value of any one is given, It is con-
venient for the present purposes to take the minimum value of
E,', or d Ji, as the independent variable.
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FIG. 11. Va1ues of the function p(e,E„riR}c os( 82)i/F„' de-
Gned in Eq. (50). This function contains the effects on the inte-
grated cross section of the structure of the deuteron and final-state
wave functions. The parameters used were E,=500 Mev and
DE=1 Mev. The Bargmann wave functions were used in the cal-
culations of Jankus. ' The Hulthdn-type and repulsive-core wave
functions of the present paper are defined in Eqs. (34) and (35).

by using in the calculation of the matrix elements E8, &

wave functions which take adequate account of the
repulsive core in the neutron-proton interaction.

From the foregoing results, it is evident that the
study of the inelastic electron-deuteron scattering cross
sections near the threshold can, in principle, provide
important new information concerning the structure at
small distances of the 'S~ and 'So free state wave func-
tions of the neutron-proton system. Analogous informa-
tion about the deuteron wave function has already been
obtained from measurements of the elastic scattering
cross sections. ' It should nevertheless be recognized
that the semirelativistic theory is open to question in
both cases for the large momentum transfers which are
of interest. The important configurations for the scat-
tering near threshold are those in which the nucleons
are close together, and one may correspondingly expect
the contributions of meson currents to the scattering
to be important. The nucleons are furthermore con-
siderably off the mass shell, with the consequence that
the measured form factors could in any case differ sig-

nificantly from the free nucleon form factors. These
questions can probably be best examined using the
methods of relativistic dispersion theory, as sketched
in the next Section. It is perhaps a hopeful sign that, in

the case of elastic scattering, the relevant dispersion re-

lation has an anomalous threshold, with a weigh t
function in the anomalous region which is closely related
to the nonrelativistic deuteron wave function. ' Anomal-
ous threshold are again present in the case of inelastic
scattering, and it is likely that the Mandelstam spectral
function in the anomalous region can again be related
to the nonrelativistic wave functions; but this has not
yet been verified. In the absence of a detailed relativistic
calculation, including mesonic effects, it is not certain
that the effects here attributed to a repulsive core in the
two-nucleon interaction cannot be ascribed to other
sources, but we shall retain this interpretation in the
remainder of the discussion. The approximations which
led to Eq. (42) for small values of P are expected to be
valid for any reasonable wave functions, the detailed
structure of which is implicit in the functions ki, , (q) and
ks, (g). Since q does not vary significantly over a small
range of energies, the k's may be considered as constants
in any given experiment with fixed E., and |I, and with
Eo—E, small. While it is in principle possible to deter-
mine these constants by a detailed study of the shape
of the cross section d'o./(dQ, dE, ') near threshold, the
scattering phase shifts being known, such an analysis is
complicated by the smearing out of the cross section
associated with the finite energy resolutions encountered
experimentally, and appears to be very difficult to
carry out. Ke remark, however, that the cross section
depends primarily on the functions k&, ;.It may therefore
be possible to determine from the experiments of
Kendall et at." the variation with q of these functions
by assuming the less important functions k&, ; to be
known. Separate evaluation of k2 8 and k2 7 would
provide directly information on the difference between
the singlet and triplet wave functions, hence, between
the corresponding potentials, for small internucleon
separations. This information cannot at present be ob-
tained with any certainty from other sources. Alter-
natively, the experiments of Kendall et al."can be used
as a test of present ideas regarding the two-nucleon
interaction. " " It would be desirable from this point
of view to calculate the matrix elements E8 ~ using
wave functions corresponding to the present semi-

phenomenological potentials, preferably including the
effects of the D-state components of the deuteron and
the free ('Si+'Di) wave functions which have here
been omitted. The work of McIntyre and Dhar' on the
deuteron form factor I"d indicates that these effects will

be signi6cant for large values of q. Finally, it is interest-
ing to note that the inelastic electron-deuteron scatter-
ing process considered here represents an extension to
virtual photon momenta of the photodisintegration of
the deuteron. Detailed calculations of the latter process
using wave functions from the semi-phenomenological
potentials have been markedly successful for photon

'4R. Blankenbecler and Y. Xambu, Nuovo cimento 18, 595
(1960).
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energies up to 150 Mev;" it will be interesting to see if

the same agreement between theory and experiment
can be obtained in the present case, where the im-

portant matrix elements are quite di6erent.

IV. REMARKS ON THE RELATIVISTIC THEORY OF
INELASTIC ELECTRON-DEUTERON SCATTERING

(a) (b)

Relativistic corrections to the cross sections for in-

elastic electron-deuteron scattering were considered in

Appendix I of (I).' However, that treatment of rela-
tivistic effects was not completely satisfactory, since
the description of the deuteron wave function used in

(I) was inherently non. covariant. We wish in this section.

to examine more thoroughly the relativistic theory of
inelastic electron-deuteron scattering using the tech-
niques of dispersion relations. Since the two-nucleon

system is assumed to interact only once with the elec-

tron, the basic problem is the calculation of the transi-
tion amplitude (2~)4P(p+e —d —q)(ep l j„ld), where j„
is the electromagnetic current operator, q is the electron
4-momentum transfer q=e —e', and the nucleon and
deuteron 4-momenta are denoted by the particle labels.
On the basis of the singularitities found in perturbation
theory, " this amplitude is expected to satisfy a
Mandelstam representation with a normal threshold in
in the center-of-mass energy variable s = —(d+ q)'
= —(p+e)', and with anomalous thresholds in both
the momentum transfer variables t= —(d—u)' and
u= —(d—p)'. The representation consists of single dis-

persion integrals and pole terms in each of the variables
s, 3, and I separately, and double dispersion integrals
in the three pairs of variables. The existence of such a
representation provides in principle a powerful tool for
the study of relativistic and mesonic corrections to the
simple theory of inelastic electron-deuteron scattering
considered in the preceding sections; but as a practical
matter, it is the importance of the pole terms and the
possibility of connecting the spectral functions in the
anomalous regions with the nonrelativistic wave func-
tions which make a detailed calculation relatively
simple. Ke shall consequently devote most of the fol-
lowing discussion to these simple connections between
the relativisitic and nonrelativistic theories. A number
of corrections to the latter will be estimated, and the
general outline of a complete calculation of (tripl j„ld)
will be sketched, but detailed calculations will be re-
served for a later paper.

FI| . 12. Diagrams corresponding to the pole terms in the dis-
persion relations for the transition amplitude (ep

~ j, ~
d).

tributions to

(tripl

j„ld) are associated with the proton
and neutron pole terms in the single dispersion relations
in t and I, respectively. It is, therefore, of interest to
study these terms in detail before considering more
complicated contributions. The corresponding diagrams
for the absorptive parts are shown in Figs. 12(a) and
12(b). The nucleon-photon vertex in Figs. 12(a) and
12(b) involves just the nucleon form factors for particles
on the mass shell. For example, in Fig. 12(a), the
proton vertex function is given by

(Pl j.(o) IP')= —'
(4PoPo') ' (P)

XLv.l"t(q')+ ("/2~) ~"q ~s(q')]«(P'), (51)

where q=p' —p, and the spinors are normalized as
u(p)y„u(p) =2ip„The ne.utron-proton-deuteron vertex
has been studed by Blankenbecler et a).,27 who show
that for all particles on the mass shell, i.t has the form

u(P)(half. (o) ld)=(gp uo~o) 'u(p)
XLF(nz')iy $+G(re')n $]u'(e). (52)

Here f„(0) is the proton current operator, P is a com-
plex spacelike polarization vector describing the deu-
teron spin, ( d=o, u'(u)=tv(ts)C]r, and C is the
charge conjugation matrix. Ii and 6 are form factors
for the deuteron vertex, and are functions of
t, = —(d —e)' for the proton off the mass shell. However,
only the values of these functions for t= m' are involved
in the contributions to the pole diagram of Fig. 12(a).
The values of F(m') a,nd G(m') were determined by
Blankenbecler et al."by considering the nonrelativistic
limit of Eq. (52). For the standard normalization of the
deuteron wave function,

a. Pole Terms in the Single Disyersion Relations

For momenta corresponding to the quasi-elastic peak
in the cross-section d'o/(dQ+Z, '), the dominant con- F(m') and G(eP) were found to be

(53)

2~ J.J. deSwart and R. E. Marshak, Phys. Rev. 111,272 (1958).
W. Zernik, M. L. Rustgi, and G. Breit, ibid. 114, 1358 (1959).
M. L. Rustgi, W. Zernik, G. Breit, and D. J. Andrews, ibid. 120,
1881 (1960}.

R. Karplus, C. M. Sommerfield, and E. M. Wichmann, Phys.
Rev. 111,1187 (1958); 114, 376 (1959).S. Mandelstam, ibid. 115,
1741 (1959}.J. Tarski, J. Math. Phys. 1, 149 (1960).

F (rw') = (Sm/m) '*L1+(1/v2) p]Ã(1+p') ** (54.1)

G(ns') = (367r/tile') ipse(1+p') 1 (54.2)

27 R. Blankenbecler, M. L. Goldberger, and F. R. Halpern,
Nuclear Phys. 12, 629 (1959).M. L. Goldberger, Y. Nambu, and
R. Oehme, Ann. Phys. 2, 226 (1957).
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1V= L2ct/(1 —trro)]l,

and p is the ratio of the asymptotic D to 5-state radial
wave functions, p=0.03.'8 Combining the foregoing
results, one obtains immediately for the contribution
to the transition matrix element of the proton pole term

(sp ~ Js j d) proton pole = & (8ponodo)

XL(d —n,)'+m'] 'J &(p,n), (56.1)

where

J."(p &) =~(p) Lv.Ft(V')

+(s,/2m)~„, q,Fs(q')]t —sy (d—n)+m]
Xt F(m')iy P+G(m')n, P]m'(n). (56.2)

A term of similar structure is obtained for the neutron
pole diagram, Fig. 12(b), but the dispersion variable is
now m= —(d—p)' rather than f.

