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The theory of Blin-Stoyle and of Arima and Horie, in which the deviations of the nuclear magnetic
moments from the single-particle model Schmidt limits are ascribed to configuration mixing, is used as a
model to account quantitatively for the effects of the distribution of nuclear magnetization on hyperfine
structure (Bohr-Weisskopf effect). A diffuse nuclear charge distribution, as approximated by the trapezoidal
Hofstadter model, is used to calculate the required radial electron wave functions. A table of single-particle
matrix elements of R? and R? in a Saxon-Woods type of potential well is included. Explicit formulas are
derived to permit comparison with experiment. For all of the available data satisfactory agreement is found.
The possibility of using hyperfine structure measurements sensitive to the distribution of nuclear magnetiza-
tion in a semiphenomenological treatment in order to obtain information on nuclear configurations is

indicated.

I. INTRODUCTION

T is well known that the strict single-particle model
fails in explaining most nuclear magnetic moments,
even with quenching of the intrinsic spin or orbital g
values of the nucleons.! On the other hand, reasonably
successful theories have been developed by Blin-
Stoyle,? and Arima and Horie,? to account for the
departure of the magnetic moments of odd-4 nuclei by
configuration mixing calculations. This configurational
mixing theory will be referred to as CMT. We investi-
gate the application of such a configuration mixing
theory to a closely related property of the nucleus—the
distribution of its magnetization, as it is manifested in
the hyperfine structure interaction of penetrating
electrons.

Bohr and Weisskopf (BW) have calculated the
hyperfine structure interaction of sy and py,s electrons
in the field of an extended distribution of nuclear
charge and magnetism.* Two important conclusions
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the American Physical Society Meeting, Washington, D. C.,
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Phys. Soc. 2, 228 (1957).
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may be drawn from their work. First, that the hfs for
a finite nucleus is, in general, smaller than that to be
expected for a hypothetical point nucleus. Second,
that the isotopic variations of nuclear magnetic
moments, combined with the different contributions
to the hfs of the orbital and spin parts of the magneti-
zation in the case of the extended nucleus, allow for
relatively large isotopic variations in the departure
from a point hfs interaction. The latter point is
consistent with the experimental observation®™ that
the ratio of the hfs constants for two isotopes may, in
some cases, be different from the independently
measured ratio of the magnetic moments. The dis-
crepancy in these two ratios is commonly referred to
as the “Bohr-Weisskopf effect” or “hfs anomaly.”

Bohr®? has treated this “hfs anomaly” within the
framework of the collective or asymmetric model, and
recently Reiner’® has carried out calculations on the
collective model, primarily in the region of the rare
earths.

Most experimental data, however, lie in a region
where the collective model is not ideally applicable.
Furthermore the results of our experiments on the
hfs of several Cs isotopes! (together with evidence for
configuration mixing in the decay scheme study of
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Kusch, Phys. Rev. 58, 438 (1940).
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12 A, Bohr, Phys. Rev. 81, 331 (1951).
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thesis, University of Amsterdam, 1958 (unpublished).
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NUCLEAR MAGNETIZATION ON hfs

Cs'3 by Sunyar et al.*) pointed out the difficulty of
accounting for the BW effect in them unless some
detailed information about the nucleon configurations
were included in the BW theory. We have therefore
developed a formalism which considers configuration
mixing effects, as used by Arima and Horie? and Noya
et al.’® and in turn makes possible the use of the BW
effect in conjunction with magnetic moment data to
give information on the admixed configurations.
Modifications of the intrinsic nucleon g values can be
introduced formally into the theory when such changes
are expected to have a substantial effect, as is the
case for the potassium isotopes.

II. EFFECT OF THE DISTRIBUTION OF CHARGE
AND MAGNETIZATION ON HFS

Bohr and Weisskopf? have calculated expressions
for the hfs interaction energy W of a nucleus of finite
extent. For sy/2 or pi» electrons there will be an hfs
doublet corresponding to the two values of the total
angular momentum F=j4% and they define W to be
the energy by which the state F=j-3 is displaced. j is
the nuclear spin. Alternatively, if ZAv is the energy
separation of the two states, then by the interval rule
W=jhAv/(2j+1). They write W=Wgs+W., where
W and W, are the contributions to W from spin and
orbital magnetizations in the nucleus. For the spin part,

16me
Ws=i—deTN\I/N*(1"'i"'A)gs(i)
3 N i
R; 73

X[Sz“) FGdr+Dz® f ——FGdr]\IfN. (1)
R; 0 RzB

The spin asymmetry operator in (1) is given by the
tensor product (of rank 1)

—3(10)i[SXC]®, (1a)

where Cf=[4n/(2k+1) 1}V *(0,6), and Y is a spherical
harmonic. It is equal to the bracket of Eq. (7) in BW
as well as to the operator —(Sz){, corresponding to
Bohr’s Eq. (2).2 The orbital part of the interaction is

16me

Wi== f z dry Yy gL(’)LZ(')

R; 1'3
x[ f FGdr+ f »—FGdr]\IrN 2)
R;

The upper and lower signs in (1) and (2) refer to sy
and py» electrons, respectively. The symbols are e,
electron charge, R(XYZ) and 7, nuclear and electron
coordinates, respectively, ¥y, nuclear wave function

“4A. W. Sunyar, J. W. Mihelich, and M. Goldhaber, Phys.
Rev. 95, 570 (1954).

15 H. No a, A. Arima, and H. Horie, Progr. Theoret. Phys.
(Kyoto) 8, 33 (1958), Supplement
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corresponding to the maximum z component of spin,
F and G, Dirac electron wave functions for an extended
nucleus, gs® and g, ?, spin and orbital g values of the
ith nucleon, S and L nuclear spin and orbital angular
momentum operators, 4, mass number of the nucleus.
By writing

Wpoint (1 + 5); (3)

and noting that for a point nucleus the interaction
energy is given by letting R;=0 in the integral limits in
(1) and (2), and replacing F and G by F, and G, their
values for a point nucleus,

W extended=

1
[ B
2

Bi Ei FGr?
x[gsw(szw f FGdr—D f dr)
0 0 Ria
R; 7’3
+gL(i)Lz(i)f (la—-)FGdrjI‘I’N}, (4)
0 Ris

where u is the nuclear magnetic moment. Equation (4)
is the more general expression for e which corresponds to
BW Eq. (19) as modified by Bohr'2 [Egs. (1) and (15)7].

III. ELECTRON WAVE FUNCTIONS IN A HOF-
STADTER-LIKE CHARGE DISTRIBUTION
EVALUATION OF THE ELECTRON
INTEGRALS

The functions F and G in (4) are to be calculated for
a potential which corresponds to the actual nuclear
charge distribution. This was approximated in BW by
assuming a uniform distribution. We have found,
however, that the electron integrals are noticeably
sensitive to the model assumed for the distribution.®
For this reason we obtained a series solution of the
Dirac equation for a charge distribution which agrees
better with the one indicated by high energy electron
scattering!” and other experimental data,'® and there-
fore should correspond more closely to the actual
nuclear charge distribution.

We found that the solution of the equations was
very complicated to handle for any of the three forms
of the charge distribution given in reference 17. It may
be shown that it is simple only if the entire charge
distribution can be represented by a polynomial in 7.
The solutions can then be carried out as in BW, re-
lying on the validity of the approximations in the nor-
malization of F, G, to Fi, Go as stated by Rosenthal

16 H. H. Stroke, Res. Lab. of Electronics, M.L.T., Quarterly
Progress Report No. 54, July 15, 1959, p. 63 (unpubhshed)

17B. Hahn, D. G. Ravenhall and R. Hofstadter, Phys. Rev.
101, 1131 (1956)

K. W. Ford and D. L. Hill, Annual Review of Nuclear Science
(Annual Reviews, Inc., Palo Alto, California, 1955), p. 25
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Fic. 1. Trapezoidal
charge distribution
of Hahn, Ravenhall,
and  Hofstadter.!?
(Our ¢; is their
parameter c.)

pip,

and Breit.® We have therefore approximated the
trapezoidal charge distribution p of reference 17
with the following polynomial in x (x=7/Ry, where
Ry=c1+2)

p=potpax®+ s’ paxt. (5)

The dimensions ¢; and z; are shown in Fig. 1. The
pertinent values used are ¢;= 1.074%f, t=1.60z;=2.40 .
The coefficients p; were determined by demanding that
pin Eq. (5) coincide with p of Fig. 1 at =0, c1—23, ¢,
and Ry. In terms of the parameters of the trapezoidal
distribution they are found to be

po (c1—23) (3612+3C123+232)
p2=-—" s

2 2301
Po (561+223)RN ~
pom— (52)
2 23C1
Po (261+23)RN2
py=— .
2 Z3612

The nuclear charge, Ze, determines the central charge

density,
420Zezsc1*

= . (6)
4‘7!'RN3(1 1613+4561223_ 34c¢ 1232—‘ 12232)

po

A plot of p for A~40 and 4~200 is given in Fig. 2.
These distributions reproduce fairly well the trapezoidal
one, and even the small central depression may be
realistic.’® From this charge distribution we obtain
the potential

Ze
V (x) =—(K — as®— agx*— asx®— asx"), ™
N
where

K=1+art+astas+as
as=2mwRn%po/3Ze,
as=7Ryps/5Ze,
as=21Rn%p3/15Z¢,
a¢=2mwRn’ps/21Z¢.

The solution of the Dirac equation for this potential,
and the evaluation of the electron integrals of Eq. (4),
are given in the Appendix. With these results [Eqgs.

19 J. E. Rosenthal and G, Breit, Phys. Rev, 41, 459 (1932).

(7a)
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(A.9)-(A.11)], Eq. (4) becomes

—e= 1/ S ZdN‘I’NZ;:Nz

X[gs@(Sz® (bs)2n—D2z® (bp)20)

+gL(i)LZ(i) (bL)2n]‘IfN ) (M’: 1)2) (8)

The sum over # results from the series solution of the
Dirac equation. The values of the electron coefficients
bs and by (defined in the Appendix) are given in
Table I for s1/2 and py/» electrons as a function of 4 and
Z. Equation (A.12a) gives bp in terms of bs. A plot of
these coefficients is shown in Fig. 3. For comparison
we also show the results obtained for uniform and
surface charge distributions.!® It is interesting to note
that the magnitudes of the & coefficients tend to
decrease the more the nuclear charge is distributed at
larger distances from the center, reflecting the cor-
responding changes in the electron binding. Figure 4
compares the b coefficients for the sys and py/» states
for the charge distribution of Eq. (5).

We have investigated the effect on these coefficients
of a modification of the approximate representation of
the charge distribution [Eq. (5)] in the form p=po
+pax?-+p i+ pex® [which in fact gives even a slightly
better fit to the trapezoidal distribution than Eq. (5)].
We find that the b coefficients for these two representa-
tions agree to within 2.59, for n=1 and 2. The
coefficients for #>2, which are small, are sensitive to
such slight variations in p. Since at present there is no
experimental evidence in favor of either one, these
higher terms cannot be considered to have significance

p - ARBITRARY UNITS

T1c. 2. Charge distribution as given by the representation of
Eq. (5). The broken lines indicate the trapezoids used in the
determination of the parameters,
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in the result. As we will show in Sec. V, the evaluation
of the radial nuclear matrix elements involves
(Ro/Ry)?", where Ro=1.204* f and is the radial parame-
ter involved in the nuclear potential well. If we take
this factor into account, the #>2 coefficients may
affect the value of e to about five percent. We note,
however, that in the comparison with experiment we
take the difference of € for two isotopes (see Sec. VI).
Therefore if € and e are very similar, although their
differences will be small, the effect of neglecting such
higher terms will also be canceled to a large extent.
On the other hand if the e are very different, as they
would be if the two isotopes have different spins, then
the difference will be large, and again the terms n>2
will have relatively little effect. The actual extent of
such cancellations will depend on the specific properties
of the isotopes under consideration.

