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Configuration Mixing and the Effects of Distributed Nuclear Magnetization
on Hyperfine Structure in Odd-A Nuclei*
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The theory of Blin-Stoyle and of Arima and Horie, in which the deviations of the nuclear magnetic
moments from the single-particle model Schmidt limits are ascribed to con6guration mixing, is used as a
model to account quantitatively for the effects of the distribution of nuclear magnetization on hyperfine
structure (Bohr-Weisskopf efFect). A ditfuse nuclear charge distribution, as approximated by the trapezoidal
Hofstadter model, is used to calculate the required radial electron wave functions. A table of single-particle
matrix elements of R' and R4 in a Saxon-Woods type of potential well is included. Explicit formulas are
derived to permit comparison with experiment. For all of the available data satisfactory agreement is found.
The possibility of using hyper6ne structure measurements sensitive to the distribution of nuclear magnetiza-
tion in a semiphenomenological treatment in order to obtain information on nuclear configurations is
indicated.

I. INTRODUCTION

" 'T is well known that the strict single-particle model
~ - fails in explaining most nuclear magnetic moments,
even with quenching of the intrinsic spin or orbital g
values of the nucleons. ' On the other hand, reasonably
successful theories have been developed by Blin-
Stoyle, ' and Arima and Boric,' to account for the
departure of the magnetic moments of odd-A nuclei by
configuration mixing calculations. This configurational
mixing theory will be referred to as CMT. Ke investi-
gate the application of such a configuration mixing
theory to a closely related property of the nucleus —the
distribution of its magnetization, as it is manifested in
the hyperfine structure interaction of penetrating
electrons.

Bohr and Weisskopf (BW) have calculated the
hyperfine structure interaction of stts and pris electrons
in the field of an extended distribution of nuclear
charge and magnetism. ' Two important conclusions
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may be drawn from their work. First, that the hfs for
a finite nucleus is, in general, smaller than that to be
expected for a hypothetical point nucleus. Second,
that the isotopic variations of nuclear magnetic
moments, combined with the diBerent contributions
to the hfs of the orbital and spin parts of the magneti-
zation in the case of the extended nucleus, allow for
relatively large isotopic variations in the departure
from a point hfs interaction. The latter point is
consistent with the experimental observation' —"that
the ratio of the hfs constants for two isotopes may, in
some cases, be different from the independently
measured ratio of the magnetic moments. The dis-
crepancy in these two ratios is commonly referred to
as the "Bohr-Keisskopf eGect" or "hfs anomaly. "

Bohr" has treated this "hfs anomaly" within the
framework of the collective or asymmetric model, and
recently Reiner" has carried out calculations on the
collective model, primarily in the region of the rare
earths.

Most experimental data, however, lie in a region
where the collective model is not ideally applicable.
Furthermore the results of our experiments on the
hfs of several Cs isotopes" (together with evidence for
configuration mixing in the decay scheme study of
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Weiss, Phys. Rev. 105, 590 (1957).
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Cs"4 by Sunyar ef al.&4) pointed out the difficulty of
accounting for the BW effect in them unless some
detailed information about the nucleon configurations
were included in the BW theory. We have therefore
developed a formalism which considers configuration
mixing effects, as used by Arima and Horie' and Noya
et aI." and in turn makes possible the use of the BW
effect in conjunction with magnetic moment data to
give information on the admixed configurations.
Modifications of the intrinsic nucleon g values can be
introduced formally into the theory when such changes
are expected to have a substantial effect, as is the
case for the potassium isotopes.

II. EFFECT OF THE DISTRIBUTION OF CHARGE
AND MAGNETIZATION ON HFS

Bohr and Weisskopf' have calculated expressions
for the hfs interaction energy W of a nucleus of finite
extent. For st&s or pt~s electrons there will be an hfs
doub1et corresponding to the two values of the total
angular momentum F=j&-,', and they define 8' to be
the energy by which the state F=j+s is displaced. j is
the nuclear spin. Alternatively, if h~v is the energy
separation of the two states, then by the interval rule
W=jhhv/(2j+1). They write W=Ws+WL, where
S'8 and 8 I, are the contributions to 8' from spin and
orbital magnetizations in the nucleus. For the spin part,

16me
Ws ——& lf Q dr~%'~*(1 ~ i ~ A)g

3 N i

I 00 ~Bi r3

X Sz&'& FGdr+Dzt'& I FGdr 4~. (1)J„. ' J, Fs

The spin asymmetry operator in (1) is given by the
tensor product (of rank 1)

D= ——;(10)-:LSXC)& &

where C,"= L4~/(2k+1))'Y, '(8,&), and Y is a spherical
harmonic. It is equal to the bracket of Eq. (7) in BW
as well as to the operator —(Sz)(, corresponding to
Bohr's Eq. (2)."The orbital part of the interaction is

16'.e
WL + Q drN+N gL Lz

N i

00 zi r3

FGdr+ f FGdr 4~. (2)
It; 0 ~i

The upper and lower signs in (1) and (2) refer to sUe
and pris electrons, respectively. The symbols are e,
electron charge, R(XFZ) and r, nuclear and electron
coordinates, respectively, O'N, nuclear wave function

"A. W. Sunyar, J. W. Mihelich, and M. Goldhaber, Phys.
Rev. 95, S7O (1954).

'5H. Noya, A. Arima, and H. Horie, Progr. Theoret. Phys.
(Kyoto) 8, 33 (1958), Supplement.

and noting that for a point nucleus the interaction
energy is given by letting E.,=O in the integral limits in
(1) and (2), and replacing F and G by Fs and Gs, their
values for a point nucleus,

dp

1
2 drÃ +N

~oGpdr

r
a' r a*F«'

X gs&'&~ Sz&'& ~ FG« —Dz&" ~ d»
~

Br
~

rs
+gLt'&Lz&'& '

~
1— ~FGdr +»r, (4)

Z,s)

where lt is the nuclear magnetic moment. Equation (4)
is the more general expression for e which corresponds to
BW Eq. (19) as modified by Bohr" PEqs. (1) and (15)j.

III. EIECTRON WAVE FUNCTIONS IN A HOF-
STADTER-LIKE CHARGE DISTRIBUTION

EVALUATION OF THE ELECTRON
INTEGRAL 8

The functions F and G in (4) are to be calculated for
a potential which corresponds to the actual nuclear
charge distribution. This was approximated in BW by
assuming a uniform distribution. We have found,
however, that the electron integrals are noticeably
sensitive to the model assumed for the distribution. "
For this reason we obtained a series solution of the
Dirac equation for a charge distribution which agrees
better with the one indicated by high energy electron
scattering" and other experimental data, " and there-
fore should correspond more closely to the actual
nuclear charge distribution.

VVe found that the solution of the equations was
very complicated to handle for any of the three forms
of the charge distribution given in reference 17. It may
be shown that it is simple only if the entire charge
distribution can be represented by a polynomial in r.
The solutions can then be carried out as in BW, re-
lying on the validity of the approximations in the nor-
malization of F G to Fp Gp as stated by Rosenthal

"H. H. Stroke, Res. Lab. of Electronics, M.I.T., Quarterly
Progress Report No. 54, July 15, 1959, p. 63 (unpublishedl.' B. Hahn, D. G. Ravenhall, and R. Hofstadter, Phys. Rev.
101, 1131 (1956)."K.W. Ford and D. I.Hill, Annual Review of Nuclear Science
(Annual Reviews, Inc. , Palo Alto, California, 1955), p. 25.

corresponding to the maximum s component of spin,
F and G, Dirac electron wave functions for an extended
nucleus, g~&') and gl, &'), spin and orbital g values of the
ith nucleon, S and L nuclear spin and orbital angular
momentum operators, A, mass number of the nucleus.
By writing

Wex tend ed =
Wp oint (1+e) y
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(A.9)—(A.11)],Eq. (4) becomes

I 3 I l 3 N

FIG. 1.Trapezoidal
charge distribution
of Hahn, Ravenhall,
and Hofstadter. '"'

(Our ci is their
parameter c.)