The significance of the nucleon pole terms is easily
seen. Im the nonrelativistic theory of inelastic electron-
deuteron scattering without Anal state interactions, the
deuteron wave function enters that part of the transition
matrix element corresponding to the interaction of the
electron with the proton, through the Fourier-Bessel
transform

where q' is the square of the electron 4-momentum
transfer, p=

~
p ~

is the momentum of the proton in the
center-of-mass system, and q is the electron 3-momen-
tum transfer in that system,

~

tl (

- = q2+ L
r

qo —ps —pro]o/ (ms+ po) (60.2)

The expression of Eq. (60.1) enters the cross-section
d'o/(dQ+Z, ') squared and integrated over the direction
of p. The resulting function evidently attains its maxi-
mum value, which corresponds to the quasi-elastic peak
in the cross section, for p'=4it1'. It should be noted that
the timelike component of q is then essentially zero in
the center-of-mass system of the nucleons, q

—+ (tLO),
q' —~ q-'. The nonrelativistic analog of Eq. (60.1) is ob-
tained by replacing the laboratory momentum of the
neutron n in Eq. (58) by the nonrelativistic expression
n= —,'q' —p, where q' is the electron 3-momentum
transfer in the laboratory system:

calculation of the cross-section d'o/(dQ, dI';, '), it is
necessary to integrate over the angular distribution of
the emerging nucleons. Re-expressing the quantity
2iV)(d —n)'+m'] ' in the center-of-mass system of the
outgoing nucleons, y+n= d+t1=0, we obtain

2NL(d —n)'+m') '=NLct'+p'+-, 'q' —p q] ', (60.1)

~Go

F(0)=, jo(~n~r)u(r)«r, (57) iV)tr2+n2] —i =N)~2+p2+ 1q&2 It. tl&]
—1 (61)

where n is the Anal laboratory momentum of the neutron
Lsee Eqs. (15)]. If the deuteron. wave function is re-
placed by its asymptotic form Ãe ", one obtains the
approximate result

F (tl) =N[n'+n'] —'.

This factor in the transition matrix element is repro-
duced, along with relativistic corrections, by the de-
nominator in the proton pole term, Eq. (56.1).Extract-
ing the corresponding normalization factors from F(m'),
and. evaluating the quantity L(d —n)'+ms] ' in the
deuteron rest frame, one obtains

2N((d —e)'+no'] '= NEcVno ——',M']—'

=N[ '+n'(1 —n'/4m'+ )]—'

d= (O,M), (59)

where we have used the relation n'=me, with e the
binding energy of the deuteron. It is interesting to note
that the extra terms in the denominator in Eq. (59),
representing relativistic corrections to the result of
Eq. (58), can be obtained to the order shown by cal-
culating the asymptotic deuteron wave function from
a semi-relativistic equation of the Breit type. "In the

"G, Breit, Phys. Rev. 34, 553 (1929).An approach to the rela-
tivistic theory of inelastic electron-deuteron scattering using
Breit-type wave functions for the deuteron was discussed in
Appendix I of reference 9. However, the extra terms n'~ n'
)& (1—n'/4l'+ ~ ) noted in Eq. (57) were unfortunately omitted
in the definition of the function F„(0).

While this result is similar in form to that given in
Eq. (60.1), the predicted position of the quasi-elastic
peak is determined by the condition p'=siq" rather
than p'=-,'q', the predicted peak energy being too low
whether or not p is calculated relativistically. We may
remark, however, that the ad hoc replacement of q"
by q' used by Yearian and Hofstadter' to bring the
Jankus theory' into better agreement with experiment
leads according to Eqs. (60) to the correct result at the
peak. However, the replacement is not valid for other
values of 8,'.

The contribution to the cross-section d'o./(dQ, dE, ')
of the pole terms could in principle be calculated in full
detail (Boseso has in fact calculated the contribution of

' S. K. Bose, Xuovo cimento (to be published). Bose has pro-
posed that the neutron magnetic form factor be determined by a
Chew-Low type of extrapolation to the neutron pole. The pole
terms in fact dominate the cross section de/(dQdE, ') at the quasi-
elastic peak; the use of the complete deuteron wave function in the
calculation of the function iV(p, q), Eqs. (29) and (31), leads to
results about 16% smaller than would be obtained from the pole
terms (asymptotic deuteron wave function) alone. On the other
hand, the advantage of the small extrapolation distance is o6 set
by the necessity of detecting one of the emerging nucleons in co-
incidence with the scattered electron. The subsequent possibilities
are as follows: (1) measurement of the neutron angular distribu-
tion and extrapolation in the angle relating its direction in the
center-of-mass system to the direction j; (2) measurement of the
energy of the emerging (low energy) proton and extrapolation in
p-'to the pole at p = —tt'; (3) measurement of the neutron energy
with sufFicient accuracy that

~ p~ can be calculated. Possibilities
(2) and (3) are remote, but (1) may be feasible. lt may be worth
remarking that the extrapolation can be considerably simplified
if the inhuence of the nearby anomalous branch cuts are taken
partially into account. This may be done fairly effectively by re-
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the neutron magnetic moment scattering), but the cal-
culations are lengthy, and the significance of various
terms in the results is not especially clear. It is instead
convenient to make a simplifying approximation before
proceeding further. Ke note that at the quasi-elastic
peak in the cross section, essentially the entire electron
momentum transfer is absorbed by a single nucleon, the
second nucleon emerging with a very small momentum
in the laboratory system Ldeuteron rest systemj. In
fact, on the basis of the nonrelativistic theory with a
Hulthen wave function for the deuteron, the average
kinetic energy of the spectator nucleon is on the order
of 5 Mev for the momentum transfers of present
interest. It is therefore reasonable as a first approxima-
tion to evaluate the spin-dependent factors J„in the nu-
merators of the pole terms on the assumption that the
spectator nucleon is rigorously at rest in the laboratory
system. Since the "scattered" nucleon is then initially
at rest also, it is evident that the kinematical factors
in the cross section which arise from these factors should
be identical with those which occur in the cross sections
for elastic electron-nucleon scattering. That this is true
is easily verified.

The spin-dependent. factor J„"(p,u) in Eq. (56)
simplifies considerably when one uses the relations

( s'y n+m—)u'(n) =0

and $ d=0, and specializes to the case u=(O, m),
p= (q,pe), d= (O,M) (0,2m); then

J„"(p,u) ~ 2smP(m')u(q ps) Py Pr(q')

+(~„/2m)o„„q„Ps(q')]y (u'(O, m). (62)

The contribution of the proton pole term to the cross-
section d'o/(dQ, dE, ') involves the absolute square of
J„", summed and averaged over the final and initial
spins. However, when the average over the deuteron
spin g is performed, the quantity which remains is
identical aside from an overall factor to that en-

countered in the calculation of the scattering of elec-
trons from protons initially at rest, the dependence of
the transition matrix element on the proton spin being
given in that case by a factor

u(q, po) L'y„Ft(q )+(K /2m)0„„q P (q's)] (0u, )'.m

The expression for J„& in Eq. (62) may be further
simpli6ed, and the connection of the relativistic with

the nonrelativistic theory examined, by introducing
two-component spinors for the nucleons through the

placing the single denominator P(d —a)2+m'7 ' in Eq. (56) by
the combination (v' —m')((d —I)'+m'7 ' P(d —n)'+v'7 ', where
p' —m'=2 (p' —n'), and n, p are the parameters of a Hulthen model
for the deuteron wave function. The extrapolation using this
modified function should be linear for all practical purposes
(see Sec. IVb). The approach of the present paper is to exploit the
dominance of the pole terms to obtain a reliable theoretical cal-
culation of the cross section in order that information on the
neutron form factors may be extracted from the much less difficult
measurements of. d'0-/(dOedA ).

relations
I' 1

u(q, Pp) = (Pp+m)'( (X~, (63.1)
q/(P, +m) i

t'
u'(O, m) = (2m)li iX.,

$0'2~
(63.2)

J&= 2mV—2F (m') Xs™"

Xf(Fr~+"„Fs~)e„Xq—sqFt„)xt~. (65.2)

The two terms in J' correspond to the interaction of the
proton total magnetic moment and convection current
with the 6eld of the scattered electron, and appear in
the present form in the non-relativistic Hamiltonian
used by Jankus. ' On the other hand, the extra term
—(q'/Sm') (2"Fs„—Fr„) in J4& represents a relativistic
correction to the eRective charge, as was noted in (I).ss

The foregoing effective current, generalized to include
the neutron contributions, was used in the calculations
discussed in Secs. I and II. On the other hand, such a
reduction is not necessary when the effects of final state
interactions between the nucleons are neglected. The
kinematical factors which appear in Eq. (15.1) multi-
plying the functions M(p, q) and ~V(p, q) were obtained.
using J„&as given in Eq. (62). The error incurred at the
quasi-elastic peak by neglecting in J„ the momentum
and kinetic energy of the spectator nucleon has been
investigated, and was found to be entirely negligible.