IV. EVALUATION OF THE NUCLEAR INTEGRALS

In Eq. (8) an expression is obtained for the quantity
e which involves calculating the expectation value of
the operators M,, where

anMnSL_l_MnD; (9)
and
1 Z,2n
MnSLz_Z I:gs(i)sz(i)(bs)zn
uoi RN2n . .
+g2Lz® (br)2n], (10)
1__R»
MnDz_ z gS(‘L)DZ(I) (bD)Zn- (11)

uoi RN2n

Explicitly for a nucleus of spin 7, since the expectation
value is to be taken with respect to a nuclear wave
function having its maximum 2z component of spin, we
require (writing only the angular terms in the following

8—
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Fic. 3. Dependence on Z of the electron coefficients bg for
several nuclear charge distributions. The b’s are defined in the
Appendix,
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F16. 4. Dependence on Z of the electron coefficients bg for si/2
and pye states for an assumed Hofstadter type of nuclear charge
distribution. The b’s are defined in the Appendix.

three parts)
M.=C(j17; jO)(j|M.l|7), (12)

where (j||M,||7) is the reduced martix element of M,.
C is a Wigner coefficient.

In ignorance of the true nuclear wave function,
some approximate or model wave function has to be
used, and in view of the success of CMT in accounting
for magnetic moments, this theory is also used in the
following calculations. The basic idea is to write the
nuclear wave function ¥y as

Wy =W+, .0 BT, (13)

where ¥, (the zero-order state) represents a simple
shell-model configuration and the ¥; represent admixed
configurations characterized by the variable 7. For
small mixing coefficients 8(7), the main deviation of
the expectation value of M, from that given by the
simple shell-model wave function will be that due to
terms linear in B(¢) and the conditions that such
contributions should occur is that ¥, and ¥; must
differ at most by one single-particle state. In addition
for M 5L the orbital states must be the same (Al=0),
while for M,,2 states differing by Al=2 may also be
coupled.

We follow the classification and labeling of states
suggested by Arima and Horie. Thus the zero-order
state configuration is written as j2(J=j), where p is
the number of odd particles in the state 7 and no
indication is given of the even numbers of fnucleons
coupled to zero angular momentum. These latter
nucleons, however, play a crucial role in the con-
figuration admixtures considered here since these
admixed states are those in which a nucleon is excited
from or to these states, There are three types of
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TasLE 1. Electron coefficients b for a Hofstadter-type charge distribution. Values are in percentages.
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s1/2 electrons

P12 electrons

Z %! (65)2 (P —(s)e = (L)s (6s)2 (01)2 —(s)s  —(0r)
17 35 0.213 0.128 0.047 0.020 0.003 0.002 0.001
37 0.215 0.129 0.047 0.020 0.003 0.002 0.001
18 37 0.230 0.138 0.051 0.022 0.003 0.002 0.001
39 0.233 0.140 0.051 0.022 0.003 0.002 0.001
41 0.235 0.141 0.051 0.022 0.003 0.002 0.001
19 39 0.248 0.149 0.054 0.023 0.004 0.002 0.001
41 0.251 0.150 0.054 0.023 0.004 0.002 0.001
43 0.253 0.152 0.054 0.023 - 0.004 0.002 0.001
20 41 0.267 0.160 0.058 0.025 0.005 0.003 0.001
43 0.269 0.162 0.058 0.025 0.005 0.003 0.001
45 0.272 0.163 0.058 0.025 0.005 0.003 0.001
47 0.274 0.164 0.058 0.025 0.005 0.003 0.001
25 55 0.376 0.225 0.079 0.034 0.010 0.006 0.002 0.001
29 61 0.471 0.282 0.099 0.042 0.017 0.010 0.003 0.001
63 0.474 0.284 0.099 0.042 0.017 0.010 0.003 0.001
65 0477 0.286 0.099 0.042 0.017 0.010 0.003 0.001
67 0.480 0.288 0.099 0.042 0.017 0.010 0.003 0.001
30 63 0.498 0.299 0.105 0.045 0.019 0.011 0.004 0.002
65 0.501 0.300 0.105 0.045 0.019 0.011 0.004 0.002
67 0.504 0.302 0.105 0.045 0.019 0.012 0.004 0.002
69 0.507 0.304 0.105 0.045 0.019 0.012 0.004 0.002
4! 0.510 0.306 0.105 0.045 0.019 0.012 0.004 0.002
31 65 0.526 0.315 0.111 0.047 0.021 0.013 0.004 0.002
67 0.529 0.317 0.111 0.047 0.021 0.013 0.004 0.002
69 0.532 0.319 0.111 0.047 0.021 0.013 0.004 0.002
71 0.535 0.321 0.111 0.047 0.022 0.013 0.004 0.002
73 0.538 0.323 0.111 0.047 0.022 0.013 0.004 0.002
33 71 0.588 0.353 0.123 0.053 0.027 0.016 0.005 0.002
73 0.591 0.355 0.123 0.053 0.027 0.016 0.005 0.002
75 0.595 0.357 0.124 0.053 0.027 0.016 0.005 0.002
77 0.598 0.359 0.124 0.053 0.027 0.016 0.005 0.002
35 75 0.652 0.391 0.137 0.059 0.033 0.020 0.007 0.003
77 0.656 0.393 0.138 0.059 0.033 0.020 0.007 0.003
79 0.659 0.395 0.138 0.059 0.034 0.020 0.007 0.003
81 0.662 0.397 0.138 0.059 0.034 0.020 0.007 0.003
83 0.664 0.399 0.138 0.059 0.034 0.020 0.007 0.003
36 79 0.689 0.414 0.145 0.062 0.037 0.022 0.007 0.003
81 0.693 0.416 0.145 0.062 0.037 0.022 0.007 0.003
83 0.696 0.418 0.145 0.062 0.038 0.022 0.007 0.003
85 0.700 0.420 0.145 0.062 0.038 0.023 0.007 0.003
37 81 0.725 0.435 0.153 0.066 0.041 0.025 0.008 0.004
83 0.728 0.437 0.153 0.066 0.041 0.025 0.008 0.004
85 0.732 0.439 0.153 0.066 0.041 0.025 0.008 0.004
87 0.735 0.441 0.153 0.066 0.042 0.025 0.008 0.004
38 83 0.761 0.457 0.161 0.069 0.045 0.027 0.009 0.004
85 0.765 0.459 0.161 0.069 0.046 0.027 0.009 0.004
87 0.769 0.461 0.162 0.069 0.046 0.028 0.009 0.004
89 0.772 0.463 0.162 0.069 0.046 0.028 0.009 0.004
40 91 0.847 0.508 0.179 0.077 0.056 0.033 0.011 0.005
42 95 0.931 0.559 0.199 0.085 0.067 0.040 0.014 0.006
97 0.935 0.561 0.199 0.086 0.067 0.040 0.014 0.006
45 103 1.075 0.645 0.233 0.100 0.088 0.053 0.018 0.008
47 105 1.174 0.704 0.259 0.111 0.104 0.063 0.022 0.009
107 1.179 0.707 0.259 0.111 0.105 0.063 0.022 0.009
109 1.183 0.710 0.259 0.111 0.105 0.063 0.022 0.009
111 1.187 0.712 0.259 0.111 0.106 0.063 0.022 0.009
113 1.191 0.715 0.259 0.111 0.106 0.064 0.022 0.009
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TABLE L.—Continued.
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s1/2 electrons

P electrons

Z A (65)2 (b1)2 —(bs)s  —(1)s (bs)2 (0)2 —(@s)s  —(r)a
48 105 1.224 0.734 0.272 0.117 0.113 0.068 0.024 0.010
107 1.229 0.737 0.272 0.117 0.114 0.068 0.024 0.010
109 1.233 0.740 0.272 0.117 0.114 0.068 0.024 0.010
111 1.238 0.743 0.273 0.117 0.114 0.069 0.024 0.010
113 1.242 0.745 0.273 0.117 0.115 0.069 0.024 0.010
115 1.246 0.748 0.273 0.117 0.115 0.069 0.024 0.010
117 1.251 0.750 0.273 0.117 0.116 0.070 0.024 0.010
49 109 1.286 0.771 0.287 0.123 0.124 0.074 0.026 0.011
111 1.290 0.774 0.287 0.123 0.124 0.074 0.026 0.011
113 1.295 0.777 0.287 0.123 0.124 0.075 0.026 0.011
115 1.299 0.779 0.287 0.123 0.125 0.075 0.026 0.011
117 1.304 0.782 0.288 0.123 0.125 0.075 0.026 0.011
119 1.308 0.785 0.288 0.123 0.126 0.076 0.027 0.011
50 115 1.354 0.812 0.302 0.130 0.135 0.081 0.029 0.012
117 1.358 0.815 0.303 0.130 0.136 0.081 0.029 0.012
119 1.363 0.818 0.303 0.130 0.136 0.082 0.029 0.012
51 119 1.420 0.852 0.319 0.136 0.147 0.088 0.032 0.014
121 1.425 0.855 0.319 0.137 0.148 0.088 0.032 0.014
123 1.429 0.857 0.319 0.137 0.148 0.089 0.032 0.014
125 1.434 0.860 0.319 0.137 0.149 0.089 0.032 0.014
52 123 1.489 0.893 0.336 0.144 0.160 0.096 0.035 0.015
125 1.494 0.896 0.336 0.144 0.160 0.096 0.035 0.015
53 121 1.546 0.928 0.353 0.151 0.172 0.103 0.038 0.016
123 1.551 0.931 0.353 0.151 0.172 0.103 0.038 0.016
125 1.556 0.934 0.354 0.152 0.173 0.104 0.038 0.016
127 1.561 0.936 0.354 0.152 0.173 0.104 0.038 0.016
129 1.565 0.939 0.354 0.152 0.174 0.104 0.038 0.016
131 1.570 0.942 0.354 0.152 0.175 0.105 0.038 0.016
54 123 1.616 0.969 0.372 0.159 0.186 0.111 0.041 0.018
125 1.621 0.972 0.372 0.159 0.186 0.112 0.041 0.018
127 1.625 0.975 0.372 0.160 0.187 0.112 0.041 0.018
129 1.630 0.978 0.372 0.160 0.187 0.112 0.041 0.018
131 1.635 0.981 0.373 0.160 0.188 0.113 0.041 0.018
133 1.640 0.984 0.373 0.160 0.189 0.113 0.041 0.018
135 1.645 0.987 0.373 0.160 0.189 0.114 0.041 0.018
55 125 1.688 1.013 0.391 0.168 0.200 0.120 0.045 0.019
127 1.693 1.016 0.392 0.168 0.201 0.121 0.045 0.019
129 1.698 1.019 0.392 0.168 0.202 0.121 0.045 0.019
131 1.703 1.022 0.392 0.168 0.202 0.121 0.045 0.019
133 1.708 1.025 0.392 0.168 0.203 0.122 0.045 0.019
135 1.713 1.028 0.393 0.168 0.204 0.122 0.045 0.019
137 1.717 1.030 0.393 0.168 0.204 0.123 0.045 0.019
56 129 1.768 1.061 0.412 0.177 0.217 0.130 0.049 0.021
131 1.773 1.064 0.413 0.177 0.218 0.131 0.049 0.021
133 1.778 1.067 0.413 0.177 0.218 0.131 0.049 0.021
135 1.783 1.070 0.413 0.177 0.219 0.131 0.049 0.021
137 1.788 1.073 0.413 0.177 0.220 0.132 0.049 0.021
139 1.793 1.076 0.414 0.177 0.220 0.132 0.049 0.021
60 143 2115 1.269 0.507 0.217 0.294 0.176 0.068 0.029
65 159 2.626 1.576 0.656 0.281 0.421 0.253 0.102 0.044
70 173 3.233 1.940 0.845 0.362 0.589 0.353 0.150 0.064
75 186 3.949 2.369 1.084 0.465 0.807 0.484 0.217 0.093
79 191 4.587 2.752 1.316 0.564 1.020 0.612 0.287 0.123
193 4.594 2.756 1.316 0.564 1.021 0.613 0.287 0.123
195 4.601 2.760 1.317 0.564 1.023 0.614 0.287 0.123
197 4.608 2.765 1.317 0.564 1.025 0.615 0.287 0.123
199 4.614 2.769 1.317 0.564 1.026 0.616 0.287 0.123
201 4.621 2.773 1.318 0.565 1.028 0.617 0.287 0.123
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TaABLE I.—Continued.