E-'2"—e=(1/p), t P dry 4~*+
n Riv"

X)gs ' (Ss ' (bs)pn Ds (bD)pm)

+g '"'& "'(b ) -]+, (&=1,2) (g)

and 8reit." We have therefore approximated the
trapezoidal charge distribution p of reference 17
with the following polynomial in x (x=r/Rz, where

Riv = c1+sp)

P=po+Ppx +Pox +P4x (5)

The dimensions c~ and s3 are shown in Fig. 1. The
pertinent values used are c~= 1.07A & f, f= 1.60z3= 2.40 f.
The coefficients p, were determined by demanding that

p in Eq. (5) coincide with p of Fig. 1 at r=0, ci—sp, ci,
and R~. In terms of the parameters of the trapezoidal
distribution they are found to be

po (cl sp) (3ct +3c»3+sp )
p2=—

2 ~3ca

pp (Sct+2sp)Riv
p3=

2
(5a)

po (2ci+sp)Rx'
p4=—

2

po=
4s-Rivo (1 1cto+ 45c iosp —34c»p —12sP)

(6)

The nuclear charge, Ze, determines the central charge
density,

420Zes3cg'

The sum over e results from the series solution of the
Dirac equation. The values of the electron coefficients
bs and br, (defined in the Appendix) are given in
Table I for st~p and pimp electrons as a function of 3 and
Z. Equation (A.12a) gives bD in terms of bs. A plot of
these coeKcients is shown in Fig. 3. For comparison
we also show the results obtained for uniform and
surface charge distributions. " It is interesting to note
that the magnitudes of the b coefficients tend to
decrease the more the nuclear charge is distributed at
larger distances from the center, reflecting the cor-
responding changes in the electron binding. Figure 4
compares the b coefficients for the simp and pimp states
for the charge distribution of Eq. (5).

We have investigated the effect on these coefficients
of a modification of the approximate representation of
the charge distribution t Eq. (5)] in the form p=pp
+pox'+p4x'+pox' )which in fact gives even a slightly
better fit to the trapezoidal distribution than Eq. (5)].
We find that the b coefficients for these two representa-
tions agree to within 2.5% for v=1 and 2. The
coefIicients for m&2, which are small, are sensitive to
such slight variations in p. Since at present there is no
experimental evidence in favor of either one, these
higher terms cannot be considered to have significance

A plot of p for A 40 and A 200 is given in Fig. 2.
These distributions reproduce fairly well the trapezoidal
one, and even the small central depression may be
realistic. " From this charge distribution we obtain
the potential

Ze
V (x) =—(K—apx' —a4x' —aox' —apx'),

+N
where

1+ap+a4+ap+ap, —
ap = 27l RN pp/3Ze,

a4 ——pr Riv'ps/5Ze, (7a)

a,=2~Riv'pp/15Ze,

ap = 2prRiv p4/21Ze.

The solution of the Dirac equation for this potential,
and the evaluation of the electron integrals of Eq. (4),
are given in the Appendix. With these results (Eqs.

!'J. E, Ropenthal and G, Breit, Phys. Rev, 41, 459 (193)).

0 O.2 O4 0.6 0.8 I.O

FIG. 2. Charge distribution as given by the representation of
Eq. (5). The broken lines indicate the trapezoids used jn the
determination of the parameters,
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in the result. As we will show in Sec. V, the evaluation
of the radial nuclear matrix elements involves
(Ro/R&v)'", where Ro——1.202& f and is the radial parame-
ter involved in the nuclear potential well. If we take
this factor into account, the e&2 coefficients may
aftect the value of e to about five percent. We note,
however, that in the comparison with experiment we
take the difference of e for two isotopes (see Sec. VI).
Therefore if e& and e2 are very similar, although their
differences will be small, the effect of neglecting such
higher terms will also be canceled to a large extent.
On the other hand if the ~ are very different, as they
would be if the two isotopes have different spins, then
the difference will be large, and again the terms e&2
will have relatively little eftect. The actual extent of
such cancellations will depend on the specific properties
of the isotopes under consideration.

IV. EVALUATION OF THE NUCIEAR INTEGRALS

I-
ldo4
hJ
CL

I

0 IO 20 50 40 50 60 70 80 90
Z

-(b,) 4
(b )p

—(b,)4

In Eq. (8) an expression is obtained for the quantity
e which involves calculating the expectation value of
the operators M„, where

Fxc. 4. Dependence on Z of the electron coefBcients bq for s1~2
and p1&2 states for an assumed Hofstadter type of nuclear charge
distribution. The b's are defined in the Appendix.

M„=M„s~+M,,D, (9) three parts)
alld

g,2n

M."=-2 Lg '*'s."'(b )-
p, ~ E~

+g.& &i.&'&(b.),„q, (1O)
g,2n

M n= —p gs&'&Dz&'(bD)2. .
g 2n

Explicitly for a nucleus of spin j, since the expectation
value is to be taken with respect to a nuclear wave
function having its maximum s component of spin, we

require (writing only the angular terms in the following

UNIFORM CHARGE DISTRIBUTION

SURFACE CHARGE DISTRIBUTION

HOFSTADTER CHARGE DISTRI BUTION

(b )p

I-
UJ
C3 4—
LEj
CL

(b, ) p

-(b„)4

-(bs) 4

s 4
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z

Fn. 3. Dependence on Z of the electron coefficients bq for
several nuclear charge distributions. The b's are defined in the
Appendix,

m.=c(jij;jo)(j~~M„~~ (12)

where (j~~M„~~j) is the reduced martix element of M„.
C is a signer coeKcient.

In ignorance of the true nuclear wave function,
some approximate or model wave function has to be
used, and in view of the success of CMT in accounting
for magnetic moments, this theory is also used in the
following calculations. The basic idea is to write the
nuclear wave function 0'~ as

+&v=+o+P;„pQ)+', (13)

where 4'o (the zero-order state) represents a simple
shell-model configuration and the 4; represent admixed
configurations characterized by the variable i. For
small mixing coefficients p(i,), the main deviation of
the expectation value of M from that given by the
simple shell-model wave function will be that due to
terms linear in p(i) and the conditions that such
contributions should occur is that Co and 0'; must
differ at most by one single-particle state. In addition
for M„B~ the orbital states must be the same (dd=O),
while for M D states differing by 61=2 may also be
coupled.

'tA'e follow the classification and labeling of states
suggested by Arima and Boric. Thus the zero-order
state configuration is written as j&(J=j), where P is
the number of odd particles in the state j and no
indication is given of the even numbers of,~nucleons

coupled to zero angular momentum. These latter
nucleons, however, play a crucial role in the con-
figuration admixtures considered here since these
admixed states are those in which a nucleon is excited
fI'om og to these states, There are three types of
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TABLE I. Electron coe%cients b for a Hofstadter-type charge distribution. Values are in percentages.