We have so far neglected the deuteron pole term,
Fig. 12(c) which appears in the single dispersion relation
in the variable s= —(d+q)'= —(P+e)'. The absorptive
part for this term involves, in addition to the proton-

"The effective interaction Hamiltonian given in (I) Eqs. (2)
and (6), involves the combination (q'/Sm')(2"Fs~+F») in the
effective charge rather than the combination given above where
F1„appears with the opposite sign. However, as noted in (I),
the convection current term which appears in Eq. (65.2) was also
omitted; the results obtained from the two, seemingly in-
equivalent, currents are in fact identical to order m 2. The form
given in Eq. (65.2) is correct; that used. in (I) is a convenient
approxim ation.

where the y matrices are used in the Dirac representa-
tion with C=y2y4=ex~. Omitting in the results terms
involving powers of m ' higher than the second, one
then obtains

Jp =—4m'sF (m') LF t —(q'/Sm')

X (2a„Ps„—F,~)jx„*e (osx„*.r, (64.1)
and

J"=—2msP(m')X *L(Ft +'„Fs )eXq —sqFt„je (
XosX.*'. (64.2)

The results assume a more familiar form when the
deuteron and the final spin states are represented by
two-particle spin functions Xs (s„,s„),
J4~ = —4m'v2F (m') xs"'

XfF&„—(q'/Sm')(2KpFsg Ptp)jxt (65.1)
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neutron-deuteron vertex factor of Eq. (52), the deuteron
electromagnetic vertex function

(d'l j,ld&=e(4dodo') 'P'td(q')5'* 0(d+d').
+F"(q') (~.e* q ~'*.~ q)

+F, (('* qg. q/m')(d+d')„5. (66)

The form factors Fj~ are normalized for q' —+ 0 accord-
ing to the relations Fi& —+ 1, F,d ~tt&, and Fog ~ Q
+—,

'
(ttd —1), where tsd is the deuteron magnetic moment

in units of the nuclear magneton, and Q is the quad-
rupole moment in units of m '. We will consider only
the deuteron charge scattering, since this illustrates
adequately the significance of the deuteron pole term.
The corresponding contribution to the transition matrix
element is then

(np l Jtt l d&deuteron pole ~(8ponodo)

XI (d+q)'+~'3 '(2d+q) F (q') (P)
X(F(m') y $—-'G (m') (n —p) ($u'(.n) (67.)

It is evident from the observation that the deuteron in
the intermediate state in Fig. 12(c) is at rest in the
center-of-mass system p+n= 0, that the transition
matrix element of Eq. (67) leads only to final states of
the two nucleon system with J=1 and even parity,
that is, to final 'S~ and 'Di configurations. Comparison
of Eqs. (15b) and (67) shows the contribution of the
deuteron pole term to the total transition matrix ele-
ment (nPl j„ld) to be relatively unimportant at the
quasi-elastic peak. It nevertheless represents a sig-
nihcant addition to the partial wave transition matrix
elements leading to the 'S~ and 'D~ states, and is in fact
associated in part with the correction to those matrix
elements for the e6ect of interactions between the out-
going nucleons. /Additional corrections arise from the
double dispersion relation in the Mandelstam represen-
tation for (npl j„ld&.$ On the other hand, the deuteron
pole term gives the dominant contribution to the
matrix element near the threshold for deuteron breakup.
The appearance in the numerator in Eq. (67) of the
deuteron form factor F~~ is not unexpected in this region
on the basis of the remarks which follow Eqs. (35) con-
cerning the shapes of the deuteron and free 'Si wave
functions for p ~ 0. However, we will not at this time
undertake a detailed calculation within the context of
dispersion theory of the eGects of Anal- state inter-
actions in the scattering, but will instead rely on the
wave function calculations discussed in Secs. I-III. The
deuteron pole term will therefore be neglected in the
ensuing discussion.

b. Single Dispersion Relations

The one-particle singularities of the transition ampli-
tude (npl j„ld) other than the simple pole terms lead
to the appearance of single dispersion integrals in the
variables s, t, and u. We will consider in detail only the
t channel; essentially the same analysis holds for the N

r„()S 'r, = R„1 t
a.„(t')dt'

m' —t 7r ~
o

(t' —m') (t,
' t)—

t = —(d—n)', (70)

where R„is given in Eq. (56.2), and o.„. is the absorptive
part of the function (m' —t)1'„&»S~'I"d. This expression
has precisely the form expected for the single dispersion
relations in the Mandelstam representation for
(ndl j„ld&, namely, a proton pole term plus a single
integral.

"H. Lehmann, K. Symanzik, ance W. Zimmermann, Nuovo
cimento 2, 425 (1955).

channel, while the extra contributioris in the s channel
are of interest only for those transitions which lead to
final 'S~ or 'D~ configurations for the nucleons. The
one-particle singularities of (npl j„ld) in the t channel
arise in perturbation theory Ltreating the deuteron as
an elementary vector particle) from those Feynman
graphs which may be separated into two parts by
cutting a single proton line. The total contribution to
(nP l j„ld) of all such graphs may be expressed in terms
of the complete proton propagator Sp', and truncated
vertex functions I'„(» and I'~ describing the proton
electromagnetic vertex and the neutron-proton-deuteron
vertex for the proton off the mass shell,

(npl j„ld&single proton (8ponodo) 'u(p)I'„'»(q, d n)—
XSp'(d —n) I'd(d —n) u'(n). (68)

The truncated vertex functions, which are equivalent
to the vertex functions of I.ehmann et u/. " when the
latter are evaluated with two particles on the mass
shell, may be obtained from the functions (pl j„ld —n)
and (nl fpld& by removing all components which are
single-particle reducible with respect to the o6-shell
proton,

(pl j.ld —n)= (2po) 'u(p)l'. '"'(q, d n)—
XSr,-'(d —n)S, '(d —n), (69.1)

aIld

(nI f.l
d&= (4nodo) '*

XSz'(d —n)SF '(d —n)1'd(d —n)u'(n). (69.2)

These relations will be useful later. Aside from spin
dependent factors, the vertex functions F„(» and r,
are expected to be analytic in the entire complex t plane
except for cuts along the real axis for t& (m+p)' and
t&m'+2tt(ts+2n), respectively. The propagator So' has
a pole at t=eP, and a cut along the real axis for
t& (m+p)'. After the spin dependence is extracted, the
function (m' —t)I'„&»S&'I'd is accordingly analytic in
the t-plane cut from t=m'+2p, (tt+2n) to t= ~. Its
value at the point t=m' is furthermore known, being
just the residue at the proton pole, Eq. (56.2). Assum-
ing proper behavior for ltl ~ ~, we may therefore
write a subtracted dispersion relation in t, obtaining
symbolically
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It is instructive before considering separately the
various factors in Eq. (68) to examine somewhat more
closely the representation of this function given in
Eq. (70). When the absorptive part of the transition
amplitude (npl j„ld) is expressed in the usual manner
as a sum over intermediate states of bilinear products
of matrix elements, the lightest possible intermediate
state in the channel in which t is the square of the total
energy is that of a single proton, Fig. 12(a). This inter-
mediate state leads to the proton pole term, Eq. (56).
The next most massive state involves a pion and a
nucleon, Fig. 13(a), and the corresponding contribution
to the absorptive part is determined by the matrix
elements (pl j„lp'ir) and (p'~l f Id) If the. se matrix
elements are themselves approximated by pole terms,
they may be represented by the diagrams shown in
Figs. 13(b) (c) (d) and 13(e)(f), respectively. The re-
sultant diagrams obtained from the combinations
(bf), (cf, (de), and (df) each contain a single proton as
an intermediate state, and contribute to the absorptive
part for the single dispersion relation in t. The combina-
tions (bc) and (ce), on the other hand, are not single
particle reducible, and contribute only to the
Mandelstam double spectral functions. Ke shall return
to these contrubitons in Sec. IVc. The diagrams (bf)
and (cf) evidently represent off-mass-shell corrections
to the proton electromagnetic vertex function, while
(de) and (df) represent corrections to the neutron-
proton-deuteron vertex function and to the proton

(a)

(a) (b)

FIG. 14. The lowest order diagrams for the absorptive parts of
the matrix elements (tr~ f„~d) and (p ~ j„~d—n) are obtained by
combining respectively diagrams (a) and (b) representing the
pion-nucleon vertex function with the sets of diagrams (e), (f),
and (b), (c), (d) of Figs. 13.

propagator. This interpretation is easily substantiated.
For example, the lowest order contribution to the ab-
sorptive part in a dispersion-relation calculation" of
I'q(d —n) is obtained from Figs. 14(a) and 13(e).
It is immediately apparent that this contribution is
identical to that obtained for the absorptive part of.

(tsP
I j„I

d) from the combination (de) of' Figs. 13,
except for the presence in the latter of an extra factor
containing the proton electromagnetic vertex function
on the mass shell and the propagator for the internal
proton line. The electromagnetic vertex function
depends only on q and does not a6ect the dispersion
integral on t, but the factor (nz' —t) ' introduced into
the integrand by the propagator supplies the extra
denominator present in the subtracted form of the dis-
persion relation. given in Eq. (70). The remaining terms
in the absorptive part constructed from the diagrams
of Figs. 13 have a similar structure, and it is clear over-
all that the same result could be obtained by calculating
directly the lowest order terms in the function 0-„,
Eq. (70), given the absorptive parts of the individual
factors in Eq. (68). We therefore turn to an examination
of those functions.