s1/2 electrons

P2 electrons

Z 4 (bs)2 (bL)2 — (bs)4 — (br)s (bs)2 (bz)2 — (05)4 — (br)4
80 193 4.760 2.856 1.380 0.592 1.080 0.648 0.307 0.132
195 4.767 2.860 1.381 0.592 1.081 0.649 0.307 0.132
197 4774 2.864 1.381 0.592 1.083 0.650 0.397 0.132
199 4781 2.869 1.381 0.592 1.085 0.651 0.307 0.132
201 4788 2.873 1.382 0.592 1.086 0.652 0.307 0.132
203 4.795 2.877 1.382 0.592 1.088 0.653 0.307 0.132
81 197 4.945 2.967 1.447 0.620 1.144 0.686 0.328 0.141
199 4952 2.971 1.448 0.620 1.146 0.687 0.328 0.141
201 4.959 2.976 1.448 0.621 1.147 0.688 0.328 0.141
203 4.966 2.980 1.448 0.621 1.149 0.689 0.329 0.141
205 4973 2.984 1.449 0.621 1.151 0.690 0.329 0.141
85 214 5.727 3.436 1.741 0.746 1.427 0.856 0.426 0.183
920 228 6.736 4.042 2.159 0.925 1.826 1.096 0.576 0.247
95 242 7.716 4.630 2.609 1.118 2.254 1.352 0.751 0.322
100 256 8.476 5.086 3.025 1.296 2.643 1.586 0.931 0.399
excitation which need to be considered—referred to  where®
as types I, II, and III. e
yP T Rt (L g1tz 72)
Type I Excitation = 21 (711725 30) (71| Ml 72y (1£6),  (17)
and

The zero-order configuration has p (odd) particles
in state 7, 1 (even) in j; and #s (even) in 75, the #; and
ne particles being coupled separately to zero angular
momentum so that the total angular momentum J of
the state is equal to j. Thus, symbolically, the state
can be written

Wo=¥(j1"1(0)7."2(0)77 ()7 =) (14)

The admixed states of type I are then taken to be
those in which a particle is excited from state j; to
state 7, each group coupling respectively to j; and j,,
and the j; and 7, coupling together to J; which couples
finally with j to give J=j. The nuclear state ¥y can
therefore be written, on including one such admixture,

Wy =V (51"(0)7,"2(0)57 () =)+, 8(1)
XY ([ (G0 7 (52) JU ) (DT =5).  (15)

Of course, the states 71 and j, are chosen so that the
first-order matrix element of M, is nonvanishing and
so that the excitation involved is compatible with the
exclusion principle.

Using the results of Noya ef al. specialized to our
case, the following expression is obtained for the
contribution of such a type I mixing to the reduced
matrix element of M, evaluated with respect to (15):

(7 J=jIMall7 T=jn
== (Z+1)}C(j17;30)
X[n1(2fot-1—n2)/ (2j1+1) (22+1)]
(V=T

xwﬂ‘(zljl,zm){ |1GpyaE, a6

8

1 0
IGuP)= f Ra(RRiu(R)RA(R)RAR.  (18)

0

The upper (lower) line in the bracket { } must be
used when the excited nucleon in the orbit j; is different
from (similar to) the nucleon in the orbit j. The
quantity = (—1)*+7(j41) is to be taken with the
+ sign for excitations with Al=0, and — sign for
Al=21in Eq. (17).

In the above expressions, the admixture parameters
B(J1) have been calculated by straightforward first-
order perturbation theory using as the perturbing
potential a delta-function interaction given by

V12= [Vs<1 —'01'02)/4
+ Vz(3+01'0'2)/4]5 (R1—R2), (19)

where V, and V, represent the singlet and triplet
strengths of the internucleon interaction. AE is the
energy needed to excite a particle from the state 7; to
the state js, and (7i]|M.||j2) is the single-particle
reduced matrix element of the operator M,. Now for
M., 5% the only nonvanishing reduced matrix element
to be considered here? is that for which the particle
excitation is from ji=05+% to jp=1I1;—%. However, for
M.,? we can have both ji=/+% to jo=1;—% and also

20 According to our calculations, Eq. (3.7) of Noya et al. is in
error by a factor (27:4-1)%. With our choice of phase in the
reduced matrix elements, we also differ in sign in this equation.
Our 6 is equal to their e.

# There is also the possibility of an excitation to a state of the
same 7 and / value but different # value. Such an excitation would
be through essentially two oscillator shells and because of the
associated large value of AE such excitations are neglected.
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ji=h~+3% to jo=0443% or vice versa. The reduced matrix
elements of M, in each of these cases can be con-
structed easily from the single-particle reduced matrix
elements of Sz, Lz, and Dz given in Table II.

Using the foregoing relationships, we obtain finally
for the contribution of type I admixtures to the matrix
elements M, the expressions given in Tables III and
IV, where the radial matrix elements 9, (%2, ja,l2; 71,71,41)
are given by

In(nz, 70,005 m1,71,01)

2n

= f Rngjzlz(R) Rn1j1ll(R)R2dR. (20)
0 RN2n

Here the radial functions are those describing the

ground and excited states of the single particle involved

in the type I excitation; the evaluation of the J, and

also the estimation of the AZ will be discussed in Sec. V.

Type II Excitation

In this type of excitation, the orbit j; (of type I
excitation) coincides with j. Thus the nuclear wave
function, including a typical type II admixture, can
now be written

Uy =¥(51"(0);7())7=7)
+2 1 BTG ()M (U )T =7),
where p and # are the numbers of odd and even

nucleons, respectively. Using the same interaction as
in type I and specializing the results of Noya et al. to

21
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Tasrk II. Reduced matrix elements (41]|M||j2) of
operators S, L, and D.

Operator M 11—l ji—j» (il Ml 72)
S 0 1 —=3Qh+D) Q2+ /]
L 0 1 L2+ 27+ /7
D 0 1 — 3L 25+ 1) 24 1) 51 ]
S 0 -1 3L+ 2+ 1) /721
L 0 —1 — 30271 +1) (224+1) /72T
D 0 -1 L2+ Qe +1) /7
D 2 1 L—1/2Q20L—-1)1
D -2 -1 —3(.—1)/2Q2L—-1)]

our case, we have

(37 =3 M. 72T =)
=—(27+1)C(417; 30)[n/ 251+ 1) ]
X[2j=p)/2j=1) I (hjulg)
X(=V)I(j:*)/AE, (22)
where the various components of this expression are
defined as in Egs. (17)-(19). The contributions of
this type II admixture to the matrix elements M, are
given in Tables V and VI where the radial matrix
elements g are defined as in Eq. (20).

Type III Excitation
Here the orbit 7, coincides with the orbit j (of type I

excitation). The nuclear wave function including an
admixture of this type can now be written

Uy =¥ (71*(0)7())7=7)

+25 BUDY (G (G0 (T )T =5),  (23)

TastLe II1. Contributions of type I admixtures to M, ; the excitation is one of an even number #; particles in orbit j1=/1+% to orbit
j2=li—% containing an even number #, particles. Note that for (bs)en= (br)2n=9=p=1, (bp)2.=0, the values of M, given by this

table are just those obtained by Arima and Horie3 for dur.

Contribution from

Nucleus 7 Mop/T11 (2524 1—n2)/ (252+1)] even numbers of
LT C+2)[gs((bs)2an—2(bD)20) — g (BL) 20190 (m1, i3, by 1o, li— 3, 1) l —VI/AE protons (neutrons)
i (2143) 2l +1) L(V,—Vy)I/AE neutrons (protons)
0dd proton
(neutron) protons (neutrons)

L

(2141) (2L +1)

I—0)1gs((bs)2n—3(OD)2n) — gL (bL) 20190 (m1, L3, lis 2, L—%, 1) [ —VJI/AE

$(V,—VyI/AE neutrons (protons)

TasLE IV. Contributions to M2 for admixtures of type I with Al=2. If j; <jy, l» is larger; for 71 >js, l: is larger.
We denote the larger / by /.

Contribution from

Nucleus 7 —uM P /(11 (224 1—n2)] even numbers of
X — (3/8)lgs(bp) 2nIn (11, 51,015 12, fo,l2) ( —VI/AE protons (neutrons)
I+3
: (2143) (2ls—1) $(V—VyI/AE  neutrons (protons)
Odd proton
(neutron) X (3/8) I4-1)gs(bp)2nIn (11, 51,015 2, 52,02) { —VJI/AE protons (neutrons)
I~

(214+1) (20 —1)

3(Vi—VyI/AE neutrons (protons)
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TaBLE V. Contributions of type IT and III admixtures to M ,. Type Il is the excitation of an even number # particles in orbit ji=/+3
1nto the odd group j=I—3 containing p particles. Type IIT is the excitation of the p particles in the odd group j= =/+4% into the orbit
=]—% containing » partlcles If we specialize as in Table III, M, are again the results of Arima-Horie? for durr and durrr. For the

latter usually #=0.

Excitation type Mop
- 1(2— ) U—1)Igs((bs)2n—% (0D)20) — gL (bL) 20190 (n, =143, 15 0, j=1—1%, ) (= V.I/AE)
(Zj—1)@2+1)
m = (=1 Zj1+1-n) 0+1) (+2)[gs((bs)2n— 1 (00)20) — gL (br)2n 190 (n, =143, I; m, ji=1—%, ) (= Vil /AL)
(21+1) (20+1) (2143)
and the appropriate reduced matrix element is and for j=1—1

(T =4lIML[ 7T =)
== (274+1¥C(15; 20)L251+1—n)
X (p—=1/2j1+1) Q25— 1) It (hjrlj)

X(=VII(j1/5)/AE. (24)

The contributions to M, resulting from this type of
admixture are listed in Tables V and VII.

Zero-Order Term

Finally an expression has to be given for the reduced
matrix element of M, with respect to the zero-order
function ¥(j7(5)J=7). Only the odd (p) particles will
contribute to this matrix element and we obtain in a
straightforward fashion

Mo=C(j15; 70)(j7J =JlIMallj27 =)
=C(717; J0){JIM.[| )

for p identical particles.?#
Thus for j=1413,

1
Mn=~{ gr(br)en(j—%
p

4(541)

ng[( )2n+_‘ (bD)Zn] lg"(”ni;l; n:j;l) H (25)

TasLE VI. Contributions to M,? for admixtures
of type II with Al=2.