sii2 electrons

(&L,)2
—g ~) 4

—(bi)
pi12 electrons

(bz,) 2 —(bs) 4
—(bI.) 4

17

19

20

29

30

31

33

36

40

35
37

37
39
41

39
41
43

41
43
45
47

61
63
65
67

63
65
67
69
71

65
67
69
71
73

71
73
75
77

75
77
79
81
83

79
81
83
85

81
83
85
87

83
85
87
89

91

95
97

103

105
107
109
iii
113

0,213
0.215

0.230
0.233
0.235

0.248
0.251
0.253

0.267
0.269
0.272
0.274

0.376

0.471
0.474
0.477
0.480

0.498
0.5Gi
0.504
0.507
0,510

0.526
0.529
0.532
0.535
0.538

0.588
0.591
0.595
0.598

0.652
0.656
0.659
0.662
G.664

0.689
0.693
0.696
0.700

0.725
0.728
0.732
0.735

0.761
0.765
0.769
0.772

0.847

0.931.
0.935

1.075

1.174
1.179
1.183
1.187
1.191

0.128
0.129

0.138
0.140
0.141

0.149
0.150
0.152

0.160
0.162
0.163
0,164

0.225

0,282
0.284
0.286
0.288

0.299
0.300
0,302
0.304
0.306

0.315
0.317
0.319
0.321
0.323

0.353
0.355
0.357
0.359

0.391
0.393
0.395
0.397
0.399

0.414
0.416
0.418
0.420

0.435
0.437
0.439
0.441

0.457
0.459
0.461
0.463

0.508

0.559
0.561

0.704
0.707
0.710
0.712
0.715

0.047
0.047

0,051
0.051
0.051

0.054
0.054
0.054

0.058
0.058
0.058
0.058

0.079

0.099
0.099
0.099
0.099

0.105
0.105
0.105
0.105
0.105

0.111
0.111
0.111
O.i i i
0.111

0.123
0.123
0.124
0.124

0.137
0.138
0.138
0.138
0.138

0.145
0.145
0.145
0.145

0.153
0.153
0.153
0.153

0.161
0.161
0.162
0.162

0.179

0.199
0.199

0,233

0.259
0.259
0.259
0.259
0.259

0.020
0.020

0.022
0,022
0.022

0.023
0.023
0.023

0.025
0.025
0.025
0,025

0.034

0.042
0.042
0.042
0.042

0.045
0.045
0.045
0.045
0.045

0.047
0.047
0.047
0.047
0.047

0.053
0.053
0.053
0.053

0.059
0.059
0.059
0.059
0.059

0.062
0.062
0.062
0.062

0.066
0.066
0.066
0.066

0.069
0.069
0.069
0.069

0.077

0.085
0.086

0.100

O. 111
O. i i i
0.11f.

0.111
0.111

0.003
0.003

0.003
0.003
0.003

0.004
0.004
0.004

0.005
0.005
0.005
0.005

0.010

0,017
0.017
0.017
0.017

0.019
0.019
0.019
0.019
0.019

0.021
0.021
0.021
0.022
0,022

0.027
0.027
0.027
0.027

0.033
0.033
0.034
0,034
0.034

0.037
0.037
0.038
0.038

0.041
0.041
0.041
0.042

0.045
0.046
0.046
0.046

0.056

0.067
0.067

0.088

0.104
0,105
0.105
0.106
0.106

0.002
0.002

0.002
0.002
0.002

0.002
0.002
0.002

0.003
0.003
0.003
0.003

0.006

0.010
0.010
0.010
0.010

0.011
0.011
0.012
0.012
0.012

0.013
0.013
0.013
0.013
0.013

0.016
0.016
0.016
0.016

0.020
0.020
0.020
0.020
0.020

0.022
0.022
0.022
0.023

0.025
0.025
0.025
0.025

0.027
0.027
0.028
0.028

0.033

0.040
0.040

0.053

0.063
0.063
0.063
0.063
0.064

0.001
0.001

0.001
0.001
0.001

0.001
0.001
0.001

0.001
0.001
0.001
0.001

0.002

0.003
0.003
0.003
0.003

0.004
0.004
0.004
0.004
0.004

0,004
0.004
0.004
0.004
0.004

0.005
0.005
0.005
0.005

0.007
0,007
0.007
0,007
0.007

G.oo7
0.007
0.007
0,007

0.008
0.008
0.008
0.008

0.009
0.009
0.009
0.009

0.011

0.014
0.014

0.018

0.022
0.022
0.022
0.022
0.022

0.001

0,001
0.001
0.001
0.001

0.002
0.002
0.002
0.002
0.002

0.002
0.002
0.002
0.002
0.0o2

0.002
0.002
0.002
0.002

0.003
0.003
0.003
0.003
0.003

0.003
0.003
0.003
0.003

0.004
0.004
0.004
0.004

0.004
0.004
0.004
0.004

0.005

0.006
0.006

0.008

0.009
0.009
0.009
0.009
0.009
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105
107
109
111
113
115
117

(&s)2

1.224
1.229
1.233
1.238
1.242
1.246
1.251

0.734
0.737
0.740
0.743
0.745
0.j48
0.750

0.272
0.272
0.272
0.273
0.2 j3
0.273
0.273

sii2 electrons
(tz,)2 —(»)4 —(bL,)4

0.117
0.117
0.117
0.117
0.117
O.ii j
0.117

(») 2

0.113
0.114
0.114
0.114
0.115
0.115
0,116

0.068
0.068
0.068
0.069
0.069
0.069
0.070

0.024
0.024
0.024
0.024
0.024
0.024
0.024

ping electrons

(b.)2
—(&s)4 —(&s)4

0.010
0.010
0.010
0.010
0.010
0.010
0.010

49

50

53

54

56

60

70

109
111
113
115
117
119

115
117
119

119
121
123
125

123
125

121
123
125
127
129
131

123
125
127
129
131
133
135

125
.127
129
131
133
135
137

129
131
133
135
137
139

143

159

173

191
193
195
197
199
201

1.286
1.290
1,295
1.299
1.304
1.308

1.354
1.358
1.363

1.420
1.425
1.429
1,434

1.489
1.494

1.546
1.551
1.556
1.561
1.565
1.570

1.616
1.621
1.625
1.630
1.635
1.640
1.645

1.688
1.693
1.698
1.703
1.708
1.713
1.717

1,768
1.773
1.778
1.783
1.788
1.793

2.115

2.626

3.233

3.949

4.587
4,594
4.601
4.608
4.614
4.621

0.771
0.774
0.777
0.779
0.782
0.785

0.812
0.815
0.818

0.852
0.855
0.857
0.860

0.893
0.896

0.928
0.931
0,934
0.936
0.939
0.942

0.969
0.972
O.975
0.978
0.981
0.984
0.987

1.013
1.016
1.019
1,022
1.025
1.028
1.030

1.061
1.064
1.067
1.070
1.073
1.076

1.269

1.576

1.940

2.369

2.752
2.756
2.760
2.765
2.769
2.773

0.287
0.287
0.287
0.287
0.288
0.288

0.302
0.303
0.303

0.319
0.319
0.319
0.319

0,336
0.336

0.353
0.353
0.354
0.354
0.354
0.354

0.372
0.372
0.372
0.372
0.373
0.373
0.373

0.391
0.392
0.392
0.392
0.392
0.393
0.393

0.412
0.413
0.413
0.413
0.413
0.414

0.507

0.656

0.845

1.084

1.316
1.316
1.317
1.317
1.317
1.318

0.123
0.123
0.123
0.123
0.123
0.123

0.130
0.130
0.130

0.136
0.137
0.137
0.137

0.144
0.144

0.151
0.151
0.152
0.152
0.152
0.152

0,159
0.159
0.160
0.160
0.160
0.160
0.160

0.168
0.168
0.168
0.168
0.168
0.168
0.168

0.177
0.177
0.177
0.177
0.177
0.177

0.217

0,281

0.362

0.465

0.564
0.564
0.564
0.564
0.564
0.565

0.124
0.124
0.124
0,125
0.125
0.126

0.135
0.136
0.136

0.147
0.148
0.148
0.149

0,160
0,160

0,172
0.172
0.173
0.173
0.174
0.175

0.186
0.186
0.187
0.187
0.188
0.189
0.189

0.200
0.201
0.202
0.202
0.203
0.204
0.204

0.217
0.218
0.218
0.219
0.220
0.220

0.294

0.421

0.589

0.807

1.020
1.021
1.023
1.025
1.026
1.028

0.074
0.074
0.075
0.075
0.075
0.076

0.081
0.081
0.082

0.088
0.088
0.089
0,089

0,096
0.096

0.103
0.103
0.104
0.104
0.104
0.105

0.111
0.112
0.112
0.112
0.113
0.113
0.114

0.120
0,121
0.121
0.121
0.122
0.122
0.123

0.130
0.131
0.131
0.131
0.132
0.132

0.176

0.253

0.353

0.484

0.612
0.613
0.614
0.615
0.616
0.617

0.026
0.026
0.026
0,026
0.026
0.027

0.029
0.029
0.029

0.032
0.032
0.032
0.032

0.035
0.035

0.038
0.038
0.038
0.038
0.038
0.038

0.041
0.041
0.041
0.041
0.041
0.041
0.041

0.045
0.045
0.045
0.045
0.045
0.045
0,045

0.049
0.049
0.049
0.049
0.049
0.049

0.068

0.102

0.150

0,217

0.287
0.287
0.287
0.287
0.287
0.287

0.011
0.011
0.011
0.011
0.011
0.011

0.012
0.012
0.012

0.014
0.014
0.014
0.014

0.015
0.015

0.016
0.016
0.016
0.016
0.016
0.016

0.018
0.018
0.018
0.018
0.018
0.018
0.018

0.019
0.019
0.019
0.019
0.019
0.019
0.019

0.021
0.021
0.021
0.021
0.021
0.021

0.029

0.044

0.064

0.093

0.123
0.123
0.123
0.123
0.123
0.123
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ThaLE I.—ConHnled.