Using the relations of Eqs. (69), the result for the
single proton contributions to (tsp

I j„I d) given in
Eq. (68) may be re-expressed in the form

(+p I Js I ~&einste proton= (p I jy I
d +)S&(d +)

XSp' '(d —ts)Ss (d—tt)(isl f„Id). (71)

Alternatively, noting that (nl f„ld)=S+ '(d —tt)
X(twilit pld), where imp is the proton field operator, we
may write

(c) (d)
(+p I jp I d)einsie proton = (2po) *I(p)

Xr„&pl (v,d —~)(~l p. l
d). (72)

(e)
FIG. 13. (a):Diagram for the contribution of the pion-nucleon in-

termediate state to the absorptive part of (np
~ j„~d). (b), (c), (d):

The lowest order diagrams for the matrix element (p~ j„rp'n. ).
(e) (f): The lowest order diagrams for the matrix element
(p'n-~ f„~d). The lowest order diagrams for the contribution of the
pion-nucleon intermediate state to the absorptive part of
(ttp~ j„~d) are obtained by combining (b), (c), (d) with (e), (f).

The form given in Eq. (71) is convenient for actual
calculations since the untruncated vertex functions
(pl j„ld—tt) and (ttI f„ld) are more readily studied
using the techniques of dispersion theory than are the
truncated functions. On the other hand, the result
given in Eq. (72) is particularly simple to interpret.
The matrix element (eliP„ld) is just the momentum
space representation of the wave function of the proton
in the deuteron. Thus the matrix element of Eq. (72)
is a simple product of the proton electromagnetic

"R. Blankenbecler and T., F. Cook, Phys. Rev. 119, 1745
(i96o).
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m' —t t
" ImF(t')

F(t) = F(m') —
I dt', (74 1)

m "(p (t' —t)(t' —m')

1
I
"ImH(t')

H(t) =— dt',
(t' —t)

(74 2)

and similar relations for G(t) and I(t). The absorptive
part of (n,

l f„ld) is obtained in the usual fashion by con-

tracting the neutron, and expressing the imaginary
part of the resulting expression as a sum over inter-
mediate states. The least massive state is that of a
nucleon and a single pion; approximation of the matrix
elements (Ol f„lcm) and (cVm l f„ld) in accordance with
the graphs of Figs. 13(e) and 14(a) yields, after an
analytic continuation necessary to reach the physical
sheet, ""the lowest lying contribution to the absorptive
part with the anomalous threshold t=m'+2p(p+2n).
The next threshold, again anomalous, occurs at 1=m'
+4tl, (2p,+2n), and corresponds to a two meson exchange
process; this is followed by the normal threshold for
the nucleon-single pion intermediate state at t= (m+p)'-.
Although the values of t of physical interest for in-
elastic electron-deuteron scattering are close to the
value 1=m', the lowest anomalous threshold is itself
sufFiciently close to this value that the contributions to
the various functions of the integra, ls in Eq. (72) are
not negligible.

"S.Mandelstam, Phys. Rev. Letters 4, 84 (19()0),

vertex function and the proton momentum space wave
function, precisely as would be found in the nonrela-
tivistic theory neglecting final-state interactions. We
shall return later to this connection.

Blankenbecler and Cook" have recently made a de-

tailed dispersion theoretic study of the neutron-proton-
deuteron vertex function (el f„ld). The most general
form of this function for the proton off the mass shell

is given by"

(el f„ld)= (4epdp) '*jF(t)ip'$+G(t)e'f
+tip (d—e)+m7IH(t)ip &+I(t)e ($)N'(n) (73)

where t= —(d—n)'. It is expected on the basis of per-
turbation theory that the functions Ii, . . . , will

satisfy dispersion relations in t with anomalous thresh-
olds." The values of F(t) and G(t) for t=m' are de-

termined by the neutron-proton effective range and the
asymptotic D- to 5-state ratio p by the relations given
in Eqs. (54). It is convenient to utilize this knowledge

by writing for F(t) and G(t) dispersion relations sub-

subtracted. at t=m'. LOn the other hand, Hlankenbecler
and Cook have shown that, if the dispersion relation
for G(t) is left unsubtracted, it is possible to calculate

p, hence, G(m'), in terms of F(m'), the deuteron binding

energy p, and the pion-nucleon coupling constant. "$
No subtractions are necessary in the dispersion relations
for H(t) and E(t). We therefore write

Recalling that the vertex function (el fold) may be
written as Sp '(d —n)(el&~id), where the matrix
element. (mlP~ld) represents the wave function of the
proton in the deuteron, it is evident that the function

S~(d —n)(el f„ld) which appears in Eq. (71) should be
closely related in an appropriate limit to the non-

relativistic deuteron wave function in momentum space.
This connection, already noted in Sec. IVa for the
leading terms in F (t) and G(t) Lproton pole terms], has

been further explored by Blankenbecler and Cook" and

by Bertocchi et al. '4 Ignoring the spins of the nucleons

and the deuteron, those authors show that the non-

relativistic deuteron wave function corresponding to a
superposition of Yukawa potentials may be written in

momentum space in the form

where

t ~(p")
g(p)/(4mV) = II

— dp",
p+& x~ p +p

(73)

0 d =f) (76)

'4L. Bertocchi, C. Ceolin, and M. Tonin, Nuovo cimento 18,
770 (1960).

p is the center-of-mass 3-momentum of the nucleons,

and X=p+n, with y the minimum decay constant which

appears in the potential. Changing to the variables
t=m' —2(p'+n') t'=2p"+m' —2a' it is seen that the
function (p'+n')p(p) has precisely the same analytic
structure as F(t), Eq. (74.1), with a(t') playing .the role
of ImF(t')/(t' —m'). lt may in fact be shown that the
function ImF(t')/(t' —mP) obtained from the diagrams
of Figs. 13(e) and 14(a) is equal in the neighborhood of

the a,noma, ious threshold to the function 0 (t') calculated
for a simple Yukawa potential. " The appearance of
t= —(d —n)' in Eq. (74.1) corresponds to the replace-

ment of p' in Eq. (75) by the relativistically corrected
value p'(1 p'/4m—' ) which would be obtained in

potential theory by including the lowest order rela-

tivistic corrections to the Schrodinger equation.
The relation of the functions F(t), . . . to the non-

relativistic deuteron wave function is more complicated
in the case of particles with spin. It is convenient in this

case to examine the function

+(p)(~ l p, l d) = tt(p)S~(d —~)(~
l f. l d), (77)

in the deuteron rest frame, p+n=0, and to neglect

relativistic corrections which are of order n'/m' relative

to the leading terms. We then. obtain from Eq. (73) for
those terms involving F(t) and H(t)

(4n pd p)
—lu (—n, pp) Sp (d —e)

Xl F(t)+Sr, '(d —e)H(t)]iy (u'(n, np)

—+ —iv2mF (m')D(t)y *e Fop)t *r (7g)

where

D(t) = P'(m') j 'LF(t)/(m' —t)+H(t)/(2m) j (79)
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The two-component proton and neutron spinors appear
in the combination which corresponds to a "5~ state,
the function D(t) playing the role of the 5-state radial
wave function in momentum space. According to
Eqs. (74), D(t) may be expressed in the form

1
I

"g(t')dt'

m' —t ~(, t' t—tp
——m'+2p(p-+2m), (80.1)

with

n(~') = [~F(m')]-'
X [(&'—re') ' ImF (t,') —(2') ' ImII(&') j. (80.2)

Estimates based on the diagrams of Figs. 13(e) and
14(a) indicate that the functions (t' —m') ' ImF(t')
and (2m) ' ImH(t') are comparable in magnitude. A
similar reduction of the terms in Q(p)(e

~ p~ ~
d) which

depend on G(t) and I(t) is easily carried through. These
terms yield in the non-relativistic limit the D-state
component of the deuteron wave function, as well as
small corrections to the S-state wave function.

The transition matrix element (nP~ j„~d) may be
expressed according to Eq. (72) in terms of the vertex
function (I

~ P„~d). Since the cross section d'0/(dQ. dE, ')
depends in the neighborhood of the quasi-elastic peak
primarily on the low-momentum components of this
function, the spin dependence of the matrix element
may be approximated as discussed in Sec. IVa. The
resulting form of (ep~ j„~d) involves the invariant
functions F(t), . . ., only in the combination D(t) and
a similar combination which corresponds to the deuteron
D-state wave function. It is found in the nonrelativistic
theory that the use of the asymptotic form of the
deuteron wave function u(r) instead of the complete
function in the calculation of the peak value of the
cross-section d'0/dQ. dE.') changes this quantity by
roughly 16% for the values of the electron momentum
transfer of current interest. Use of the asymptotic wave
function is equivalent to retaining only the nucleon pole
terms in (eP~ j„~d) (see Sec. IVa). The short-range
structure of the deuteron wave function is given in the
nonrelativistic theory by the int. egral in Eq. (75), and,
as we have seen, by the integral in Eq. (80) in the rela. -

tivistic theory. It is therefore evident that the functions
[F(t)—F(m')), FI(t), . . ., need not be known with
great accuracy in order to obtain an accurate peak value
of d a/(dD, de, ') There . are severa. l possibilities with
regard to these functions. The most sophisticated
approach would involve a fundamental calculation of
the absorptive parts ImF(t), . . . . However, this does
not appear to be necessary for those values of 3 which
are of interest; the integrals depend most strongly on
the values of the absorptive parts in the anomalous
region, where they may be identified with the nonrela-
tivistic weight functions 0 (t'). For example, the
Hulthen wave function used in the calculations of
Secs. II and III corresponds to the use in Eq. (75) of a

weight function

(p") =~(p"—e')
p2 —~2+ 2 (P2 ~2)