J —uM,2/[n (2,7'_/))]
— (3/8) U+1)g5(bp)2ndn (n1, 51,015 1, 5,0) (— VI /AE)

I+3 Nn>j
(214-3)?
(3/8)1(+1)gs(bn)2n9n (1, jr,ls; 1,5,0) (— VoI /AE)

-3 n<j

(—1)4r-1)

22 G. Racah, Phys. Rev. 63, 367 (1943).
2 C. Schwartz and A. de-Shalit, Phys. Rev. 94, 1257 (1954).

u 1'[ <b>2j+3(>1
n—(#)] 147 L2n2j+2 gs 2j42

(27+3)
47

X[(bs)2n+ (bD)2n] ]g”(nhjll; n?j;l); (26)

where in both expressions all the symbols have been
defined previously.2

V. RADIAL MATRIX ELEMENTS AND NUCLEAR
ENERGY LEVELS
Evaluation of 9, (n,,jsl; ny,ji,l;) and AE

In order to obtain values for the radial integrals g,
for two single particle states msjols and #n17i;, the
following approach was adopted. The relevant single-
particle wave functions and energies were calculated
for particle motion in a nuclear potential well of the
Saxon-Woods type having the form

[ Vol
1+exp[Ao(R—-R0)]
Ao| Vo|exp[4o(R— Ro)]
e {14-exp[A4,(R— Ro)]}2R

V(R)=

@7

Coulomb effects were taken into account by assuming
that the protons also moved in the potential of a charge
distribution p(R) of the form

po[1+R?/R7]
P 1+exp[41(R—R.) ] e

so normalized that the resulting Coulomb potential
Vo(R) satisfied

Ve(R)— (Z—1)e?/R for R— o,

2 The subscript # is used variously denoting in the nuclear
radial integrals the principal quantum number, in the angular
matrix elements, numbers of particles, and thirdly the terms
arising from the series expansion of the Dirac equation. The
particular meaning is obvious from the context.
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TaBLE VII. Contributions to M ,? for admixtures
of type III with Al=2.

j —uMP/L24+1—n) (p—1)]
— (3/8) (14-1)gs(bn)2n 90 (1, 51,015 m,5,0) (— VoI /AL)
+ 7>i
(21+3)2

B/8)1(0+1)gs(bp)2ndn(1,5101; m,5,0) (— VI /AE)
(I—1)(42—1)

11<j
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TasLE VIIIL Values in Mev of energy differences AE required
for calculations of €. These are obtained from the work of Arima
and Horie (see references 3 and 25).

States AL States AE States AE
1dsa—1d3e 5 lgoo—1gra 2.5 1hya—2fys 0.5
2s12—1dy2 4 1grra—2ds;a 0.5 2fya—2fg2 1.5
Ye—1fsr2 3 2ds2—2dyy 1.5 2f52—3pse 0.75

2psi2—2p12 1.5
2psrp—1fs2 0.5

2d3;9—3sy2 025 3p3e—3pu2 0.5

Vo= 1hg 2 lige—1inye 2

The well radii Ry and R, are defined by Ro=7,43,

R,=CR,, and the various values of the parameters

used are as follows:

Vo=064.5 Mev for an odd proton,

V4=>50.0 Mev for an odd neutron,
7o=1.20X10" cm,

A¢=1.40X10"¥ cm™,

k=39.5,
C=0.96,
A;=1.40X10"8 cm™.

These values lead to an approximately correct ordering
of the single particle neutron and proton energy levels.

We adopt the values of AE as given by Horie and
Arima?® who discuss their determination in detail.
Our parameters are thus consistent with the ones used
in their magnetic moment and electric quadrupole
calculations. The pertinent energy denominators are
reproduced in Table VIII.

The calculations of the wave functions, energies, and
finally the radial matrix elements were carried out on
the Mercury computer at Oxford using a program due
to Dr. L. M. Delves.

The radial integrals required are of the form

1
PR f RUR)R™Ry(R)AR,  (29)
RNQn
where Ry is the full radial extent of the trapezoidal
charge distribution and is defined in Sec. III. In the
machine calculations, the actual radial integrals
calculated were

1
si=— [ RRRmREE, ()
On

where Ry is involved in expression (27) for the nuclear
potential distribution. Thus J, and 4, are related by
R\ ™ 1.204% n
A SR L
Ry? 1.07434-1.50

where we have used the expression Ry given in Sec. III.

% H. Horie and A. Arima, Phys. Rev. 99, 778 (1955).

In Table IX the final results for 9,/ (n1,l1,51; #a,l2,52)
are given, but it must be remembered that in using
this table the relation of Eq. (31) must be used in
order to obtain 9,(ny,l1,71; #s,l2,72). The program also
printed out the radial wave functions, binding energies,
g 3,, and 94’.

Values of V,, V,, and I

In estimating the values of these three parameters,
we follow the procedure of Arima and Horie and take
| V| =~1.5|V,|. We further ignore the dependence of
the integrals I [Eq. (18)] on the quantum numbers
involved and only take into account the approximate
mass dependence of I. The value of the product V[ is
related to pairing energy data and, following Arima
and Horie, we take V,/=—25/4 Mev.

VI. COMPARISON WITH EXPERIMENTAL
RESULTS AND DISCUSSION
General Expression for =

We now consider the general form taken by e when
many admixtures of different types are contributing.
By Eq. (8),

—e= 3

n=1,2

VM Uydry= 2 M,,

n=l,2

(32)

where M, is the operator defined in (9), and where
Wy may contain the three types of admixtures described.
It must be remembered in this connection that there
may be several different admixtures of each type
contributing. Now it is of interest and of some practical
use to write down in a semi-symbolic way the form
taken by —e taking into account all of the possible
first-order admixtures investigated.?® Referring to
Tables IIT through VII, and Egs. (25) and (26), it

26 H. H. Stroke and R. J. Blin-Stoyle, Proceedings of the
International Conference on Nuclear Structure, Kingston, edited
by D. A. Bromley and E. W. Vogt (University of Toronto Press,
Toronto, 1960), p. 518.
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TaBLE IX. Values of radial integrals 4, between single-particle states #1/151 and nalsj» required for the calculation of hfs anomalies. For
states which are unbound with the parameters indicated in the text, the program increases the well depth to give a binding energy £=0.

Element VA A Proton states P I Neutron states 1y g9y
Cl 17 35 1d32—1d32 0.686 0.641 1dsa—1dsj2 0.800 0.876
1d3/2—1ds)2 0.689 0.629
1dsj2—2s1/2 —0.616 —0.700
37 1ds1a—1d3)2 0.662 0.592
1d32—1ds)2 0.669 0.590
1dsja— 2512 —0.590 —0.646
Ar 18 37 1d32— 1ds)2 0.670 0.592 1dssa—1ds/2 0.788 0.874
1d312—2s1)2 —0.592 —0.648
39 1d3a—1ds)2 0.653 0.559 fye—1f172 0.994 1.292
1dsj2—2s1)2 —0.570 —0.603
41 1d32— 1ds)2 0.638 0.531 12— Lfapa 0.962 1.199
1ds2—2s1)2 —0.551 —0.565 52— 1f22 0.993 1.40
K 19 39 1ds/2—1d3)2 0.644 0.555
11 1d32—1d3)2 0.626 0.521 1fsi2— 1f70 0.993 1.40
43 1d32o— 1d3)2 0.610 0.492 fsjo— 1f7/2 0.974 1.32
Ca 20 41 1f172—1fasa 0.962 1.199
= Uria— e 0.935 1.122
52— 1f12 0.974 1.32
45 1fz2—1f72 0.910 1.056
1fs2— 1f7/2 0.952 1.26
47 Yrpe— 12 0.889 1.000
fsja—1fa2 0.932 1.20
Cu 29 61 2p312—2p32 0.721 0.804 2p1y2—2p30 0.892 1.250
1fsi2— 172 0.690 0.590 1fesa— 1172 0.781 0.777
2psja—1fs)2 —0.654 —0.902
63 2psi2—2p32 0.706 0.770 2p12—2p32 0.865 1.173
1f5/2_1f7/2 0.680 0.571 lfs/z— 1f7/2 0.767 0.745
2psra—1f5/2 —0.631 —0.846
65 2psi2—2p3)2 0.692 0.740 2p12—2p3p2 0.840 1.106
1fs;2— 1172 0.670 0.554 1fs;2—1f7/2 0.754 0.717
2psja—1fs12 —0.612 —0.798
67 2p312—2p32 0.679 0.713 2p12—2p3/2 0.818 1.047
1fsi2— 1172 0.661 0.538
Zn 30 63 2?1/2'—2ﬁ3/2 0.716 0.794 1f5/2— Ifs,/z 0.770 0.781
1fsja— 172 0.680 0.572 2psa—2p32 0.839 1.098
2psia— 152 —0.513 —0.582 2p12—2p32 0.865 1.173
1fsi2—1f7/2 0.767 0.745
2ps12— 152 —0.631 —0.846
65 2p179—2p32 0.700 0.758 1fsi2— 1fss2 0.753 0.739
1fsjz— 172 0.671 0.555 2psia—2p32 0.818 1.043
2psra—1fs)2 —0.500 —0.557 2py2—2p32 0.840 1.106
1fsi2—1f7/2 0.754 0.717
2psja—1fs2 —0.612 —0.798
67 2p12—2p3/. 0.685 0.727 1fs;2— 1fsse 0.737 0.703
1fs;2— 1172 0.662 0.539 2p12—2p3/2 0.818 1.047
2psa—1fss2 —0.489 —0.534
69 217]/2—21)3/2 0.672 0.699 2?1/2-—2?1/2 0.819 1.048
1fsi2—1f7/2 0.654 0.525
2pspa— 152 —0.479 —0.514
71 2?1/2—2p3/2 0.659 0.673 2?1/2-—2151/2 0.798 0.993
1fsie—1fa12 0.646 0.512 1goja—1gos2 0.893 0.965