80 193
195
197
199
201
203

(b.).
4.760
4.767
4.774
4.781
4.788
4.795

2.856
2.860
2.864
2.869
2.873
2.877

1.380
1.381
1.381
1.381
1.382
1.382

s1/2 electrons

(baal 2
—(be)4 -(b.).

0.592
0.592
0.592
0.592
0.592
0.592

(b.).
1.080
1.081
1.083
1.085
1.086
1.088

0.648
0.649
0.650
0.651
0.652
0.653

0.307
0.307
0.397
0.307
0.307
0.307

P 1/2 electrons
lbJ.l 2

—(4)4 --(bL)4

0.132
0.132
0.132
0.132
0.132
0.132

90

100

197
199
201
203
205

228

242

256

4.945
4.952
4.959
4.966
4.973

5.727

6.736

7.716

8.476

2.967
2.971
2.976
2.980
2.984

3.436

4.042

4.630

5.086

1.447
1.448
1.448
1.448
1.449

1.741

2.159

2.609

3.025

0.620
0.620
0.621
0.621
0.621

0.746

0.925

1.118

1.296

1.144
1.146
1.147
1.149
1.151

1.427

1.826

2.254

2.643

0.686
0.687
0.688
0,689
0.690

0.856

1,096

1.352

1.586

0.328
0.328
0.328
0.329
0.329

0.426

0.576

0.931

0.141
0.141
0.141
0.141
0.141

0.183

0.247

0.322

0.399

excitation which need to be considered —referred to
as types I, II, and III.

Tyye I Excitation

The zero-order configuration has P (odd) particles
in state j, m& (even) in j& and e2 (even) in j2, the m& and
m& particles being coupled separately to zero angular
momentum so that the total angular momentum J of
the state is equal to j. Thus, symbolically, the state
can be written

+0=+(j~"'(o)j2"'(o)j"U)J=j).
The admixed states of type I are then taken to be
those in which a particle is excited from state j& to
state j2, each group coupling respectively to j& and j2,
and the j& and j2 coupling together to J& which couples
finally with j to give J=j. The nuclear state 4~ can
therefore be written, on including one such admixture,

e&=e(~ "'(o)& "'(oU"(&)J=~)+p p(J )
X+(Lj~"' '(j~)j2"'+'(j~)3(~i)j'(j)~=j) (15)

Of course, the states j& and j& are chosen so that the
first-order matrix element of M„ is nonvanishing and
so that the excitation involved is compatible with the
exclusion principle.

Using the results of Noya ef al. specialized to our
case, the following expression is obtained for the
contribution of such a type I mixing to the reduced
matrix element of M„evaluated with respect to (15):

where'0

h1 (~1jl)~2/2)
= (2j+1)'~(j~lj2 —.o)(j~llM-llj2)(1+~), (17)

00

I (j &j 2j') = R&&(R)R—&2(R)R&'(R)R'dR. (18)
0

The upper (lower) line in the bracket f ) must be
used when the excited nucleon in the orbit j& is diGerent
from (similar to) the nucleon in the orbit j. The
quantity 0—= (—1)l+' &'(j+—', ) is to be taken with the
+ sign for excitations with At=0, and —sign for
Dl=2 in Eq (17). .

In the above expressions, the admixture parameters
P(J&) have been calculated by straightforward first-
order perturbation theory using as the perturbing
potential a delta-function interaction given by

v„=l v. (1—e, 0,)/4
+U, (3+a~ e,)/4/b(R, —R2), (19)

where V, and V~ represent the singlet and triplet
strengths of the internucleon interaction. hE is the
energy needed to excite a particle from the state j& to
the state j2, and (j,llM„ll j2) is the single-particle
reduced matrix element of the operator M„. Now for
M„sz the only nonvanishing reduced matrix element
to be considered here" is that for which the particle
excitation is from j&——l&+—,

' to j2=l&——,'. However, for
M we can have both j&——f&+—', to j2——l,——,

' and also

= —(~i+1)'*C'UV' 2o)

XLe&(2j&+1—eu)/(2j&+1) (2j2+1)]
—,
'

(U& —U,)
Xhl"(4ji,&2j2) I(j ij2j')/&&,

V
(16)

"According to our calculations, Eq. (3.7) of Noya et a/. is in
error by a factor (2j2+1)&. With our choice of phase in the
reduced matrix elements, we also differ in sign in this equation.
Our 0 is equal to their e.

"There is also the possibility of an excitation to a state of the
same j and l value but different n value. Such an excitation would
be through essentially two oscillator shells and because of the
associated large value of AE such excitations are neglected.
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j i li——+,' to-j2——ii+2 or vice versa. The reduced matrix
elements of M„ in each of these cases can be con-
structed easily from the single-particle reduced matrix
elements of Sz, Lz, and Dz given in Table II.

Using the foregoing relationships, we obtain finally
for the contribution of type I admixtures to the matrix
elements M„ the expressions given in Tables III and
IV, where the radial matrix elements 8 (n2, j2, l2, ni, ji,li)
are given by

~n(222 j2 ~2 '+1 jl ~l)

g2rb

Rn2j2l2(E) En»iii(R)R'dR. (20)
' 0 R~'"

Operator M

S
L
9
S
L
9
9
9

0
0
0
0
0
0
2

—2

jl J2

1
1

1
—1
—1
—1

1
—1

{ji[IMllj2)
—2[(2j,+1) (2j2+1)/j&51

—',[(2jr+1) (2j2+ 1)/ji 5'
—2'[(2j,+1)(2j,+1)/ji5*'

—,'[(2j,+1)(2j 2+1)/j 25'
—22[(2j,+1)(2j2+1)/j251

k[(2j~+ I) {2j2+I) /j"-5'

2[4(4—1)/2(21r —1)5'*

—-,'[1 (l —1)/2(2l —1)5*'

our case, we have

TABLE II. Reduced matrix elements (jr~aM~~ j2) of
operators S, L, and 9.

Here the radial functions are those describing the
ground and excited states of the single particle involved
in the type I excitation; the evaluation of the d„and
also the estimation of the AE will be discussed in Sec. V.

= —(2j+1)'CU1j; 20)Ln/(2ji+1) j
XL(2j—p)/(2 j—1)jhi" (liji,lj)

x (—I'.)IU j')/~&, (22)
where the various components of this expression are
defined as in Eqs. (17)—(19). The contributions of
this type II admixture to the matrix elements M„are
given in Tables V and VI where the radial matrix
elements Jr are defined as in Eq. (20).

Type II Excitation

In this type of excitation, the orbit j2 (of type I
excitation) coincides with j. Thus the nuclear wave
function, including a typical type II admixture, can
now be written

yp
where p and n are the numbers of odd and even
nucleons, respectively. Using the same interaction as +&=+(J "(o)j"U)J=j)
in type I and specializing the results of Xoya ef cl. to +2» P(Ji)+(ji""(ji)j" '(Ji)J=j), (23)

Type III Excitation
+ =+(j "(o)j"(j)J=j) Here the orbit ji coincides with the orbit j (of type I

+Pzi P(Ji)%(ji" '(ji)j"+'(Ji)J=j), (21) excitation). The nuclear wave function including an
admixture of this t e can now be written

I ABLE III. Contributions of type I adrnixtures to M „;the excitation is one of an even number n1 particles in orbit j1=l1+-, to orbit
j2=l] 2 containing an even number n2 particles. Note that for (bz)2„= (bl.)2,= 9„=p=1, (bD)2„——0, the values of M„given by this
table are just those obtained by Arima and Boric' for bpI.

Nucleus M„n/[ (2jn+1 2n2)/(2j. +—1)5

Contribution from
even numbers of

Odd proton
(neutron)

l——'
2

—(l+2)lr[gsi{bs)2 —'(bo)2 ) g—r, (b )2 5L—& (ni, 4+2, 4; n2, 1~ 2 lr)

(2l+3) (24+1)

(l 1)lings({bs)2n ———;(bo)2nl—gL(bL)2n5zn(ni, ii+2, l„n2, l, ,', lq)——
(2l+1) (21~+1)

—V,I/aP protons (neutrons)

2 (V~—V,}I/AP. neutrons (protons)

—V,I/AF protons (neutrons)

-', (V&—V,)I/d Ii neutrons (protons)

TABLE IV. Contributions to M„ for admixtures of type I with Al =2. If j1&j&, l2 is larger; for j1&j2, l1 is larger.
We denote the larger l by l&.