For the usual parameter P=1.434 f ', the singularity
lies in the anomalous region just below the two pion
threshold 3=m'+4@(2p+2u). The use of the corre-
sponding weight function g(t') =8(t' —v') in Eq. (80)
leads to a covariant generalization of the Hulthen
model, " but may be regarded alternatively as the ap-
proximation of the entire spectral function for
3)m'+2@(@+2n) by a single pole. More realistic models
may of course be obtained using weight functions cal-
culated from a specific two-nucleon interaction.
Another reasonable procedure in the present case would
be the direct calculation of ImF (t'), . . . , in the lowest
anomalous region, and the replacement of the re-
mainder of the cuts by poles. The positions and residues
of the poles may be fixed by requiring that the wave
function vanish for t —+—~, and that it reproduce
correctly the deuteron eRective range and quadrupole
moment. " The diRerences in the peak values of
d'o/(dB. dE, ') associated with different models for the
short range structure of the deuteron wave function
are in any case small; such a drastic change as from a
Hulthen model to the hard core model given in Sec. III
changes the peak value of the cross section by only
13%

It is clear that the foregoing discussion applies
equally well to the contributions to the transition
amplitude (np~ j„~d) of the single dispersion relation
in u= —(d—p)', and a similar type of discussion is
easily carried through for the dispersion relation is
s= —(d+q)'. The latter, which affects only transitions
to final 'Si and 'Di states for the nucleons, is not im-
portant for momenta in the region of the quasi-elastic
peak but is dominant near the threshold for deuteron
breakup. A careful consideration of this dispersion
integral is therefore essential. to the relativistic general-
ization of the discussion of Sec. III, but will not be
undertaken in the present paper.

This section will be concluded with a brief discussion
of the truncated proton vertex function I'„'"'(d—e)
which appears in Eq. (72). For the present purposes,
we are less interested in calculating this function than
in estimating the difference between its values for the
internal proton on and oR the mass shell; the on-shell
value depends only on the measurable proton form
factors as de6ned in Eq. (51). [Were we considering
instead the single neutron contributions to the transi-
tion amplitude (lp~ j„~d), the on-shell value of the
corresponding vertex function I'„&"~ would depend only
on the neutron form factors which are to be determined

"It may be remarked that the repulsive core deuteron wave
function used in Sec. III corresponds to a set of poles with fixed
residues; the parameter p determined the location of all poles
simultaneously. A Inore flexible model may be obtained by ad-
justing independently the location and residue of each pole.
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from the electron-deuteron scattering experiments. ]On
the basis of the singularities found in perturbation
theory, it is expected that, when F„'&) is resolved into
an appropriate set of spin-dependent factors multiplied
by invariant functions, the latter will satisfy dispersion
relations in the variable t = —(d —m)'. The known values
of the invariant functions for 1=m' may be utilized to
make a subtraction in the dispersion relations, these
then being of the form

(a)

I

I

P d

(m' —i) r
" "1mr (t')

r(i) =r(m) ——
&(„„) (~' —~)(t,'-ms)

FiG. 15. The lowest order diagrams which give contributions to
the double spectral functions in s and t (a), and t and u (b), in the
Mandelstam representation for the transition amplitude
(IP I i.I dl

The threshold at 3= (m+u)' corresponds to the least.
massive intermediate state which can contribute to
Imr (3'), that of a nucleon and a single pion. The lowest
order diagrams for the absorptive part are obtained by
combining Figs. 13(b),(c) with Fig. 14(b). Because of
the subtraction, the integral in Eq. (81) should converge
rapidly, and it may in fact be reasonable to estimate its
value using only these diagrams. However, the requisite
analysis will be deferred to a future paper. We will
confine our present remarks to the observation that it is
plausible from the form of Eq. (81) that the off-mass-
shell corrections to r (t) will be on the order of
—(m' —t)/(2m') relative to r(t) itself for 3=m'. The
average value of (m' —i') is roughly 6me at the
quasi-elastic peak in the cross-section d'oj(dQ„dL&, ') fo.r
any reasonable model of the deuteron and values of q
in the range of present interest. Thus, one might expect
individual functions r(t) to differ from their values on
the mass shell by about. —3e/p, = —5%, but this is
probably an overestimate. The over-all e6ect on the
cross section d'o/(do. dE, ') is less e.vident. Careful study
of this effect is obviously required. We remark finally
that an alternative approach to the study of the trun-
cated vertex function I'„(» is a6orded by the identity
given in Eq. (69.1). The structure of the complete
proton vertex function (P ~ j„~d —n) which appears
there was examined by Bincer, "who proved rigorously
that it satisfies dispersion relations in the variables t and
4t The modif.ied proton propagator 5~'(d ti) is known—
also to satisfy dispersion relations in $.37 One could
therefore hope in principle to obtain the off-mass-shell
corrections to I"„'» by computing separately the cor-
rections to (P~ j„~d—u) and SF'(d ri), However, cal-—
culation of the absorptive parts for the dispersion rela-
tions is itself a formidable task, even for the pion-
nucleon intermediate state, and a diagrammatic analy-
sis is simpler for the function F„'&) itself.

c. Double Dispersion Relations

We turn finally to a brief discussion of the double
spectral functions which enter the Mandelstam repre-

A. M. Bincer, Phys. Rev. 118, 855 (1960).
G. Kallen, Helv. Phys. Acta 25, 417 (1952). H. I,ehmann,

Xuovo cimento 11, 342 (1954).

sentation for the transition matrix element (uP ~ j„~d).
The lowest order diagram which contributes to the
spectral function in s and 3 is shown in Fig. 15(a); a,

similar diagram with the neutron and proton inter-
changed gives the lowest order contribution in s and u.
These diagrams represent a modification of the transi-
tion amplitude by interactions between the outgoing
nucleons. It is easily verified that both diagrams lead
to normal thresholds in s at s=4m'. However, the
thresholds in t and u occur at the anomalous values"
(t,u)=m'+2p(y+2n) encountered previously in the
discussion of the single dispersion relations in those
variables; higher anomalous thresholds are also present.
The occurrence of the anomalous thresholds is again
indicative of the composite structure of the deuteron.
One may accordingly expect the double spectral func-
tions to be closely related in the anomal. ous regions to
the nonrelativistic wave functions for the neutron-
proton system. DeAlfaro and Rossetti have made a
partial investigation of this connection for the case of
deuteron photodisintegration (q'=0), ss demonstrating
in particular that the singularities of the partial wave
transition amplitudes as functions of s and (t,u) deduced
from a potential model with spinless nucleons inter-
acting through a Yukawa potential, coincide with those
displayed by the Mandelstam representation with the
indicated anomalous thresholds. Although this work
was somewhat incomplete from the present point of
view, since the precise connection between the double
spectral functions and the nonrelativistic wave func-
tions was not determined, it is clear the, t such a connec-
tion exists.

The foregoing results are immediately applicable in
the present case, q'&0. The values of 3 and u of primary
interest in the calculation of the peak value of the cross
section d'o/(dQ, dE, ') are close to the value m', hence,
to the anomalous thresholds in those variables. One
may therefore expect the main contributions to
(NP

~ j„~d) from the double dispersion relations to arise
from the anomalous regions, m'+2@(u+2cr)( (f,u)
& (m+u), thus, to be describable using nonrela, tivistic
wave functions for the initial and Anal states of the two-

' V. DeAlfaro and C. Rossetti, Nuovo cimento 18, 783 (19''.
A. Martin, ibid. 19, 344 (1961).
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nucleon system. Examination of t,he results of DeAlfaro
and Rossetti" then indicates that the matrix elements
Ezz, z defined in Eq. (13) will be correct relativistically
at the quasi-elastic peak if the q which appears in the
definition is interpreted as the magnitude of the electron
3-momentum transfer in the center-of-mass system of
the outgoing nucleons; as noted previously, this is equal
at the peak to (q') i. Wave function calculations of the
type discussed in Secs. I and II should therefore be
fairly reliable. It may nevertheless be advantageous in
some respects to use an alternative procedure. It is
probable that soluble integral equations of the Omnes
type" can be derived for the partial wave transition
amplitudes using the fact that the amplitude leading to
a given final state of the two-nucleon system has the
phase characteristic of neutron-proton scattering in that
state, at least up to s= (2m+@)'. If this is the case, the
changes in the partial wave amplitudes caused by final
state interactions can be expressed in terms of integrals
involving the experimentally determined scattering
phase shifts. We hope to investigate this procedure in
more detail in the future.

The lowest order term in the double spectral function
in t and m is obtained from the diagram of Fig. 15(b),
which represents a contribution to the transition current
operator associated with meson exchange currents. This
is perhaps the most interesting of those contributions
to (np~ j„~d) which have yet to be calculated, but the
effect on the peak cross section is difficult to estimate.
We note only that configurations in which the nucleons
are sufficiently close together that exchange of a meson
is likely, yieM only a relatively small fraction of the
cross section d'0/(dQ, dE,'). This suggests that exchange
current effects may not be too important. The same
conclusion may be drawn from the dispersion relation,
if it is assumed, as seems probable, that the double
spectral function is large only for t and u simultaneously
close to the anomalous thresholds, say m'+2@(p+2n)
((t,n)& (m+ti)'. The physical values of t and I are
given in the center-of-mass system for the outgoing
nucleons, y+n=0, by

t=m' —2[n'+P'+-'q' —p i1]
u=m' —2[n'+p'+-,'q'+y qJ.