2ps2—1fs/2 —0.469 —0.497
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Element Z A Proton states 9y 99’ Neutron states g4 ErY
Ga 31 65 2p312— 2Py 0.694 0.745 2p1ja— 232 0.840 1.106
2p112—2p32 0.701 0.761 1f5/2— 1f7/2 0.754 0.717
1fsj2— 1172 0.671 0.556 2psre—1fssa —0.612 —0.798
2psja—1fs)2 —0.501 —0.558
67 2ps12—2p312 0.681 0.717 2p12—2p3)2 0.818 1.047
2p1j2—2ps3)2 0.686 0.730 52— 172 0.742 0.691
1fs72— 1f72 0.663 0.541 2p312— 152 —0.594 —0.756
2ps19— 1512 —0.490 —0.536
69 2psja—2pssa 0.669 0.692 2p12—2p3)2 0.798 0.994
2p172—2p32 0.673 0.701
1fs72— 1172 0.654 0.526
2psi2— 1152 —0.479 —0.516
7 2p312— 2372 0.658 0.669 2p172— 232 0.780 0.948
2p1j2—2ps/2 0.660 0.675 1g772—1g9/2 0.873 0.972
1fs10— 172 0.647 0.513
2psa—1fss —0.470 —0.498
73 2ps12—2p3)2 0.647 0.648 2p1ya—2py0 0.763 0.907
2p12—2ps/e 0.649 0.651 17— 1g9)2 0.898 1.04
fspo—1f72 0.640 0.501
2ps0— 152 —0.461 —0.482
As 33 71 2p315— 2P 0.660 0.673 2p172— 2P/ 0.780 0.948
2p172—2p32 0.662 0.680
1fsie—1f72 0.648 0.515
2p312— 152 —0.471 —0.501
73 2p312—2p3/2 0.649 0.652 2py2—2p32 0.763 0.907
2p12—2ps/2 0.651 0.656 1g772—1g9/2 0.898 1.04
1fs;2—1f7/2 0.641 0.503
2p32—1fss2 —0.462 —0.484
75 2p312—2p32 0.639 0.632 2p12—2p32 0.747 0.869
2P1/2—2P3/2 0640 06345 1g7/2——1g9/2 0891 102
1fsr2—1f72 0.634 0.491
2psja— 152 —0.454 —0.469
77 2ps12—2p372 0.630 0.614 2p12—2p32 0.732 0.834
2p12—2pss2 0.630 0.614 1gre—1gy2 0.882 0.990
1fsj2—1f7/2 0.628 0.481
2psra— 1512 —0.446 —0.455
Br 35 75 2p32—2p3a 0.640 0.635 2p12—2p32 0.747 0.869
2p172—2psya 0.641 0.638
1fsi2—1f72 0.635 0.493
2pya—1fs2 —0.454 —0.471
1g7a—1ggs2 0.742 0.671
77 2psje—2pss2 0.632 0.617 2p1a—2pa2 0.732 0.834
2p12—2ps2 0.631 0.618 1g7a—1go2 0.882 0.990
1fsi2— 172 0.629 0.483
2paja—1f5/2 —0.447 —0.458
1g72—1go2 0.738 0.662
79 2ps19—2p32 0.623 0.600 2p172—2p3/2 0.724 0.814
2py2 2pse 0.622 0.599 1gzo—1gy)o 0.847 0.902
1fsa—1f72 0.623 0.473
2psja—1f5)2 —0.440 —0.445
gr2—1gy/2 0.735 0.654
81 2psia—2psse 0.615 0.584 2p1j2—2pys2 0.707 0.777
2p12—2ps3s2 0.613 0.582 1grj2—1gos2 0.840 0.886
fsie—1f12 0.617 0.464
2p310—1f52 —0.434 —0.433
1gr2—1ge/2 0.731 0.646
83 2p312—2puy2 0.607 0.570 2p172— 2Py 0.699 0.759
2p1/2—2p3,2 0.604 0.566 1g7/2——1g9/2 0.834 0.870
52— 1172 0.612 0.455
2ps2— 132 —0.428 ~0.422
1g72—1g9/2 0.728 0.638
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* & Element Z A Proton states 4/ gy Neutron states g9¢ 9y
Kr 36 79 2p172—2p3r2 0.622 0.601 2p12—2p1/2 0.734 0.836
1fsi2—1f7/2 0.624 0.474 1g77a—1gos2 0.847 0.902
2psi2— 1572 —0.441 —0.446 2p172—2p3/2 0.724 0.814
81 2p172—2p32 0.614 0.583 1gy2—1goss 0.842 0.847
1fsi2—1f72 0.618 0.465 1g77a—1g0s2 0.840 0.886
2p312— 1512 —0.434 —0.434 2p112— 232 0.707 0.777
83 2p172—2p32 0.605 0.568 1gor2—1gos2 0.830 0.819
1fsi2—1f72 0.613 0.456 1g72—1gos2 0.834 0.870
2p312— 152 —0.428 —0.423 2p12—2psra 0.699 0.759
85 2p12—2p32 0.597 0.553 1go2—1g0/2 0.821 0.800
1fs2— 1172 0.608 0.448 1g72—1g0s2 0.822 0.840
2psia—1fs2 —-0422 —0.413
Rb 37 81 2psia=—2psa 0.616 0.587 1g72—1go/2 0.840 0.886
2/71/2—'2?3/2 0.614 0.585 2P1/2—-2{J3/2 0.707 0.777
83 1fsia— 1152 0.588 0.423 1g70—1gs/2 0.834 0.870
2P1/2—2P3/2 0.606 0.569 2?1/2—2/)3/2 0.699 0.759
85 1fsi2—1f5)2 0.583 0.414 1g72—1ge/2 0.822 0.840
2]71/2—2P3/2 0.598 0.554 2P1/2—21§3/2 0.684 0.726
87 2ps12—2pss2 0.594 0.546 1g770—1go/2 0.810 0.811
2p12—2psre 0.590 0.540
Sr 38 83 2p12—2p32 0.606 0.570 1g972—1g9/2 0.830 0.819
1g772—1g9/2 0.834 0.870
2p12—2ps/2 0.699 0.759
85 2p12—2p32 0.598 0.556 1goa—1g/2 0.821 0.800
1g772—1g9/2 0.822 0.840
2p1a—2ps/2 0.684 0.726
87 2p172—2p32 0.591 0.542 1gera—1g0/2 0.813 0.783
1g72—1gas2 0.810 0.811
89 2p12—2p302 0.584 0.529 2d52—2d5)2 0.909 1.241
1gr2—1go/2 0.799 0.786
Mo 42 95 2p12—2pse 0.567 0.499 2d515—2d5)2 0.865 1.11
1g7/2* lgg/g 0.694 0573 2d3/2—2d5/2 0907 124
1g772—1g9/2 0.774 0.729
2ds1o—1g7/2 —0.567 —0.786
97 2p12— 2P0 0.561 0.489 2d515—2d5)2 0.850 1.07
1gz2— 1802 0.688 0.562 2d3/2—2d5)2 0.887 1.19
1gza—1gor2 0.766 0.711
2d5/2—1g,/2 —0.546 —0.742
Ag 47 105 2p12—2pyy2 0.540 0.451 1g7a—1ga/2 0.734 0.646
1gze—1gun 0.669 0.530 2d219—2ds/2 0.815 0.996
2dspa—1g72 —0.501 —0.640
107 2py2—2py2 0.535 0.443 1gz2—1gy» 0.727 0.633
1g72—1g9/2 0.664 0.522 2d32—2ds)2 0.801 0.962
2dsja— g2 —-0.491 —0.620
109 2p12—2p12 0.530 0.435 1g720—1gs)2 0.722 0.622
1gr7a—1g9/2 0.660 0.514 2dsja—2ds)2 0.788 0.930
2ds1a—1g7/2 —0.483 —0.602
111 2p12—2p12 0.526 0.428 2d310—2d52 0.776 0.901
1g72— 182 0.656 0.507
113 2p12—2p12 0.521 0.421 2d31a—2dg)2 0.765 0.874
1g7/2—— lgg/z 0652 0500 1]1_,/2— 1h11/2 0805 0780
Cd 48 105 1g72—189/2 0.670 0.531 2ds512—2d5)2 0.791 0.930
2?1/2—2153/2 0.546 0.464 2d3/2—2d5/2 0.815 0.996
1g772—1g9/2 0.734 0.646

2dsj2—1gu)2 —0.501 —0.640
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Element Z A Proton states 9y 95 Neutron states g/ Py

Cd 48 107 1g72—1g9s2 0.665 0.523 2ds1a—2dss2 0.780 0.904
2?1/2—2?3/2 0.541 0.456 2d3/2—2d5/2 0.801 0.962
1g7/2— 1g9/2 0727 0633
2ds)2—1g)2 —0.491 —0.620
109 1g7/2—-1g9/z 0.660 0.515 2(15/2“2(15/2 0.770 0.880
2p1j2—2py2 0.537 0.449 22— 2ds)2 0.788 0.930
1g7a—1go/2 0.722 0.622
22— g1/ 0483 —0.602
111 1g7/2——1g9/2 0.656 0.508 331/2—351/2 0.832 1.113
2p1ja—2pay 0.532 0.442 22— 2ds) 0.776 0.901
1g72—1ge2 0.716 0.611
2ds2—1g7/2 —0.475 —0.585
113 1g72—1g9/2 0.652 0.501 3s12—3s1/2 0.817 1.074
2?1/2'—2P3/2 0.528 0.435 2d3/2—2d5/2 0.765 0.874
115 1g7/2— 1g9/2 0.648 0.495 35‘1/2—331/2 0.803 1.038
2p1y2—2py2 0.524 0.428 2d312—2d5)2 0.754 0.849
Ugjo— LUnnyye 0.802 0.773
117 1g772—1g9/2 0.644 0.488 3s172— 3s1/2 0.789 1.004
2p12—2ps2 0.520 0.422 2d312—2ds) 0.744 0.826
1/19/2— 11’l11/2 0801 0766
In 49 109 1g02—1gu2 0.700 0.565 1gza—1gu/2 0.722 0.622
1g720—1g92 0.661 0.516 2d313—2d5)2 0.788 0.930
2(i5[2—— 1g7/2 ——0483 —-0602
111 12— 1gos2 0.696 0.559 1gra—1gs2 0.716 0.611
1g72—1go2 0.657 0.509 2dsja—2ds)2 0.776 0.901
2ds2—1g72 —0.475 —0.585
113 1goa—1gos2 0.693 0.553 1g772—1g9/2 0.710 0.601
1g72— 129/ 0.652 0.502 2ds2—2dss 0.765 0.874
115 1gy2—1gy2 0.689 0.547 2d32—2ds)2 0.754 0.849
Lgra—1gu2 0.648 0.495 1hgjs—1h1ys2 0.802 0.773
117 1gor2—1gu2 0.686 0.541 2d312—2ds)2 0.744 0.826
1gra—1go2 0.645 0.489 1hgja— 1h1yj2 0.801 0.766
119 1g9/2—1gy/2 0.683 0.536 2d32—2ds)2 0.735 0.805
1g7/2— 1gg/g 0.641 0.483 1}l9/2— 1/111/2 0.797 0.760
Sn 50 115 12— 1g0)2 0.649 0.496 3sy2—3sy2 0.803 1.038
2dsj2—2ds2 0.754 0.849
117 1g7/2— 1g9/z 0.645 0.490 3&1/2—331/2 0.789 1.004
2d312—2ds), 0.744 0.826
1hgjo—1h11y2 0.801 0.766
119 1g7/2—‘ Igg/z 0.642 0.484 331/2—331/2 0777 0.973
2d3)2—2ds)2 0.735 0.805
Uhgja— 111y 0.797 0.760
Sb 51 119 2ds12—2d5)2 0.645 0.612 2d312—2ds)2 0.735 0.805
1g7/2— 1g7/2 0614 0444 1h9/z— 1]111/2 0797 0.760

1g1/2— 1g9/z 0.642 0.485
121 2ds12—2d5)2 0.639 0.601 2d312—2ds)s 0.726 0.785
1g7/2'—‘ lgg/z 0‘639 0479 1/19/2—— 1/111/2 0.796 0.753
123 1g72— 1872 0.607 0.433 2d3j2—2ds)2 0.717 0.766
1g72—1g9/2 0.635 0.474 1hgjo— 1h1y2 0.792 0.747
125 1g72—1g72 0.604 0.428 2d312—2d5)2 0.709 0.748
2ds12—2d5)2 0.628 0.581 1/gj2—1h11)2 0.789 0.741

1g77a—1gg/2 0.632 0.469
Te 52 123 1g7/2— 1g9/2 0636 0474 351/2—331/2 0754 0918
2d3j2—2ds)2 0.629 0.587 2d32—2d5)2 0.717 0.766
2dsi2—1g7/2 —0.369 —0.394 1hgjo—1N11s2 0.792 0.747
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Element zZ A Proton states 9y ey Neutron states g/ 9y’