Nucleus bI n—/[nni {2j +1 n22) 5—

—(3/8) lgg (b~) 2„&„(nI,g I,l I
.
, n2, g2, l2) —V,I/~I'-

Contribution from
even numbers of

protons (neutrons)

Odd proton
(neutron)

1
2

(2l+3) (2l&—1} —,
' (V~—V,)I/AF neutrons (protons)

protons (neutrons)

(2l+1) (2l&—1) -,'- (Ug —V,)I/AF~ neutrons (protons)

(3/8) (l+1)gs (bo) 2„s„(n&,j&,l&, n2, j2 l2) —V,I/&Ii.
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TABLE V. Contributions of type II and III admixtures to 3In. Type II is the excitation of an even number n particles in orbit: j1= i+-,
into the odd group j=l-2 containing p particles. Type III is the excitation of the p particles in the odd group j=l+2 into the orbit
j1=l——, containing n particles. If we specialize as in Table III, 3f„are again the results of Arima-Horie for buzz and bpzzz. For the
latter, usually m=0.

Excitation type

n(2j —p)(l —1)lpgs((bs)2ng(b, D)2n) gL(b—r)o„js„(nj&=1+2,l; nj =l o, )—( /aI)

(2j—1) (2l+1)'

—(p —1) (2j&+I n) (l—+1)(l+2)Egs((bs)2„——4(bD)&„)—gI. (bJ)2„]s„(n,j=l+ '„ l; n,j-& l '„——l) (——-V,I/AI')

(2jz+ I) (2l+1) (2l+3)

and the appropriate reduced matrix element is

= —(2j+1)'C(j1j; rio0)L(2 ji+1—n)
X (p —1)/ (2ji+1)(2j—1))hi" (liji,fj)

x( V,)i(j,lo)/—Az. (24)

The contributions to M„resulting from this type of
admixture are listed in Tables V and VII.

Zero-Order Term

Finally an expression has to be given for the reduced
matrix element of M„with respect to the zero-order
function %(j&(j)J=j). Only the odd (P) particles will

contribute to this matrix element and we obtain in a
straightforward fashion

/vI =c(j lj jo)(j"J=j IIM ljl"~=j &

=C(jlj' jo)(j[[M„

for p identical particles""
Thus for j=l+-'„

and for j=l——,',

(1) 2j+3 1

Epj 2j+2 2j+2

(2j+3)
X (bs)o.+ (bz) . a.(n,j,l; n, j,l), (26)

4j

where in both expressions all the symbols have been
defined previously. '4

V. RADIAL MATRIX ELEMENTS AND NUCLEAR
ENERGY LEVELS

Evaluation of S„(n»j„l» n„j&,l, ) and &LE

In order to obtain values for the radial integrals 8„
for two single particle states e2j21& and rs&j&lz, the
following approach was adopted. The relevant single-
particle wave functions and energies were calculated
for particle motion in a nuclear potential well of the
Saxon-Woods type having the form

V(R)=-
1+exp[A o(R—Ro)]

Ilf-=- a~(b~)o-(j —o)
p neo Ao[Vo[exp[Ao(R —Ro)j

L.S. (27)
4m'c' {1+expLAo(R—Ro)]) R

TABLE VI. Contributions to M„ for admixtures
of type II with Al=2.

poE1+R'/R '3
p(R) =

1+exp LA i(R—R,)$
(28)

piV, . /(n(2—j p)]—

'j 1
+ogs (bs)o + (bD)o 0—(n,j,l; nj, l); (25)

4(i+1) Coulomb e6ects were taken into account by assuming
that the protons also moved in the potential of a charge
distribution p(R) of the form

—(3/8) (l+1)gp(bD) 2n&n(n1, j],l& S j,l) (—V,I/AL')
l+ X2

(2l+3)'

1
2

(3/8)l(l+1)gs(bD)o & (ni,j i,h; nj, l) (—V,I/~F)

(l-1) (4l -1)

G. Racah, Phys. Rev. 63, 367 (1943)."C. Schwartz and A. de-Shalit, Phys. Rev. 94, 1257 (1954).

so normalized that the resulting Coulomb potential
V, (R) satisfied

V, (R) —+ (Z—1)e'/R for R. —+ ~.
'4The subscript n is used variously denoting in the nuclear

radial integrals the principal quantum number, in the angular
matrix elements, numbers of particles, and thirdly the terms
arising from the series expansion of the Dirac equation. The:
particular meaning is obvious from the context.
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TABLE VII. Contributions to M„ for admixtures
of type III with Dl= 2.

—t &- /E(2j+1 —rr)(P —1)j

TABLE VIII. Values in Mev of energy differences AL~' required
for calculations of e. These are obtained from the work of Arima
and Horie (see references 3 and 25).

—(3/&) (t+1)ge(bo), „e„(rr„j,,t, ; rr j l) (—V I/AL)
)+1

(2l+3)'

(3/8)l (l+1)gs(bL)) 2n~n, (nit jI,l1; n,j,l) (—V.I/~L)

(l —1) (4l' —1)

States

1d5/2 —id 3/2

2sl/2 —ifE3/g

1fv/2 —if@2

2P3/2 2P I/2

2P3/2 —it5/2

5

3
1.5
0.5

States

1gg/2 —ig7/2

1g7/2
—2d5/2

2'/2 —2d 3/9

2d 3/2 —3$1g2

1h11/2 —1hg/2

2.5
0.5
1.5
0.25

2

States

lhg/y, —2fr12 0.5
2frre 2fe—ie 1.S
2'/2 —3P3/2 0.75

3Pa/2 —3PI/2

1't13/2 —1$11/g 2

Vp =64.5 Mev for an odd proton, a=39.5,

t/'p ——50.0 Mev for an odd neutron, C= 0.96,

The well radii Rp and R, are defined by Rp ——re',
R,=CRp, and the various values of the parameters
used are as follows:

In Table IX the Anal results for 8 '(rtr, lt,jr, N2, 4,j&)
are given, but it must be remembered that in using
this table the relation of Eq. (31) must be used in
order to obtain 8„(rtr,lr,jr, n2, l2,j2). The program also
printed out the radial wave functions, binding energies,
e3', and s4'.

rp=1.20X10 "cm,

Ap ——1.40X10 "cm '
1.40X10 "cm '.

Values of V,„V&, and I
These values lead to an approximately correct ordering
of the single particle neutron and proton energy levels.

We adopt the values of hE as given by Boric and
Arima" who discuss their determination in detail.
Our parameters are thus consistent with the ones used
in their magnetic moment and electric quadrupole
calculations. The pertinent energy denominators are
reproduced in Table VIII.

The calculations of the wave functions, energies, and
6nally the radial matrix elements were carried out on
the Mercury computer at. Oxford using a program due
to Dr. L. M. Delves.

The radial integrals required are of the form

In estimating the values of these three parameters,
we follow the procedure of Arima and Boric and take

~
V&I =1.5~ V, ~. We further ignore the dependence of

the integrals I LEq. (18)j on the quantum numbers
involved and only take into account the approximate
mass dependence of I. The value of the product t/, I is
related to pairing energy data and, following Arima
and Boric, we take V,I= —25/A Mev.

VI. COMPARISON WITH EXPERIMENTAL
RESUI TS AND DISCUSSION

General Expression for e

1
Rr(R)R'"+'R (R)dRR2eJ

We now consider the general form taken by e when

(29) many admixtures of different types are contributing.

Hy Eq. (8),

R 2n
I Rr(R)R'"+'Rg(R)dR, (30)

where Re is involved in expression (27) for the nuclear
potential distribution. Thus 8„and d„' are related by

PRe2 y" p 1.202'

ERtr') (1.072&+1.50j (31)

where R~ is the fully. radial extent of the trapezoidal
charge distribution and is defined in Sec. III. In the
machine calculations, the actual radial integ rais
calculated were

—e= Q ~%'~*M„+~drtr QM„, ——
n=1,2

where M„ is the operator defined in (9), and where
0'& may contain the three types of admixtures described.
It must be remembered in this connection that there
may be several different admixtures of each type
contributing. Now it is of interest and of some practical
use to write down in a semi-symbolic way the form
taken by —e taking into account all of the possible
first-order admixtures investigated. " Referring to
Tables III through VII, and Eqs. (25) and (26), it

where we have used the expression R~ given in Sec. III.