Since p= —', q=
~

—,'i1
~

at the quasi-elastic peak in
d'0-/(dQ. dE, ') the double dispersion integral is weighted
toward large values of at least one of the variables, and
the corresponding contribution to the transition ampli-
tude may reasonably be expected to be small. The
author hopes to make a detailed study of this matter in
the near future.

We remark finally that the situation is much more
complicated with respect to the calculations given in
Sec. III; the values of t and e of importance near the
threshold for deuteron breakup differ sufficiently from
the value m' that contributions to both the single and

"R.Omnes, Nuovo cimento 8, 316 (1958).

the double dispersion integrals from nonanomalous
regions in the spectral functions may be important.
Furthermore, the nucleons are on the average con-
siderably oB the mass shell, and the use of free-particle
form factors in the nucleon electromagnetic vertex
functions is unlikely to be a good approximation. The
results of Sec. III based on a wave function type of
analysis and free-particle form factors are accordingly
less well grounded theoretically than those of the pre-
ceding sections.

d. Summary of Sec. IV

The present section has been devoted to the study of
the main features of a dispersion-theoretic calculation
of the cross section d'~/(dQ, dE, ') for inelastic electron-
deuteron scattering. The principal emphasis has been
on those conditions which prevail in the neighborhood
os the quasi-elastic peak, but the discussion may
readily be broadened to include other situations as well.
The transition amplitude (eP~ j„~d) was assumed to
satisfy a Mandelstam representation, with single dis-
persion relations and pole terms in each of the variables
s = —(8+q)', t = —(d —e)', and N, = —(d —p)', and
double dispersion relations in the three pairs of varia-
bles. The dominant contributions to (np~ j„~d) in the
region of the quasi-elastic peak arise from the pole terms
and single dispersion relations in t and u. The pole terms
were shown in Sec. IVa to reproduce with some rela-
tivistic modifications the transition matrix element
which would be obtained in the nonrelativistic theory
by approximating the deuteron wave function by its
asymptotic form; the nucleon form factors for the nu-
cleons on the mass shell appear in the resulting expres-
sions. Modifications of these simple results connected
with the single dispersion relations in t and u were
studied in Sec. IVb. The thresholds in the dispersion
relations were in each case anomalous, but the spectral
functions in the anomalous regions were found to be
closely related to the nonrelativistic deuteron wave
function. This relationship, and the relative insensi-
tivity of the peak cross section to the short-range struc-
ture of the deuteron wave function, permit a reliable,
albeit approximate, evaluation of the spectral functions
in the region in which they are needed. Inclusion of the
single dispersion relations results also in the modifica-
tion of the nucleon form factors for the effects of bind-
ing. However, rough estimates indicate that the differ-
ences between the free-nucleon form factors which
appear in Eq. (56) (and its ana, log for the neutron pole
term) and the form factors for a nucleon off the mass
shell which appear in Eq. (72), are quite small, probably
on the order of the ratio e/p=1. 6%. Section IVc wa, s

devoted to the discussion of the double dispersion rela-
tions. These express, among other eHects, the modifica-
tion of the transition amplitude by interactions between
the outgoing nucleons. However, anomalous thresholds
are again present, and it is evident on the basis of the



LOYJI L DURAL D, II I

work of DeAlfaro and Rossetti, '8 that a wave function
analysis of the effects of final-state interactions on the
scattering should be valid in the neighborhood of the
quasi-elastic peak. The contribution to the scattering
of meson exchange currents is also given by the double
dispersion relations, but this effect has yet to be
evaluated.

Calculations of the cross-section d'0/(dQ, dE, ') for
inelastic electron-deuteron scattering have been carried
out using the approximate form of the transition
amplitude

(imp j.l
d)=.(8po«do)-'l D(&)J."+D(ii)J."3, (82)

where D(t) is the relativistic 5-state wave function for
the deuteron defined in Eqs. (79) and (80). The spin-
dependent factors J„&and J„"were used in the approxi-
mation of Eq. (62) and the contribution to the scatter-
ing of the D-state component of the deuteron wave
function was neglected. The results of this calculation
are given formally in Eqs. (10, (11), and (15). The
functions M(p, q) and cV(p, q) which correspond to the
covariant Hulthen model for D(/) are given in
Eqs. (28)—(30). The parameters x and y which enter
these functions should strictly be written as

g= La~+p2+ig~]p ilail
i (83.1)

y=L&'+p'+le'lP 'Ill ', (80-.a)

where q' is the square of the electron 4-momentum
transfer, while q is the 3-momentum transfer in the
center-of-mass system of the outgoing nucleons. The
definitions of g a,nd y given in Eq. (28) are correct at
the quasi-elastic peak, but are only approximate else-

where. The values of M(p, q) and X(p,q) arising from
more refined wave functions of the type indicated in

Eq. (80) are ea,sily derived using the methods outlined
in the Appendix. The results given in Eqs. (10), (11),
and (15) neglect: (1) the effect of 6nal-state interactions
between the nucleons, (2) the ef'fects of meson exchange
currents, and (3) off-mass-shell corrections to the
nucleon form factors; and are of course approximate in
the treatment of the deuteron wave function. They
nevertheless constitute an excellent approximation to
the exact cross section in the region of the quasi-elastic
peak. We wouM like to call particular attention to the
kinematic factor (ns/E) which enters the cross section
as given in Eq. (10). This factor, which arises from the
calculation of the final three-body phase space, would
reduce to unity in the nonrelativistic theory. It was
included in the results given in the Appendix to (I),'
but has apparently been neglected thus far in those
analyses of the experimental data based on the modified
Jankus cross section. ' 4'4' Since p= —,'q at the peak, the
factor (m/E) reduces the peak cross section by
[1+q'/(4m')g ', a factor equal to 0.95, 0.92, 0.88, and

4' R. Herman and R. Hofstadter, EIigh-Energy Electro', Scatter-
ing Tables (Stanford University Press, Stanford, California, 1960).

"A. Goldberg, Phys. Rev. 112, 618 (1958).

0.85 for q=3, 4, 5, 6 f '. The correct factor appears in
the results obtained by Goldberg" from a calculation
based on the impulse approximation. It should in addi-
tion be remarked that the factor which multiplies

M(p, q) in Eq. (15.1) is given incorrectly by the modified
Jankus theory, as was pointed out in (I).' These changes
account for the discrepancy between the values of the
peak cross section calculated using Eqs. (10), (15), and
(31), and the results obtained from the modified Jankus
theory by Herman and Hofstadter, " and lead to im-

portant differences between the values of the neutron
form factors obtained using the two theories. This will

be discussed in detail in the next section.

V. DISCUSSION

We wish in the present section to summarize the
main results of this paper, and to review brieQy the
status of the theory of inelastic electron-deuteron scat-
tering. We have been concerned primarily with the
influence on the cross section d'0/(dQ, dE, ') of the inter-
actions between the outgoing nucleons, and with the
relation of the relativistic to the non-relativistic theories
of the scattering. We will consider first the results ob-
tained for final electron energies in the region of the
large peak which corresponds to quasi-elastic scattering
of the electron from a single nucleon. The dominant
terms in the transition amplitude (dipl j„ld) for the
neutron-proton system arise in the relativistic theory
from nucleon pole terms and single dispersion relations
which appear in a Mandelstam representation for this
quantity. The pole terms are completely specified by
the known asymptotic normalization of the deuteron
wave function and the electromagnetic form factors for
free nucleons. This fact is basic to the Chew-Low type
of extrapolation procedure suggested by Bose" for the
determination of the neutron magnetic form factor. The
single dispersion relations correct the pole terms by
taking into account the short-range structure of the
deuteron wave function, and effects on the nucleon
electromagnetic vertex functions associated with the
binding of the particles. The latter effects are probably
quite small. The cross section is rather insensitive to
the short-range structure of the wave function; transi-
tion from a Hulthen to a more realistic repulsive-core
wave function leads only to a 1.3%%uo increa, se in the peak
value. It is therefore possible to reformulate the theory
in terms of the nonrelativistic deuteron wave function
as discussed in Sec. IV without incurring any serious
errors. The resulting theory differs from the semi-
relativistic approximation discussed in (I) only in minor
details. However, it establishes clearly for the first time
the proper dependence of the transition matrix element
on the various kinematical quantities, and the limits
within which it is possible to analyze the cross section
d'o/(dQ. dE, ') in terms of a deuteron wave function and
free-nucleon form factors. The effects on the peak cross
section of interactions between the outgoing nucleons
were considered in the semirelativistic approximation.
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The changes in individual partial wave matrix elements
calculated using approximate wave functions matched
to the experimentally determined phase shifts were
found to be quite large. The over-all change in the peak
cross section was nevertheless small, probably for-
tuitously, for the two situations considered, p= —',q= 1.3,
1.7 f . The situation has not been studied in detail for
the much larger values of q which are now of interest,
but it appears improbable that the changes in the peak
cross section caused by final state interactions will
become large.