Te 52 125 1g7/2— 1g9/2 0632 0469 331/2—331/2 0743 0892

2d3/2— 2d5/2 0623 0576 2d3/2—°‘2d5/2 0709 0748

2ds2—1g712 —0.365 —0.388 1hoje—1h112 0.789 0.741

I 53 121 1g10—1g72 0.611 0.440 2d312—2d5)2 0.726 0.785

2d5/2— 2d5/2 0.640 0604 1/’1,/2—- 1]111/2 0796 0753
1gza—1gy/2 0.640 0.481
2ds312—2ds)2 0.636 0.601
2dsj2—1g72 —0.373 —0.402

123 2ds)2—2ds)2 0.635 0.594 2d3j2—2ds)2 0.717 0.766

1g72—1go2 0.636 0.475 1hyo—1h1y)2 0.792 0.747
2d312—2d5)2 0.630 0.589
Zda/z— 1g7/2 —0.369 —0.395

125 2dsi2—2ds)2 0.630 0.584 2d32—2ds)» 0.709 0.748

1g7/2'— lgg/z 0.633 04:70 1[19/2—11111/2 0.789 0741
2d32—2d5)2 0.624 0.578
2ds)2—1g72 —0.366 —0.388

127 2ds12—2ds)» 0.624 0.575 2d310—2d5)2 0.701 0.731

1g7/2— 1g9/2 0.630 0.465 1/19/2‘— 1/111/2 0.789 0.736
2d3)2—2ds/2 0.618 0.568
2ds52—1g7)2 —0.362 —0.382

129 1g72—1gu)s 0.598 0.419 2dsja—2ds)s 0.694 0.716

1gz70—1go/2 0.627 0.460 1hgo— 1112 0.785 0.730
2dsj3—2ds) 0.612 0.557
2dsja—1g72 —0.359 —0.376

131 1g7/2— 1g7/2 0596 04:15 2d3/2—2d5/2 0687 0701

1g7/2—- lgg/z 0.624 0.456 1/23/2— 1]111/2 0.782 0.725
2d372—2ds/2 0.607 0.548
2(15/2— 1g7/2 *0356 —0.371

Xe 54 123 1g770—1g0/2 0.637 0.476 3s1y2—3s1/2 0.754 0.918

2d5/2—1g7/2 ‘-0370 —-0395 2d3/2——2d5/2 0717 0766

1hgj2—1h11)2 0.792 0.747

125 1gza—1gu2 0.633 0.471 3s12— 35172 0.743 0.892

2ds10—1g7)2 —0.366 —0.389 2d312—2ds/2 0.709 0.748

1/23/2— 1]1[1/2 0789 0741

127 1g172— 1gose 0.630 0.466 3s172— 35172 0.733 0.869

2ds;2—1g7)2 —0.362 —0.383 2d3j2—2d5)2 0.701 0.731

1hopa—1/11j2 0.789 0.736

129 1g7/2—1g9/2 0627 0461 351/2—351/2 0724 0847

2(15/2-— 1g7/2 —0.359 —0.377 2d3/2“‘2d5/2 0.694 0.716

]]LQ/Q— 1]211/2 0785 0730

131 1gr2— 1gore 0.624 0.457 2dsjo—2dsa 0.695 0.715

2ds;2—1g1/2 —0.356 —0.371 2dsj2—2ds/2 0.687 0.701

1hysa—1hyy2 0.782 0.725

3s12—2dy2 —0.659 —0.749

133 1gza— g2 0.622 0.452 2dsjo—2ds) 0.687 0.699

2(15/2-— 1g7/2 —0353 —0366 2d3/2——2d5/2 0'680 0.687

1/19/2—— lhn/g 0.777 0.714

3s17a—2d3/2 —0.651 —0.732

135 1g72—1gys2 0.619 0.448 2ds12—2d32 0.680 0.684

2d5/2—1g7/2 —0.350 —*0.361 1}!9/2—1/111/2 0.772 0.702

381/2—2d3/2 —*0643 —0715

Cs 55 125 3s179— 35172 0.638 0.665 2d319—2d5)2 0.709 0.748

2ds12—2d5)2 0.631 0.586 1hora—17111/2 0.789 0.741
1g72—1gu2 0.430 0.355
1g72—1gg/2 0.634 0.472
2ds12—2d5)2 0.625 0.581
2dsj2—1gue —0.366 —0.390

127 331/2‘—3.5‘1/2 0631 0651 2d3/2—2d5/2 0701 0731

1g772—1g9/2 0.631 0.467 1hgj2—1h11y2 0.789 0.736
2d312—2ds)2 0.619 0.570

2ds50— 1872 —0.363 —0.384
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Element Z A Proton states g9y 99 Neutron states 9y 99
Cs 55 129 3s172—3s1/2 0.624 0.637 2d3j2—2ds)2 0.694 0.716
1g7/2“‘ 1g9/2 0628 0462 lhg/z— 1]111/2 0785 0730
2dsj2—2ds)2 0.614 0.560
2dsp2—1g7)2 —-0.359 —0.378
131 2ds12—2ds)2 0.616 0.560 2d32—2ds)2 0.687 0.701
1g7/2-—1g9/2 0625 0457 1]19/2'—1]’111/2 0782 0725
2d312—2d5)2 0.609 0.551
2ds;2—1g72 —0.356 —0.372
133 1g72—1g72 0.594 0.412 2d3j2—2ds)2 0.680 0.687
1g7/2— 1gg/z 0622 04:53 1]19/2— 1/111/2 0777 0714
2d3j2—2ds)2 0.604 0.542
2ds1a—1g772 —0.353 —0.367
135 1g7/2— 1g7/z 0.591 0.408 2d3/2— 2d5,/2 0.673 0.674
1g7/2—- lgg/z 0619 0449 1/19/2“1/111/2 0772 0702
2dsja—2ds)2 0.599 0.533
2ds12—1g7/2 —0.350 —0.362
137 1g7/2— 1g7/2 0588 0404 1]29/2— 1/211/2 0766 0691
1g7/2— 1g9/2 0.617 0.445
2d312—2ds)2 0.594 0.525
2ds5i2—1g72 —0.347 —0.357
Ba 56 129 1g1/2—lgg/z 0628 0462 381/2—351/2 0724 0847
2d32—2d5)2 0.614 0.562 2dsja—2ds)» 0.694 0.716
2(15/2- 1g7/2 —0360 —0378 1h3/2~ 1]111/2 0785 0730
131 1g770—1gy2 0.625 0.458 3s1/2— 3s1/2 0.715 0.827
2d32—2ds)2 0.609 0.552 2d3j2—2ds/2 0.687 0.701
2d5/2—‘ 1g7/2 -—0356 —0373 1]29/2'—- 1]111/2 0782 0725
133 1g72—1go/2 0.622 0.454 3s1/2—3s1/2 0.706 0.807
2d312—2ds)2 0.604 0.543 2ds3j5—2ds)2 0.680 0.687
2d5/2—1g7/2 —0.353 —0.367 1]19/2-—'1]111/2 0777 0.714
135 1g72— 1492 0.620 0.449 2dsj9—2d32 0.680 0.684
2d3j2—2ds)2 0.599 0.534 2d32~—2ds)2 0.673 0.674
2d5/2——1g7/2 —0.351 —0.362 1/19/2— 1]111/2 0.772 0.702
331/2—2d3/2 —0.643 —0.715
137 1g770— 1892 0.617 0.445 2d312—2d3)2 0.673 0.669
2ds312—2ds)2 0.595 0.526 1t919— 1h13/2 0.766 0.691
2dsja— 1g7)2 —0.347 —0.357
139 1gza—1goj2 0.615 0.441 2na—2frss 0.848 1.029
2dsja—2ds/2 0.590 0.518 1rg1a— 11112 0.761 0.680
2d5/2— 1g7/2 —0.345 —0.353
Au 79 191 2dsjo—2ds2 0.518 0.395 3pia—3pye 0.731 0.844
2d3j2—2dsy)2 0.522 0.406 121170— 131372 0.756 0.655
1]19/2— 1h11/2 0638 0467
3s1/2—2dy2 —0.470 —0.400
193 2(13/2— 2d3/2 0.515 0.392 3?1/2-3?:;/2 0.724 0.828
2d312—2ds)2 0.520 0.403 1212— Liss)2 0.755 0.653
1/19/2— 1]111/2 0636 0464
3s1/2—2dy)2 —0.467 —0.396
195 2dys—2dsys 0.513 0.388 3p1a—3pye 0.718 0.814
2ds1a—2ds)2 0.518 0.400 1i1172— 10132 0.752 0.648
11912 —1h11/2 0.635 0.461
3s172—2d3/2 —0.465 —0.393
197 22— 2ds) 0.511 0.385 3p1j2—3py2 0.711 0.800
2d312—2ds)2 0.516 0.397 1i112— 141372 0.749 0.642
1]19/2— 1}[11/2 0633 0459
3s1/2—2d3/2 —0.463 —0.390
199 2d3)2—2d3)2 0.509 0.382 3p112—3pa2 0.705 0.786
2ds3j2—2d5s)2 0.514 0.394 12112— 141372 0.745 0.636
1hga—1h1y/2 0.632 0.456
351/2—2(13/2 —0461 '—0387
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Element VA A Proton states g9y e Neutron states gy Py
Au 79 201 2ds1a—2d3s 0.507 0.379 3pra—3pae 0.699 0.773
2d312—2d5)s 0.512 0.391 121170— 141372 0.742 0.630
192 —1h11)2 0.630 0.454
3s172—2dy)9 —0.459 —0.383
Hg 80 193 1hr2—1h1ys2 0.637 0.464 3pra—3pu2 0.735 0.850
3psjz—3pss2 0.715 0.809
3py2—3ps2 0.724 0.828
121170 — 14132 0.755 0.653
3psia—2fs2 —0.604 —0.691
195 1hgjo— 11172 0.635 0.462 3p12—3pye 0.728 0.834
3psja—3pa2 0.709 0.796
3p12—3p32 0.718 0.814
131170— 14132 0.752 0.648
3psja—2fss —0.598 —0.680
197 1/19/2— 1/!11/2 0.634 0.459 3?1/2—3?1/2 0.721 0.818
linyo—1i132 0.749 0.642
3psi2z—2fss2 —0.593 —0.669
199 1hojo—11y2 0.632 0.457 3pra—3py2 0.714 0.804
1i117a— 14132 0.745 0.636
3psra—2fss2 —0.588 —0.658
201 1hgso— 1112 0.630 0.455 3psia—3pae 0.693 0.760
3p12—3py2 0.699 0.773
1i11/2— 1i13/2 0742 0630
3psia—2f52 —0.583 —0.649
203 1igya—1h112 0.629 0.452 3pr2—3pye 0.702 0.775
3psra—3ps/e 0.687 0.748
3p12—3ps2 0.693 0.760
Li1y2— 131372 0.739 0.625
3psre—2f52 —0.578 —0.639
Tl 81 197 3s172— 35172 0.505 0.427 3p1s—3pse 0.711 0.800
1hysa— Vg2 0.634 0.460 1i112— 14132 0.749 0.642
199 3s1/2— 35172 0.503 0.424 3p1a—3ps2 0.705 0.786
1]19/2'-— 1/111/2 0.632 0458 lill/z— lixx/z 0745 0636
201 3s172— 35172 0.501 0.420 3p112—3p32 0.699 0.773
1/1979— 11172 0.631 0.455 12110— 1i132 0.742 0.630
203 3s172— 35172 0.498 0.417 3p1/2—3p3/2 0.093 0.760
1hoja— 111s2 0.629 0.453 1i1y2— i1z)2 0.739 0.625
205 3s1/2—3s1/2 0.496 0.413 3pre—3paa 0.688 0.749
1hyjo—1h1yye 0.628 0.450 1i117a— 14132 0.736 0.620

follows that we can formally write [using Eq. (A.12a)]

— e=%‘as s‘p.gS[ (bs)2[1+ (g)f]fh(s.p.)-i- (63)4[1+ (;)i‘]ﬂz(s-P-)] +az sp.82[ (02)291(s.p.)+ (br)a92(s.p.) ]

+z aw{((bs)z( 130)91<i)+(65)4(§)aﬁ<i>)gs<i>—((bL>2gl<i>+<bL>4gz<¢»gL<“]

T a2<f>[(§) (039291 6) -+ (;) (bs).;gg(i)]gs“) } 33)
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where by comparison with Eqs. (25) and (26)

1 G—b), ¢ 27—1
a8sp.=3%, QLsp.=(J—32) _—
P 2 L s.p 2 4(]+1)
for j=I+3, (34a)
~J 7(25+3) 2j+3
ASsp. =777, Lsp. =" y 2T e
2j+2 2j+2 4j
for j=Il—4%, (34b)
and

1

gulsp)=—— f Roy (RR™R, , (R)R.  (35)
RN27L

Here the suffix s.p. stands for “single particle” since

the contribution to —e from these terms alone is just

that which would be obtained for a single-particle

shell-model description.