"H. Horie and A. Arima, Phys. Rev. 99, 778 (1955).

ee H. H. Stroke and R. J. Blin-Stoyle, Proceeitilgs of the
International Conference on Nuclear Structure, Kingston, edited
by D. A. Bromley and E. W. Vogt (University of Toronto Press,
Toronto, 1960), p. 518.
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&A&I-E &X. Values of radial integrals 8„between single-particle states n&tI j& and n.l2j& required for the calculation of hfs anomalies. For
states which are unbound with the parameters indicated in the text, the program increases the well depth to give a binding energy I"=0.

Element

Cl

CU

19

20

29

30

37

39

41

39
41
43

61

67

Proton states

id3/2 id 8/2

id3/g —1ds/2
1d8/2 —2$] /2

1d3/g —id 3/2

1d3/2 1ds/2
1d8/2 —2$y/2

id3/g —1ds/2
1d3/2 —2$y(2

1d3/2 —ids/g
id3/2 —2$I/2

id3/g —id 5/2

id 3/q
—2$&/2

id3(2 —id 3/2

1d3/2 —id 3/2

id3/g —id3/2

2p3/g —2p 3/2

1fs/2 —1f7/2

2P8/g —2p8/2
1fs/g —1f7/g

2P3/2 2p3/2
Ifg2 —1')2

2P3/g 2P8/2
1f5/2 1f7/2

2py/g —2p8/2
if5/2

—1f7/2

2p3/g —1f5/2

2pg/g —2P3/2
1f5/r —if7/z

2P3/2 —1fs/2

2py/2 —2p3/
ifs/& —if7/2

2p3/2 1fs/~

2p y/2
—2p8/2

1fs/g —1f7( ~

2p8/g —1f5/ g

2p y/2
—2p 3/2

1f5/2
—1f7/2

P3(~ fS(2

0.686
0.689—0.616

0.662
0.669—0.590

0.670—0.592

0.653—0.570

0.638—0.551

0.644
0.626
0.610

0.721
0.690

0.706
0.680

0.692
0.670

0.679
0.661

0.716
0.680—0.513

0.700
0.671—0.500

0.685
0.662

—0.489

0.672
0.654—0.479

0.659
0.646—0.469

0.641
0.629—0.700

0.592
0.590—0.646

0.592—0.648

0.559—0.603

0.531.—0.565

0.555
0.521
0.492

0.804
0.590

0.770
0.571

0.740
0.554

0.713
0.538

0.794
0.572—0.582

0.758
0.555—0.557

0.727
0.539—0.534

0.699
0.525—0.514

0.673
0.512—0,497

Neutron states

1d3/2 —1d5/2

id3(g —id8/2

if7/g —if7(2

1f7/g —1f7(2
1f5/2

—1f7/2

Iform

If,&,
—

ifs/s —if7/2

1f7(2—1f7/g

1f7/2 —if7(~
1fs/2 —1f7/g

if7(3—1f7(2
ifs(2 —if7/2

1f7/2 1f7(2

ifs(~ —1f7/2

2P I/2 —2P8/g
1f5/2 if7/2

2P3/2 if5/2

2pj./g
—2p8/2

ifs(2 —1f7/g

2p3(2 —ifs(2

2pg/2 2P3/g
1fs(g—1f7(2

2P3/~ if5(~

2py/2 —2p3/

If5)a —Ifsi~
2p8/2 2p8/2
2pq/2 —2p3/2
1f5/2 1f7(g

p '/~ fs(~

1f5/g
—1f5/ g

2P3/2 —2p3/2
2p 1./2

—2p 8/2

1f5/2
—1f7/2

p8/2 fs/2

1f5/2 1f5/2

2PI('-—2p3(

2p I./a
—2P I(2

2p y/2
—2p I(2

R9(2—f9(&

0.800

0.788

0.994

0.962
0.993

0.993
0.974

0.962

0.935
0.974

0.910
0.952

0.889
0.932

0.892
0.781—0.654

0.865
0.767—0.631

0.840
0.754

—0.612

0.818

0.770
0.839
0.865
0.767—0.631

0.753
0.818
0.840
0.754—0.612

0.737
0.818

0.798
0.893

0.876

0.874

1.292

1.199
1.40

1.40
1.32

1.199

1,122
1.32

1.056
1.26

1.000
1.20

1.250
0,777—0.902

1.173
0.745—0.846

1.106
0.717

—0.798

1.047

0.781
1.098
1.173
0.745—0.846

0.739
1.043
1.106
0.717—0.798

0.703
1.047

0.993
0.965
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TAax.z IX.—Continued.