We have thus far ignored entirely the effect on the
scattering of the D-state component of the deuteron
wave function. This was treated formally in Appendix II
of (I),' and estimates of the over-all corrections to the
cross section were made at that time. The results of a
more detailed examination of the errors in the peak
cross section incurred for p= —,'q= 1.3 f ' by using a pure
S-state wave function are summarized in Table IV. The
calculations were based on a Hulthen-type wave
function with a 5% D-state probability. ' "It is evident
from Table V that the D-state component of the wave
function scatters much less efficiently than the S-state
component. Thus, the pure D-state scattering is only
1.6% of the S-state scattering, despite the 5% D-state
probability. The over-all effect is further reduced by
interference terms involving both the S- and D-state
wave functions, the contribution to the cross section of
all terms involving the D-state component amounting
to only 0.72% of the total. Since the S-state component
of the wave function is now normalized to 0.95 instead
of unity, the peak cross section calculated with the
complete wave function is 4.3% smaller than that cal-
culated using the same S-state wave function, but
normalized to unity. It should be noted, however, that
the S-state component of the complete wave function
is not matched to the neutron-proton effective range,
as was assumed in the preceding sections; both the S-
and D-state components enter the calculation of that
quantity. "If the peak cross section calculated for the
complete wave function is compared to that calculated
for an S-state wave function matched to the effective
range, the 4.3% discrepancy noted above is reduced to
2.9%. Scattering involving the D-state component of
the wave function should become somewhat more im-
portant at larger values of the momentum transfer q.

Combining the foregoing results, we obtain as a
"best" result for the peak cross section for the range of
momentum transfers of current interest

d'/(dQ. dE')= M. (457X10 ')
X(1a0.05)(eP/pE)(G~+G ), p=-,'q, (84)

where

G, =Fr +(q'/4m')s, 'PsP
+2(qs/4ms) tans(t8)(F1'+ "Ps')s (85)

This approximate result is based on the expression of

TABLE V. The relative contributions of various terms to the
cross section d'o/(dQdE, '), calculated for p='g=1. 3 f ' and a
Hulthen-type model for the deuteron wave function. The D-state
probability for this wave function is 5% It was assumed in the
calculations that FI„=F2„=F2„andFI„=O.The labeling accord-
ing to S and D states refers to the part of the wave function which
contributes to each term. The auxiliary designations pp, nn, and
np refer to terms in the cross section which arise, respectively,
from scattering by the proton alone, by the neutron alone, and
from interference between the neutron and proton scattering
amplitudes.

Terms in cross section Relative contribution

S-state, pp plus nn
S-state, np interference
D-state, pp plus nn
S-D, np interference
D-state, np interference
Total

1.00—0.21X10~
1.56X10 '

—0.87X 10-2
0.03X10 '

1+0.51X10 '

Eqs. (10), (11), and (15). The function M(p, q) was
evaluated for p=sq and the repulsive-core deuteron
wave function of Sec. II using the method discussed in
the Appendix. The following corrections to the cross
section were then incorporated in the result. : (1), a —3%
correction arising from the neglect of the D-state com-
ponent of the deuteron wave function; (2), a —2%
correction for the effects of final state interactions. The
latter is strictly valid only for the range of momentum
considered in Sec. II, 2.6 f '(q(3.4 f ', but is probably
a reasonable estimate of the effects of final state inter-
actions for somewhat larger values of q as well. The
deuteron normalization constant .V' which appears in

M(p, q) was evaluated using for the triplet eA'ective

range the value ro z ——1.69&0.03 f appropriate for the
small positive shape-dependent parameter Pp

——0.03
which seems necessary to fit the low-energy neutron-
proton scattering data. " 'I'he indicated uncertainty in
the result encompasses the experimental uncertainty
in ro r, an estimated 2% uncertainty in the cross section
associated with final-state interactions, and a possible
1% error associated with uncertainties in the deuteron
wave function and with the D-state scattering. Negli-
gible errors were introduced by neglecting the inter-
ference terms in Eq. (15). YVe have also neglected in
the calculations contributions to the transition matrix
element which arise from the nonzero momentum of the
spectator particle in the spin-dependent factor J„,
$Eqs. (56.2) and (62)]; the error incurred thereby is
again negligible at the quasi-elastic peak.

The modifications the peak cross section which arise
from off-mass-shell corrections to the nucleon form
factors and, more important, from scattering by meson
currents within the deuteron, have not yet been calcu-
lated, but the changes are probably no more than a few
percent of the peak value. The cross section is also
modified to some extent by radiative corrections to the
electron current operator and the photon propagator,
and by the emission of bremsstrahlung in the course of
the scattering. These corrections have been discussed
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elsewhere. 4'4' We remark only that, to the extent to
which radiation by the nucleons can be neglected, these
corrections alter only the external factor in Eq. (84),
and do not aGect the functions G~ and G„.

The form for the peak cross section given in Eq. (84)
is identical to that given by Goldberg" in an approxi-
mation to his impulse type calculations; the relation of
the function 3I(p,q) for p= —',q to Goldberg's matrix
element (1/p) is discussed in the Appendix. However,
the present approach allows an unambiguous study of
the approximations leading to Eq. (85). The result
appears, in fact, to be more accurate than was supposed
by Goldberg.

Most analyses of the inelastic electron-deuteron scat-
tering experiments' have been based on the modified
Jankus cross section. 4' The factor 0' which appears in
that result may be considerably simplified at the quasi-
elastic peak if the very small terms arising from the
contribution of nonzero initial momenta of the target
nucleon to the nucleon convection current, and from
interference scattering involving both the neutron and
the proton, are omitted. The resulting function may be
expressed in terms of M(p, q) [Eq. (29)].When M(p, q)
is treated as in Eq. (31), the resulting peak cross section
differs from that given in Eq. (84) in the following
respects. First, the kinematic factor (nz/F) and the
corrections for D-state e6ects and final state inter-
actions which have been incorporated in Eq. (84) are
absent. Second, the functions G„and G are replaced by
functions G„' and G„' given by

G '=G —(q'/2m')F»' —0[(q'/4tis')'].

This change is quite important for small scattering
angles and large values of q'. The origin of the extra
terms is easily traced. Those terms involving (q'/4m')',
which cannot consistently be retained in the non-
relativistic theory [see reference 9], represent partial
corrections which lead to the appearance of the 4-
momentum transfer rather than the 3-momentum
transfer in the relativistic theory. These terms should
be omitted. The extra (and more important) term
—(q'/2m')F»s should also be omitted. The transition
from the Jankus' to the modified Jankus cross section4'

may be accomplished essentially by replacing the
effective charge eF~, in the non-relativistic interaction
Hamiltonian by e[F»—(q'/4m') (F»+2sP's, )].As noted
in reference 30, the correct effective charge is

4' S. Sobottka, Phys. Rev. 118, 831 (1960).
4' Y. S. Tsai, Phys. Rev. 122, 1898 (1961). Tsai gives detailed

numerical examples for the conditions of the Stanford electron-
proton scattering experiments, which indicate that radiative cor-
rections involving the proton will become important for large-angle
scattering at energies E, near 1 Bev. However, corresponding
corrections for the neutron will be absent to the accuracy to which
the calculations were performed. The radiative corrections are
associated primarily with bremsstrahlung and the exchange of
virtual photons with low momenta; in either case, the vanishing
of F1„for q'=0 causes the relevant portions of the matrix elements
to vanish also. The magnetic moments do not contribute signifi-
cantly to the radiative corrections.

e[Fi,—(q'/4m') (—Fi,+2K;Fs,)]. However, the first
form leads to results correct to 0(m ') if one simul-
taneously omits the convection current terms in the
interaction. ' " These were incorrectly included in the
modified Jankus cross section. [The extra terms were
correctly omitted in (I).']

The possible effect of the foregoing results on the
values of the neutron form factors Ii~ and Ii2 deter-
mined from the Stanford electron scattering experi-
ments, has been investigated by reanalyzing the ex-
perimental data of Hofstadter, deVries, and Herman4 44

for representative values of q'. The calculations were
based on the theoretical expression for the peak value
of the inelastic deuteron cross section d'o./(dQ, dE.')
given in Eq. (84). The function G~ which appears there
was evaluated using the Rosenbluth cross section for
elastic electron-proton scattering,

(da/dQ, )„=o M„„[1+(2F.,/nz) sin'(-', 8)] 'G„(86)

in conjunction with experimental values of the elastic
scattering cross sections. ' The value of the Rosenbluth
factor G„ for the neutron was then determined from the
experimental deuteron cross section using Eq. (84).
Where properly matched values of d'o/(dQ, dE,') and
(do./dQ, )~ were not available in the published data, we
have constructed "experimental" cross sections using
the modified Jankus theory and the smoothed values
of the form factors taken from Fig. 1 of reference 4.4'

A corrected value of G„was then determined using the
cross section of Eq. (84). Separate values of Fi„and
F&„were obtained by combining values of G„obtained
at a fixed value of q', but with different scattering angles
and energies, using the method of intersecting ellipses. "
We note finally that the ellipses failed in three cases
[q'= 10, 11.5, and 15 f '] to intersect unless allowance
was made for possible errors in the cross sections. "In

44The author is greatly indebted to Professor R. Hofstadter,
Dr. C. deVries, and Dr. R. Herman for extensive discussions con-
cerning the Stanford electron scattering experiments.

45 For q'= 11.5, 18.0, and 21.0 f 2, we have used the experimental
peak values of d'0./(dQ, dE, 'l given by Hofstadter, deVries, and
Herman444 in conjunction with the experimental proton cross
sections (do/dQ, l„ for the same scattering angles and energies
given by Hofstadter, Bumiller, and Croissiaux. ' For g'=5. 1 f ',
the values of d'0/(dQ, dE, ') interpolated from the data of Sobottka'
by Hofstadter, deVries, and Herman4 were combined with proton
cross sections calculated from the exponential proton model of
Chambers and Hofstadter. ' This model was used by Sobottka to
normalize his deuteron cross sections. 4 The deuteron cross sections
used in the analysis for g'= 10 f ' and 15 f 2 were calculated from
the modified Jankus cross section4 using smoothed values of the
nucleon form factors taken from Fig. 1 of Hofstadter and Herman. 4

The values assumed for the neutron form factors F1„~ and F2 ~
corresponding to the Jankus theory are given in Table VI. The
values assumed for the proton form factors are as follows: q'=10
f ', F1„=0.48, F2„=0.39; q'=15 f~, F1„——0.43, F2~ ——0.21.