The ao® and as® refer to Al=0 and Al=2 excitations
respectively, the label ¢ designating a particular
admixture. Their values could be written down ex-
plicitly by referring to Tables IIT through VII but
this will not be done here. Finally the 94,(z) are the
relevant radial matrix elements [Eq. (20)] for the ith
admixture and gs‘® and g, are the g factors for the
excited particle in this admixture.

It is to be noticed that in terms of the parameters a,
the theoretical value for the magnetic moment resulting
from admixtures of the above type is

Mth=Qg sAp.gS—i'aL s‘p.gL_’_Zﬂi 010“) (gS(i) "’gIJ(D)- (3())

Now, as can be calculated, the Al=2 contributions are
generally small. Thus if, for example, there is only one
likely Al=0 admixture, i=%k (say), then ay® could be
determined empirically by requiring that ug of (36)
agrees with the experimental value of u. The ay® so
determined could then be used in (33) to obtain an
empirical value for —e. Alternately, if there are fwo
likely admixtures, we can use the magnetic moment
and the “hfs anomaly” data for the determination of
their contributions. Both of these methods and the
direct computation of e will be used in the following
investigation of the experimental cases.

Experimental Data

The comparison of the theoretical value of e with
that obtained experimentally is usually not made
directly through the relation of Eq. (3). This is because
Whoint would have to be calculated to a precision of
better than 0.19, in order to compare it meaningfully
with the experimental result, Wextended. In practice this
is not achieved except in light nuclei, which we do not
consider here, and we compare therefore the ratio of
the measured values of single electron magnetic
interaction constants for two isotopes with the
independently-measured ratio of the nuclear g values.
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The latter would correspond to the ratio of the point
interactions (since these measurements are performed
in a uniform magnetic field, and are therefore insensitive
to any departure from a point magnetic moment), in
most cases to a degree of accuracy much better than
is required for the above comparison. In view of this,
only the part of the Rosenthal-Breit-Crawford-
Schawlow correction?” which affects the Bohr-Weisskopf
effect through the variations of the charge distribution
between isotopes is included. This is obtained formally
by using in the calculation of e electron coefficients b
which are functions not only of Z and a value of 4
which corresponds, for example, to the most stable
isotope, but actually 8(Z,4). In the case where the
magnetic moments are very nearly equal and the
spins identical for the two isotopes, the Breit-Rosenthal
point-magnetic moment correction may however still
predominate.?® Consequently, for one-electron spectra,
using the relationship between W and hAv (the hifs
separation energy between the two states Fy=j+%
and F_=j—#%, with the electron angular momentum
J=1%), we find for two isotopes 1 and 2, using Eq. (3),

Avi 21271+ 1) (1+e)

; (37)
Avs g2(2j2+1) (1+e)

or as Av=al'y, where @ is the magnetic dipole inter-
action constant in the Hamiltonian, and neglecting
terms other than linear in ¢,

18y
——1= e—e=Ap.
a»g1

(38)

The comparison with experiment is therefore via Eq.
(38). It is clear that if we deal with a spectrum of more
than one electron, the contribution of the single sy,2 or
p1/2 electron first has to be separated out properly
from the measured magnetic interaction constant.
Schwartz? has pointed out that in the case of p electrons
a number of important corrections have to be applied
before a value of A can be obtained. These involve
screening effects as well as configuration interaction
influences. In particular he shows that such con-
figuration interactions can lead to hfs anomalies for a
P39, and in fact any electron. Thus for other than s
electrons, in view of these possible ambiguities, the
comparison of the experimental data with our calcula-
tions may be subject to significant modifications. The
experimental results are given in Table X.

Discussion of the Experimental Cases

In discussing the various isotopes we indicate only
the groups of nucleons which contribute in zero-order

27M. F. Crawford and A. L. Schawlow, Phys. Rev. 76, 1310
(1949).

28 A, Lurio and A. G. Prodell, Phys. Rev. 101, 79 (1956).

2 C, Schwartz, Phys. Rev. 97, 380 (1955); 99, 1035 (1955);
165, 173 (1957).
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TaBLE X. Experimental data of magnetic moments (u), g-value and hfs interaction constant (e) ratios, and Aexp= (¢1g2/a2g1) —1;
this is the quantity which is compared to the theoretical calculation, A¢=e;—es. The atomic state in which the hfs was measured
is also given. In the cases of spectra of more than one electron the a-value ratios indicated may not be equal to those of single s or p
electrons and reference should be made to the literature for a proper interpretation. Consideration should also be given to electronic

perturbation effects (see text) in the case of p states. For a review of the experimental techniques, as well as that of the Bohr-Weisskopf
effect and our early work see J. Eisinger and V. Jaccarino, Revs. Modern Phys. 30, 528 (1958).

Atomic state

" in which hfs A References
Isotope [ (nm) g1/g2 measured a1/as (percent) u hfs
17CI38 3/2 0.8211 1.2013245 P2 1.2013641 0.0033+43 a, b, c d )
17CI37 3/2 0.6835 2 1.201307843 —0.001042 e
WK 3/2 03909  1.82189+17 su2 1.81767-£4 —0.232410 f, g h, i
19K 3/2 0.2145
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29 u65 .
nGa®  3/2 20108  0.7870148-:13 pun 0.78701966 000062423 3,1  m,nn
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and through excitation (to or from them) to the
magnetic moment and to the hyperfine structure
anomaly. The uncertainties indicated in A include
only those which arise from some 5 or 69, variations
in e which may result from neglected terms in the
series expansion of the Dirac equation as was discussed
in Sec. III.

Atoms in s1)2 States

Potassium. K* has (1d3/,)® protons with no possible
admixtures. Therefore we would expect this isotope to
have the extreme single-particle moment of 0.124 nm.
Actually this is not the case, and the discrepancy may
be attributed to a quenched g factor® for the ds.
proton; we find, by demanding agreement with the
experimental value of u in K¥, gg(effective)=4.7.
In K* we have, in addition to the (ds)® protons, the
contribution from excitations of the (1f;,2)? neutrons.
From the magnetic moment of K%, and using the
proton gg value found in K¥, we determine the mixing
coefficient of these neutrons. The value of A which we
obtain is —0.254-~0.03%,. This is in excellent agree-
ment with experiment. If, on the other hand, one does
not consider configuration mixing in K% but tries to
fit the moment entirely with a different gg(effective),
the result is —0.369,. Similarly if in K% we use gs(free)
and determine the 1f neutron admixture empirically,
we find A= —~0.179,.

Copper. We have for the protons 2p55(1f72)%. In
Cu® the neutron contributions are (1f5,2)2(2p3/2)%, and
in Cu% (1f5/2)*(2p3/2)%. The calculated magnetic
moments are 2.17 nm and 2.30 nm for Cu® and Cu®,
and A is approximately zero with an estimated error
of about 0.0159,.

Rubidium. The pair of isotopes Rb% and Rb% is
particularly interesting as the addition of two neutrons
changes the nuclear spin and hence causes a substantial
difference in the distribution of magnetization. (In
fact this was the first experimental observation of the
“hfs anomaly.”) For Rb® we have (1f5/2)%(2ps/2)*
protons and (1gy/2)® neutrons. The contributions in
Rb% are protons: (2p3,2)%, neutrons: (1gg/2)°. The
calculated magnetic moments are 1.32 nm and 2.79 nm
for Rb% and Rb?¥, and A=0.3324~0.0169, which is
in good agreement with the experimental value. We
also calculate A=0.019+0.0029, for the p1 his.

Silver. For Agl%7 we have 2p1/2(1gs,2)® protons and
(2ds/2)* neutrons. In Ag'® we have the same protons
and (2ds/»)* neutrons. The é-function interaction does
not permit admixtures if the odd nucleon is in a py/»
state. We therefore take the semiphenomenological
approach. By admixing either the g proton or d neutron
excitation, we obtain A= —0.424+=0.309,. The large

30T, Talmi and A. de-Shalit (private communication). Good
agreement between theory and experiment is obtained with such
an effective g factor for magnetic moments of the potassium
isotopes. See also S. D. Drell and J. D. Walecka, Phys. Rev. 120,
1069 (1960).
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uncertainty reflects the fact that for these silver
isotopes the values of e are large. As a consequence it
is not possible to determine the two admixtures
individually. If we attribute the entire deviation from
the single-particle magnetic moment to the g-proton
excitations, we find [through the use of Eq. (4),
reference 3] that this requires a mixing coefficient of
0.014 in the wave function.

Cestum. At Z=2355 there is competition between the
1g7,2 and 2ds/» proton levels. We might have therefore
(1g7/2>5, (1g7/2)3(2d5/2)2, or 1g7/2(2d5/2)4. In the 50-82
neutron region the 1gz,; and 2ds,, levels lie lowest,
with the 3515, 1h11/2, and 2ds,s states on the top. The
program used for calculating the radial integrals ¢’,
gave binding energies of about 10.3, 9.6, and 9.4 Mev
for the 3si/s, 1k11/2, and 2ds» neutrons, respectively.
This order of filling the neutron levels also leads to the
best agreement in the magnetic moments. We should
remark, however, that the same magnetic moment
corrections are obtained in the three Cs isotopes which
we consider if the 3sy/, states get filled after the 1/,
neutrons. Thus for Cs'® the neutron contributions
are (1h11/2)2, (2ds2)%; for the protons a mixture of
1g7/2(2ds/2)* and  (1g7/2)*(2d5/2)* leads to agreement
with the experimental magnetic moment. In Cs®5 the
neutron contributions are (1/411/2)'2(2ds/2)?, while for
the protons we have a similar mixture as in Cs'®.
Finally in Cs™ the best agreement in the magnetic
moment (x=2.67 nm) is obtained with 1g72(2ds/s)
protons, and of course we have only the (1/1/2)™2
neutron contribution. The anomalies which we calculate
are A133;135= +0068% and A135_137=—0.026%, bOth
=+=0.025. Thus it is indeed possible to obtain a
reversal in the sign of A in going from the Cs!#— Cs!35
pair to Cs®¥—Cs®’) and this we were not able to do
with purely effective moment calculations.