Element

Ga

Br

31

33

65

69

73

71

73

77

79

Proton states

2p 3/2
—2p 3/2

2P 1/2 —2p 3/2

1f5/2
—if7/2

2p 3/2 —1f5/2

2p 3/2 2p 3/2

2p1(2 —2p3/2
1f5/2

—1f7/2

2p3/2 —1f5/g

2p3/2 2p3/2
2pl/2 —2p3/2
1f5/2 —if7/2

2p3/2 if5/2

2p3/2 2P3(g
2pl/2 2P3/3
1f,i2 1'(g, —

2p3/2 —1f5/g

2P3/2 —2P3/g
2p]/2 —2P3/2
if5/, —1f7(,

2p3/2 1f5/2

2P3/g 2P3/2
2p l /2 2P3/9
1f5/2

—1f7/2

2p 3/g
—1f5/ 2

2p3/2 2p3/2
2p 1/g 2p3/2
1f5/2

—1f7/2

2p 3/2
—if5/2

2p3/2 2p3/2

2 pl/&
—2P3/g

1f5(2—1f7(g

2p3/2 —if5/g

2p 3/2 2P3( 9

2P]/g 2p3/2
if5(2 if7(2

2P3/Q if5/ 9

2p 3/2 2p 3/2

2p l(s —2p3/2
1f5/2

—1f7/2

2p3(2 —1f5(2
1g7/2 —igg(

2P3/2 2P3/Q

P&/2 P3(2
if5/2 —ij7/

2p 3/2 if5/2

1g7(2—1gg(g

2p3/2 —2P3/g
2P1/2 2P3/g
if5/~ —1f

2p3/2 if5/2
1g7(2 1gg/&

2p 3/2 2p3/2
2p 1/2

—2p3/2
if5/2

—if7/ z

2p3/2 —if5/g
1g7(2 —igg/2

2P3/2 —2p3/2
2P1/2 2P3/2
1f5/2

—if7/2

2p 3/2
—if5/g

ig7/2 —1gg/g

0.694
0.70i.
0.671—0.501

0.681
0.686
0.663—0.490

0.669
0.673
0.654—0.479

0.658
0.660
0.647—0.470

0.647
0.649
0.640—0.461

0.660
0.662
0.648—0.471

0.649
0.651
0.641—0.462

0.639
0.640
0.634—0.454

0.630
0.630
0.628—0.446

0.640
0.641
0.635—0.454
0.742

0.632
0.631
0.629—0.447
0.738

0.623
0.622
0.623—0.440
0.735

0.615
0.613
0.617—0.434
0.731

0.607
0.604
0.612—0.428
0.728

0.745
0.761
0.556—0.558

0.717
0.730
0.541—0.536

0.692
0.701
0.526—0.516

0.669
0.675
0.513—0.498

0.648
0.651
0.501—0.482

0.673
0.680
0.515—0.501

0.652
0.656
0.503—0.484

0.632
0.634
0.491—0.469

0.614
0.614
0.481—0.455

0.635
0.638
0.493—0.471
0.671

0.617
0.618
0.483—0.458
0.662

0.600
0.599
0.473—0.445
0.654

0.584
0.582
0.464—0.433
0.646

0.570
0.566
0.455—0.422
0.638

Neutron states

2p l,/2
—2p 3/2

1f5(2—if7(2
2p3/2 —if5/a

2py/2 —2p3/2
1fr,l, 1fpl, —

2p3/2 1f5(g

2py/2 —2P3/2

2p1/2 —2p3/2
1g7/2 —1gg(2

2p1/2 —2p
ig7/g —1gg/2

2p1/g 2p3/2

2P1/2 —2p3/2
1g7(g—1ggi g

2 pl/2
—2p3/2

1g7(2—igg(~

2p1/2 —2p3/2
1g7/2 1g3/2

2P 1/2
—2P3/g

2p1(2—2p3(2
1g7(2—1gg/2

2p l /2
—2P3/ g

1g7/2 —igg/g

2P1i/2 2P3/'
1g7/g —1gg/ g

2pi/2 —2p
1g7/2 —1gg/2

0.840
0.754—0.612

0.818
0.742—0.594

0.798

0.780
0,873

0.763
0.898

0.780

0.763
0.898

0.747
0.891

0.732
0.882

0.747

0.732
0.882

0.724
0.847

0.707
0.840

0.699
0.834

1.106
0.717—0.798

1.047
0.691—0.756

0.994

0.948
0.972

0.907
1.04

0.948

0.907
1.04

0.869
1.02

0.834
0.990

0.869

0.834
0.990

0.814
0.902

0.777
0.886

0.759
0.870
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TABLE IX.—Coetinled.

Element

Sr

Cd

37

79

81

83

89

97

107

113

105

Proton states

2pl/2 —2p3/2
if5/2 if7/2

2p3/2 —if5/2

2pl/2 —2P3/2
if5/2 if?/2

2pa/ g
—if5/2

2PI!g
—2p3/g

f5/2 —f7(2
2ps/2 1f5/2

2PI/g —2P3/g
if5/2

—if7/2

2p3/2 1f5/2

2P3/2 —2P3/2
2PI(g —2P;)(g

if5/~ —if5(~
2pl/2 2P8/2

1f5/2
—1f„"/2

2PI/a —2P3/2

2ps/2 —2P3/2
2pl/2 2P3/2

2pl/2 —2P3/g

2pl/2 2p3/2

2PI/O 2P3/9

2PI/g —2p;~/g

2pl(g —2p;)(g
1g?/g —1gg/g

2P I/(~
—2P3/~

1gv/ g
—1gg/2

2p I/2
—2p j/9

igv/2 —1g, !g

2pl/2 2pl/2
igv/g —igg/g

2PI/& 2PI/2
1gv/2 igg/&

2PI/~ —2PI/2
1gv/2 —1gg(g

2pl/2 2pl/2
1gv/g —1gg/2

2g7/~ —igg(
2p I/2 2p3/2

col

0.622
0.624

—0.441

0.614
0.618—0.434

0.605
0.613—0.428

0.597
0.608

—0.422

0.616
0.614

0.588
0.606

0.583
0.598

0.594
0.590

0.606

0.598

0.591

0.584

0.567
0.694

0.561.
0.688

0.540
0.669

0.535
0.664

0.530
0.660

0.526
0.656

0.521
0.652

0.670
0.546

0.601
0.474—0.446

0.583
0.465—0.434

0.568
0.456—0.423

0.553
0.448—0,413

0.587
0.585

0.423
0.569

0.414
0.554

0,546
0.540

0.570

0.556

0.542

0.529

0.499
0.573

0.489
0,562

0.451
0.530

0.443
0.522

0.435
0.514

0.428
0.507

0.421
0.500

0.531
0.464

Neutron states

2PI(2 PI/~
igv/2 —igg/
2PI/9 2p3/2

igg(2 —igg(2
1gv/~

—ig g/~

2PI/g 2P3/Q

igg/g —1gg/2

1gv/2 —1g g/2

2pl/2 2p3/2

igg/g —1gg/g

igv/a —1gg/2

1gv/o —1g g/e

2pl/2 2P5/2

1g?/2 1gg/9

2pl(2 —2P~(.

igv/2 1gg/2

2pl/g —2P3/2

1gv/2 —1gg(~

1gg/2 —igg/2
1gv/g

—1gg/ g

2p] /2
—2P3/g

gg/2
—

gg/2

igv/g —1gg(g

2p I/2 —2P3/2

igg/q —1g
igv/g igg/2

2d5/2 —2d5/2

1gv/g —igg

2d5/ g 2d5/9
2d3/9 2d5/'7

1gv/2
—1gg/2

2d5/g gv/p

2d 5/2
—2d 5/ 9

2d3/g —2d5/g

ig7(2 —1gg(2
2d5(g —ig, (g

1g?/2 —ig g(~

2d3/2 —2d5/2
2d5(~ igv/g

igv(~ 1gg/2

2d g/2
—2d5/g

2d„.=(~—1g7(2

igv(2 —1gg/~

2d3/g —2d5/2
2d5/2 —1g

2d3(g —2d5/g

2d3/2 —2d5/2
1h J/2

—ihII/g

2d5/g —2d5/2
2d3/2 —2d5/2

1gv/2 —1gg/2
2d5/g —1gv/~

0.734
0.847
0.724

0.842
0.840
0.707

0.830
0.834
0.699

0.821
0,822

0.840
0.707

0.834
0.699

0.822
0.684

0.810

0.830
0.834
0.699

0.821
0.822
0.684

0.813
0.810

0.909
0.799

0.865
0.907
0.774—0.567

0.850
0.887
0.766

—0.546

0.734
0.815

—0.501

0.727
0.801

—0.491

0.722
0.788—0.483

0.776

0.765
0.805

0.791
0.815
0.734—0.501

0.836
0.902
0.814

0.847
0.886
0.777

0.819
0.870
0.759

0.800
0.840

0.886
0.777

0.870
0.759

0.840
0.726

0.811

0.819
0.870
0.759

0.800
0.840
0.726

0.783
0.811

1.241
0.786

1.11
1.24
0,729—0.786

1.07
1.19
0.711—0.742

0.646
0.996—0.640

0.633
0.962—0.620

0.622
0.930—0.602

0.901

0.874
0.780

0.930
0.996
0.646—0.640
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TABLE IX.—Conti'jzzsed.