"The failure of the ellipses to intersect indicates that the input
data are inconsistent with the theoretical cross section of Eq. (84).
However, intersections could be obtained by changing either the
large angle or the small angle deuteron cross section d'cr/(dO, dE, ')
by 10% or less. Errors in the cross sections of this magnitude are
consistent with the estimated accuracy of the experiments. '4
Furthermore, such errors are undoubtedly present, as indicated
by the deviation of the experimental values of G.„from the values
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these cases, we have determined rough values of Fj„
and F2„by choosing as the "intersection" the midpoint
of the region of closest approach. It is expected from
an examination of the effects of possible experimental
errors that the value of F&„so determined is slightly too
small, and that of F&, considerably too negative.
F~„=O would be consistent with the data within the
possible errors.

The results of this analysis are quite striking, as may
be seen from Table VI. The original results of
Hofstadter et al. ,

' based on the modified Jankus cross
section, suggested that Fi was a positive increasing
function of q', with a value Fi„=0.2 for q'=20 f '.
Preliminary results obtained using the present theory
favor very small or zero values of F&„over the entire
range of q' which was considered. In addition, the new
values of F2„are somewhat smaller than those based on
the Jankus theory, bringing this form factor more
nearly into coincidence with F.„.However, these con-
clusions must be regarded as tentative pending a com-
plete analysis of more recent Stanford and Cornell
data. 4'

The theoretical situation is much less clear with
respect to the cross-section d'o((dadF. ,') near the
threshold for the dissociation of the deuteron. For large
values of q, the cross section depends critically on the
structure of the deuteron and the free 'Si and '50
neutron-proton wave functions at small distances. The
nucleons are then considerably off the mass shell, and
it is not clear either that the effective form factors do
not differ significantly from the free-nucleon form
factors, or that the effects on the scattering of meson
exchange currents are negligible. It does not, therefore,
appear likely that reliable information about the struc-
ture of the nucleons can be obtained from experiments
of the type performed by Kendall ef ul." (This state-
ment. is equally true of the elastic electron-deuteron
scattering experiments of McIntyre and his co-
workers. ') The purely phenomenological analysis of
Sec. III may nevertheless have some merit as a check
on the possible short-range structure of the free-state

TABLE VI. Changes in the neutron form factors F&„and F2„
which result from changes in the theoretical peak value of
d2g/(dO, dE, '). The form factors with the superscript J result from
an analysis of the experimental cross sections based on the modi-
fied Jankus theory. The form factors without superscripts are
obtained when the data are reanalyzed using the present theory.
The calculations were based on the method of intersecting ellipses.
The tabulated values of the form factors denoted by asterisks
correspond to the point of closest approach in those cases in which
the ellipses failed to intersect. '

q'- (f ')

5.1
10.0
11.5
15.0
18.0
21.0

0.16
0.12
0.03
0.18
0.25
0.17

0.09—0.09*
—0.11*
—0.08*
—0.02

0.00

0.76
0.49
0.46
0.40
0.40
0.33

0.75
0.38*
0 34+
0 28+
0.28
0.22

a See reference 4 and reference 45.
b See reference 40.
e See reference 46.

deuteron wave functions, especially in the sense of a
comparison of the inelastic scattering cross section near
threshold with the elastic scattering cross section. It
was in fact demonstrated in Sec. III that the use of
wave functions corresponding to a repulsive-core inter-
action between the neutron and proton for both the free
and the bound states permitted one to 6t both cross
sections simultaneously, thereby removing the dis-
crepancy between the simple Jankus theory' and experi-
ment noted by Kendall et al."

APPENDIX

In this Appendix, we will indicate the none-too-
obvious origin of the approximate expressions for the
function M (p, q), Eq. (15.2), used in Secs. II and V. We
will assume, in accord with the work of Bertocchi et al. ,

'4

that the deuteron 5-state wave function u(r) ca,n be
written in the form
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calculated for the same q' and 0 using neutron form factors taken
from smooth curves drawn through the points by Hofstadter and
Herman. 4 The deviations range up to 50% but are generally much
smaller. Since scattering by the proton contributes ~

—-'; of the peak
deuteron cross section, depending on q' and 9, the corresponding
errors in de/(dO, dE, ') are reduced by factors of 2—3, and lie
within the expected range. Conversely, it is clear that the values
obtained for G„, hence, for the neutron form factors, can be
changed significantly by rather small changes in the experimental
values of d'a/(do„dE, ') and (do./dQ, )„.' The Stanford group has recently extended its measurements
of the inelastic electron-deuteron, and the elastic electron-proton,
scattering cross sections to a number of energies and scattering
angles not previously considered, with a largest value of q' now
25 f '. Preliminary analyses at several of the new points suggest
that Ii&„may indeed be greater than zero, but somewhat smaller
in magnitude than indicated in reference 4. LR. Hofstadter
(private communication). The author is greatly indebted to
Professor Hofstadter for a number of communications concerning
the Stanford experiments. ] The Cornell group has also extended
considerably its measurements at larger values of q'. LR. R. Wilson
(private communication). ]

(A.1)

where for a superposition of Yukawa potentials with a
minimum decay parameter P,

p(s) =6(s—rr) —2so (s)8(s—n —X), (A.2)

and o. (s) is the weight function which a,ppears in
Eq. (75). The function F(0), Eq. (15.4), which corre-
sponds to such a wave function is given by

F(0)= 1K P(s)Ls'+P'+srq' P'qj 'ds (A 3)

This function has precisely the same structure as the
relativistic momentum space wave function D(t),
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Eq. (80). In accordance with the discussion of Sec. IVb,
q2 is to be equated to the square of the electron 4-
momentum transfer, q is the 3-momentum transfer in
the center-of-mass system of the outgoing nucleons,
and p is the momentum of the proton in that system.
Specializing to the case

~ p~ = ~-,'q~, q'=q', which is
characteristic of the quasi-elastic peak in the cross-
section d'o/(dQ„. dE, '), and calculating M(p, q) using the
formula of Eq. (15.2), we obtain

00
~

QO

0 ~0

1 s'(s"+q')
X ln, (A.4)

s2 s&2 s&2 (s2+q2)

~1 oo oo

= (lV'/q') du ' p(s)ds p(s')ds'

y f [s'(1+u)+s"(1—u)]—'

—[s'(1+u)+s"(1—u)+2q'] '), (A 5)

p(s)ds=0 (A.6)

which corresponds to u(0)=0, one obtains for the
leading contribution to the second term

dQ
1 J0

)&[s'(1+u)+s"(1—u)+2q'] '

QO l2

p(s)s'ds q' —+ ~. (A.7)
3q6

The first term in (A.5) involves q only in the external
factor (1P/q'), while the second term involves an extra
factor of q2 in the denominator and consequently
vanishes more rapidly for q2~ ~. In fact, when II2 is
la,rger than the maximum value of s' for which p(s) is

appreciable in magnitude, the second term may be
expanded in powers of [s'(1+u)+s"(1—u) ]/(2q').
Using the condition

second term in (A.5) is small, being roughly —1% of
the first term. The approximate value of M(p, q) used
in Secs. II and V is obtained by dropping the second
term in (A.5) altogether,

pl
M(p, q) —& (iV'/q') du p(s)ds

—1 0

X p(s') d"[s~(1+u)+"2(1—u)]-',

p=-,'q, q'~ ~. (A.8)

The result given for M(p, q) in Eq. (31) is obtained
immediately by taking the p (s) appropriate for a
Hulthen wave function, p(s) = [5(s—n) —5(s—8)]. The
approximation is excellent for q& 2 for both the Hulthen
and repulsive core wave functions discussed in the text.
Thus, for the Hulthen wave function, and q=1, 2, 3,
~ f ', we obtain for (q'/AT')M(p, q) the values 15.262,
15.464, 15.473, and 15.475 f2; the corresponding
numbers for the repulsive core wave function are
15.503, 15.668, and 15.669 and 15.671 f2.

Approximations for M(p, q) for pA-', q may be con-
structed by similar methods. The most useful result,
that which describes the shape of the central region of
the quasi-elastic peak, p= —,'q, is obtained simply by re-
placing the denominator in (A.8) by

[s'(1+u)+s"(1 u)+—2p'+-'q' 2p
~

q—
~ ];

the e~ternal factor 1V'/q' must simultaneously be
changed to Ã'/(2p

~ q ~
). This approximation is valid for

(p —&q)'«&', where X is the minimum decay parameter
for the Yukawa potentials.

We remark finally that the matrix element (1/p)
defined by Goldberg" in the last paragraph of his paper
on the impulse approximation for inelastic electron-
deuteron scattering is given to within trivial factors by
the integrals in (A.8):

(1/p)= " le(p) I'p 'd'p

Q2 ~1 )oo

du p(s)ds

p(s') ds'[s'(1+u)+s" (1—u)] ',
For a Hulthen wave function, this becomes essentially
P'/(jq'), a number which is to be compared with the
estimate 1/cP for the first term in (A.5). Thus even for
q=p= 1.43 f ', the contribution to M(p, q) of the

where

p(p) = (2ir) '* e 'i"u(r)d'r (A.10).