Atoms in p Stales

Chlorine. For the protons in both CI¥ and CI¥ we
have 1ds/2(251/2)%. We have neutron contributions
only in CI*, i.e., (1ds;2)%. Here we adopt the modified
values of the interaction strengths as used by Arima
and Horie® so that 7(1d,1d):7(2d,2d)=31:20, with
V:I(2d,2d) having the standard value —25/4 Mev.
The resulting magnetic moments are 0.710 and 0.582
for CI*® and CI¥. The hyperfine structure anomaly
calculated for the i/, electron is zero, in agreement
with experiment.

Gallium. There are two possibilities for the contribu-
ting protons—(2ps/2)*(1f7/2)® or 2ps/a(1f5/2)2(1f7/2)%
There is a neutron contribution only in the Ga®
isotope, i.e., (2p32)%. Arima and Horie® suggest that
the first choice is more likely on the basis of the positive
quadrupole moments. The magnetic moments for Ga®
and Ga™ are 1.58 nm and 1.82 nm for the first choice
in the proton configuration, and 2.85 nm and 3.05 nm
for the second one, with the experimental values



1346 STROKE,
lying in between. Since we are dealing with a p-electron
hfs in relatively light isotopes, the anomaly is expected
to be very small in either case. Indeed we find A=0
=+ ~0.00059%, with the first proton choice, and —0.001
+ ~0.0019, for the second. The Breit-Rosenthal cor-
rection is also relatively important here.

Bromine. We have two alternatives for the protons:
(2103/2)3(1f5/2)4 and (2?3/2)3(1f5/2)2(1g9/2)2. The neutrons
are (1go2)* and (1ggs2)® for Br™ and Br®. The first
proton configuration leads to u™=2.56 nm and u® =2.53
nm while the second one gives u®=1.92 nm and p*
=1.90 nm. As both give moments which are nearly
identical for the two isotopes and the hfs is of a p
electron state, we again expect a very small anomaly.
We calculate A= —0.001-=0.0019, for the first pro-
ton configuration.

Indium. The contributing protons are (1ge;2)°. In
In!® we have (2ds/2)% neutrons, and for In''® in addition
(1%115)? neutrons. We find p!®*=5.62 nm and p!'*=35.59
nm, numerically close to the experimental values but
with wrong relative sizes. Similar electronic and other
correction considerations as in Ga apply. We find
A=04~0.004%,.

Thallium. The proton contributions are 3s1/2(1511/2)™.
For the neutrons, the program fills the 126 shell in the
order 1iy32, 3psj2, 3p12. Thus for TI*® the neutron
contributions are (1713/2)“(3p3/2)? and in TI2%(14y5/9)™"
(3p32)%. This yields p*=1.36 nm, x**=1.21 nm, and
A= —0.0414=0.017%, in poor agreement with experi-
ment. We note also that experimentally u*® is larger
than u23. Somewhat better agreement can be obtained
if we assume the 143> states to be filled last, but this
is more unlikely from the point of view of pairing
energy. For this case we have (1713/2) and (1755/2)™
neutrons in TI2%® and TI®5 with resulting magnetic
moments of 1.58 nm and 1.56 nm, and A=—0.011
+=0.0239). As we pointed out earlier, the Breit-
Rosenthal correction and electronic perturbations are
significant here.

Other Cases

Cadmium. The protons contribute (1gy/2)%. For the
neutrons Cd™ has 3s1/2(1g7/2)%(2d5/2)%, and Cd"?
3s1/2(1g7/2)8(2d5/2)8. The calculated magnetic moments
are —0.49 nm and —0.77 nm for Cd'! and Cd"®, and
A=0.0184+=0.0069,. In view of the small observed
anomaly, the electronic and Breit-Rosenthal corrections
are important and we do not draw any definite
conclusions.

Antimony. The pair of isotopes Sb™' and Sb'%,
similarly to the rubidium isotopes, change spin with
the addition of two neutrons. Thus for Sb'* we have
2d5/5(1g9/2)"® protons and (1k11/2)%(2ds/2)® mneutrons,
while in Sb'? we have 1gy/, proton and (1/11/2)%(2ds/2)®
neutrons. The resulting magnetic moments are 3.49 nm
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and 2.49 nm and the anomaly —0.4214-0.0339. If
we fill the neutron levels on the basis of the spins of odd
neutron nuclei in this region rather than on that of
pairing energies, we obtain u'?'=3.55 nm, u2=2.46 nm,
and A= —0.439%,, in somewhat worse agreement with
experiment.

Mercury. Hg' has an odd 3p,,s neutron and therefore
again we do not have any corrections with the -
function interaction. Thus we adopt the semiempirical
approach for Hg. We assume that the 2d;,, protons
close the 82 shell and that the (1411/2)" and (2d;,)?
protons contribute the major part of the deviation
from the single-particle value of u. In Hg?! the odd
neutron is in the 3ps/;; orbit. With this choice the
magnetic moments and the hfs anomaly can be fitted
with reasonable admixture coefficients, i.e., in Hg!¥
a(h)=—0.135 and a(d) =0.248, and in Hg? (/) =0.172
and a(d)=0.144. Here we made use again of Eq. (4),
reference 3. If we try to admix the 1713/, or 3p neutrons
instead of one of the proton groups, or substitute both
neutron excitations for the two proton excitations, the
required admixture coefficients become unreasonably
large.

Conclusion

The configuration mixing theory accounts satis-
factorily for a great number of magnetic moments of
odd-4 nuclei. We have extended this theory to permit
the calculation of the effects of the distribution of
nuclear magnetization as manifested by hyperfine
structure anomalies. From a comparison of the theory
with experiments performed up to date, reasonable
agreement is obtained. In view of this success, more
experiments of such a nature would appear fruitful.

We also note that the é-function interaction does
not allow any admixtures if the odd nucleon is in a
P12 state. In this case, as well as for nuclei where there
may be only two important admixtures, the semi-
phenomenological approach has been found useful: it
permits the determination of these two configuration
admixtures by making use of the hfs anomaly data in
conjunction with the values of the magnetic moments,
while only one such admixture could be determined
from a knowledge of the magnetic moment alone.
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APPENDIX

Evaluation of Electron Integrals in Eq. (4)

Letting X;=7F, Xo=rG, where X; and X, are the
small and large components, respectively, of a Dirac
wave function, and neglecting the binding energy of
the electron compared to its rest mass, i.e., taking
E=~mc, the Dirac equation for the electron in the
potential of Eq. (7) becomes

X, X
—+—=—y(K— a2 — agx*— azx®—
dx «

asx®),

(A1)
dX2 X2
—F—=72es+K— ax®— a*— asx®— agx®).
dx  «x

The upper and lower signs above and in several
expressions below, are to be taken for sy;3 and p1)e
electrons, respectively. Here y=Za, where a=¢/fc is
the fine structure constant, es=mcRy/vh, m is the
electron mass, ¢ the velocity of light, and Z=7%/2m,
where 7 is Planck’s constant.

We obtain series solutions of Eq. (A.1) which are
well behaved at x=0 in the form*

Xl= Z lﬂxn+1,
n=l1
(A.2)
Xo= Z an’m,

n=0

for the s1/» electron. It is found that /y=0; go is the
normalization factor. Similarly for the py/ electron

@
X1= 3 unxntl
n=0

(A3)

o0
Xo= Z -Unxn+1’

n=1

where now 7p=0, and #, is determined by the normali-
zation. By inserting (A.2) in (A.1) we obtain the
recursion formulas for the coefficients in the series for

31 See, for example, H. A. Bethe and E. E. Salpeter, Quantum
M echanics of One- and Two-Flectron Atoms (Academic Press, Inc.,
New York, 1957), Chap. Ib.
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the s/ electron:

la(n+2)
= 7(—KQn—1+a2Qn——3+ a4£]n—5+ asQn—6+ds(In_7),
(A4)
gan= 7[(26A+K)ln—1— Aoln—3—Qaln5— Q5ln_— aﬁlw~7]-

The py/» electron recursion formulas are similarly ob-
tained by inserting (A.3) in (A.1). The result is

Ut ="y (—Kvn_1+as0n_5+ 405+ 5006+ asvn_1),

o (n+2)

=y[Qea+K)thp 1— (A.5)

AoUn—3— Qglhn—5

— QsUn—6— aaun—7]-

Although explicit expressions for the above coefficients
can be obtained easily, in practice it is simpler to use
the recursion formulas numerically. The functions are,
for the s/, state

() )

(A.6)
G= [90+92( )+Q4( )+ ]
and for the py, state
1
F= [%0‘{‘“2 )‘*‘744 ”“*) ],
Ry
(A7)

r
G——*‘—lkvﬁ“l’ ( )’H)s )+ ]
Ry? Ry? Ryt

The integrals in the numerator of Eq. (4) are now
evaluated. For the sy, state we find

R 1 R‘Z
f FGdr= ~—-[%llqo(——)
0 RN RZ\"‘Z

+i(lsqo+hq9(§;)+ ] (A.8)

The p1/s integral is identical to (A.8) if we replace g by
#, and [ by v. The terms in the remaining integrals of
Eq. (4) are related to those of (A.8) by numerical
factors and will be given below. We can write for the
electron factor of the spin contribution to € in (4)

R 0
f FGdr / f FoGodr
0 0
R? R:
= (bS)?(‘“)'{”‘ (bs)4(-—)+ s
RZ\-v2 RN4

(A9)
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where the coefficients bg are defined by comparison of
(A.9) with (A.8). The factor of the asymmetrical spin
contribution, D, in (4) is written similarly

R 73 L]
f F G‘“d?’ / f F ()Godr
0 R3 0
4

- <bp)2( g;)ﬂm( EV;)JF- ., (A10)

and that of the orbital contribution,

R 3 0
f (1——->FGdr/f FoGodr
0 R 0

b R2)+(b ) (R4)+ (A.11)
=G ) e .
We find the simple relations
(bp)2= (2/5)(bs)s, (A122)
(bp)a= (4/7)(bs)s,
also
br.=bs—bp. (A.12b)

For r> Ry, the necessary Coulomb wave functions

BLIN-STOYLE, AND JACCARINO

(V'=—Zé*/r) are obtained from the Dirac equation:
X1=C1J5,(2(2yy))+CoJ 5,(2(2vy)?),

Xo= (1/){CiL(F1=p)T5,(2(2vy)?)
+ 2vy) 1 2011Q 2yy) ) JFCo (14p) T 5, (2 (2vy)})
£ v o Q(2yvy)) T} (A13)

J are Bessel functions, p= (1—v2)3%, y=r/X, [A.=h/mc
= (1/2r) X Compton wavelength]. The constants C,
and C, are determined by matching (A.13) to the
interior functions (A.6) and (A.7). Using the approxi-
mate expressions of the Bessel functions for small
arguments, J,(x)~=x?/2¢p! and J_,(x)~=2°x"/(—p)!,
we find

Ci=F (2p—1) L2
XLAFp)Xi(x=1)E£vXa(x=1)T], (A.14)

where L= (2yRy/A;)} For well-behaved point wave
functions, we must take C;=0, and we assume, to
adequate precision, that C of the point wave function,
equals € of (A.14) as in Rosenthal and Breit.?® Using
the integration formulas for the Bessel functions,® we
obtain

0 C12 -3 (3‘1/2)
f FoGody=————-X
0 Xp(4p’—1) (+1  (pyo).
The b coefficients in Table I were calculated with these

formulas, together with Egs. (5a), (6), (7a), and the
appropriate values of ¢; and z;.

(A.15)

2G. N. Watson, 4 Treatise on the Theory of Bessel Functions
(Cambridge University Press, New York, 1952), 2nd. ed., p. 403.