Element

In

Sn

Te

50

107

109

113

109

113

115

119

115

119

119

123

125

123

Proton states

1gv/2 —1gg/2
2pl/2 2p3/2

igv/2 —1ggj
2p1/2 —2p 3/2

1gv/2
—1gg/2

2p1/g —2p3/2

1gv/2 igg(2
2p1/2 —2p3/p

1gv/2
—igg/2

2p 1/2 —2p 3/2

1gv/2 —1g
2p]/2 —2p g/2

igg /2
—igg(

1gv/2
—1gg(2

1gg/2
—1gg(2

1gv/2 —1g

igg/2 igg/2
igv(~ —1gg(

igg/g —1gg/2
1gv/g

—1g g

ggjg —iggj~
1gv/2 —1gg (

igg/2 —1gg/2
1gv/2 —ig g(2

1gv/2 —1g

igv/2 —igg/2

1gv/2
—1gg/2

2ds/2 —2d5(g
1gv/2 —1gv/2

1gv/2 —1gg jg

2d5/2 —2d 5(2

1gv/2 —1gg/2

1gv/2 —1gv(g

1gv/2 —1gg(2

igv/2 —igv/s
2d5/2 —2dp/g
1gv/2

—1gg/2

1gv/2 1gg/2
2d3/2 —2d5(2
2d5/2 —1gv( 2

0.665
0.541

0.660
0.537

0.656
0.532

0.652
0.528

0.648
0.524

0.644
0.520

0.700
0.661

0.696
0.657

0.693
0.652

0.689
0.648

0.686
0.645

0.683
0.641

0.649

0.645

0.642

0.645
0.614
0.642

0.639
0.639

0.607
0.635

0.604
0.628
0.632

0.636
0.629—0.369

0,523
0.456

0.515
0.449

0.508
0.442

0.501
0.435

0.495
0.428

0.488
0.422

0.565
0,516

0.559
0.509

0.553
0.502

0.547
0.495

0.541
0.489

0.536
0.483

0.496

0.490

0.484

0.612
0.444
0.485

0.601
0,479

0.433
0.474

0.428
0.581
0.469

0.474
0.587—0.394

Neutron states

2d5 j2
—2d&/2

2d3/2 —2d5/2
igv/2 —1gg/2
2d5(2 —1gv/2

2dgg —2dg(2
2d3/2 2d f)/g

igv/2 —1gg(2
2d5/2 —1g v/2

3$1(g—3$1(2
2d3/g —2d ~~/ g

1gv/g —1gg/2

2d5/2 —1gv/2

3$1/2 —3$1/2
2d3/g —2dg/g

3$1/2 —3$1/2
2d 3/2

—2d 5/2

1hg/2 1h11/2

3$1/2 —3$1/2
2d3/2 —2dg/2
ihg/2 —1h11(2

igv/a igo/2
2d 3/ g

—2d 5/2

2dg/2 —igv/2

igv/g —1gg(2
2d3/2 —2d 5/2

2d5/2 —1gv(2

igv(~ —igg/2
2d3/s —2A(2

2dg/2 —2dg/g

1Izg/2 —1h11/2

2d3/2 —2d5/g
1hg/2 —1h11(2

2d3/2 —2d@2
ihg(g —ih11/2

3$1/2 —3$1(2
2d3/g —2dg/2

3$1/2 —3$1/2
2d3/2 —2d5/2
1hg/2 —1h11/2

3$1/2 —3$1/2
2da/2 —2d5/2
1hg/2 1h11/2

2d3/2 —2d 5/2

ihg(2 —ih1 1(g

2d3/g —2dg/2
1hg(2 —1h11(.

2d3(2 —2d@2
1hg/2 —1h11/2

2d3/g —2d5/2
ihg/2 —ih11(2

3$1/2 3$1/2
2d3/2 —2d&(2
ihg(2 —ih11(2

0.780
0.801
0.727—0.491

0.770
0.788
0.722—0.483

0.832
0.776
0.716—0.475

0.817
0.765

0.803
0.754
0.802

0.789
0.744
0.801

0.722
0.788—0.483

0.716
0.776—0.475

0.710
0.765

0.754
0.802

0.744
0.801

0.735
0.797

0.803
0.754

0.789
0.744
0.801

0.777
0.735
0.797

0.735
0.797

0.726
0.796

0.717
0.792

0.709
0.789

0.754
0.717
0.792

0.904
0.962
0.633—0.620

0.880
0,930
0.622—0.602

1.113
0.901
0.611—0.585

1.074
0.874

1.038
0.849
0.773

1.004
0.826
0.766

0.622
0.930—0.602

0.611
0.901—0.585

0.601
0.874

0.849
0.773

0.826
0.766

0.805
0.760

1.038
0.849

1.004
0.826
0.766

0.973
0.805
0.760

0.805
0.760

0.785
0.753

0.766
0.747

0.748
0.741

0.918
0.766
0.747
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TAsLE IX.—Continued.

Element

Xe

Cs

125

121

123

125

127

129

131

123

125

127

129

131

133

125

127

Proton states

1gv/2 —1g9/
2d3/~ —2d5/g

2d5/2 1gV/2

1gv/2 1gv/g

2' 2—2dq/2

1gv/2 —1gg/2
2d3/2 —2dg/g

2d5/g —1gv/2

2d5/g —2d5/g

1gv/g
—1gg/2

2da/g —2dg/g

2d5/2 —1g v/2

2d5/2 —2d5/2

1gv/2 —1gg/2
2d3/g —2dgg
2A/2 —1gv/2

2d g/2
—2d&~/ g

1gv/- —1g9/2
2d3/g —2d5/g

2dg/2 —1gv/2

1gv/2
—1gv/~

1gv/~ —1g9/
2d 3/2

—2d5/2
2d~/g —1gv/2

1gv/2 —1gv/2

1gv/g —1gg(2
2d3/2 —2d5/g
2d5/2 —1gv/g

1gv/g
—1gg/2

2d5/g —1gv/g

1gv/g —1g9/g

2'/2 —1gv/2

1gv/g —1g9/
2dg/2 —1gv/2

1gv/2 —1gs/2
2d5/2 —1gv/g

1gv/2 —1gg/2
2d5/g —1gv/'-

1gv/g —1g9/g
2d5/2 —1gv/2

1gv/g —1g9/g
2d5/2 1gv/2

3$]/g —3$y/g

2d5/2 —2d 5/2

1gv/2 —1gv/

1gv/g —1gg/g

2d3/2 —2' g
2d5/g —1gv/~

3$1/2 3$1/2

1gv/2 —1gg/2

2d3/j —2dg/g

2d5/g —1gv/2

0.632
0.623

—0.365

0.611
0.640
0.640
0.636—0.373

0.635
0.636
0.630—0.369

0.630
0.633
0.624—0.366

0,624
0.630
0.618—0.362

0.598
0.627
0.612—0.359

0.596
0.624
0.607—0.356

0.637—0.370

0.633
—0.366

0.630—0.362

0.627
—0.359

0.624—0.356

0.622—0.353

0.619—0.350

0.638
0.631
0.430
0.634
0.625—0.366

0.631
0.631
0.619—0.363

0.469
0.576—0.388

0.440
0.604
0.481
0,601—0.402

0.594
0.475
0.589—0.395

0.584
0.470
0.578—0.388

0,575
0.465
0.568—0,382

0.419
0.460
0.557—0.376

0.415
0.456
0.548—0.371

0.476
—0.395

0.471
—0.389

0.466—0.383

0.461
—0.377

0.457—0.371

0.452—0.366

0.448—0.361

0.665
0.586
0.355
0.472
0.581—0.390

0.651
0.467
0.570—0.384

Neutron states

3$1/2 3$1/2
2d3/ g

—2d5/2
1h9/2 1hl 1/2

2d3/2 2d5/2
1h~/g —1hg j/g

2d3/2 —2d5/2
1h„/ p

—1hj.g/g

2d3/p —2d„/g
1h9/2 —1hgg/g

2d3/2 —2d~/2
1hg/2 —1lzg j./~

2d3/2 —2ds/2
1hg/g —1hgg/.

2d3/ g
—2d5/2

1hg/g —1hgg(g

2d3/2 —2d5/2
1h9/2 —1l2y y/2

3$1/2 —3$1/2

2d3/2 —2dg/2
1hg/2 1h11/2

3$i/2 —3$i/2
2dq/2 —2d5/2
1hg/g —1hgg/2

3$j/2 —3$1/2
2d3/2 —2d5/2
1h9/2 1hl 1/2

2d3/2 —2d3/2
2d3/ g

—2d5/g

1h~/2 —1hgg/g

3$1/2 2d3/2

2d3/q —2d3/q

2d3/2 —2d5/g

1hg/2 —1hgg/.
3$1/g —2d3/g

2ds/g —2d3/g
1h9/2 —1hip/ g

3$y/g —2'/g

2d3/2 —2d5/g

1hg/g —1hgg/g

2d3/g —2d5/2
1hg/2 —1hgg/2

0.743
0.709
0.789

0.726
0.796

0.717
0.792

0.709
0.789

0.701
0.789

0.694
0.785

0.687
0.782

0.754
0.717
0.792

0.743
0.709
0.789

0.733
0.701
0.789

0.724
0.694
0.785

0.695
0.687
0.782—0.659

0.687
0.680
0.777—0.651

0.680
0.772—0.643

0.709
0.789

0.701
0.789

0.892
0.748
0.741

0.785
0.753

0.766
0.747

0.748
0.741

0.731
0.736

0.716
0.730

0.701
0.725

0.918
0.766
0.747

0.892
0.748
0.741

0.869
0.731
0.736

0.847
0.716
0.730

0.715
0.701
0.725—0.749

0.699
0.687
0.714—0.732

0.684
0.702—0.715

0.748
0.741

0.731
0.736
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TABLE IX.—Continued.

Element

Cs

Ba

A.u

55

79

129

133

137

129

131

133

137

139

191

193

197

Proton states

1gy/2 —1gg/2
2d3/2 —2dg2
2d g2 —1g7/2

2dg/2 —2dg(g
1gs/2 —1g~(2
2d q/2

—2d5/2
2d5/2 —1gv/2

1gy/2 —1g7/2
1gy(2 —1gg(2
2d 3/2

—2dg/2

2d5/2 —1g7(2

1g&/2 —1g
1g7/2 —1gg/2
2d3/2 —2d5/2
2d5(2 —1g7/2

1gy/2 —1gy/2
1g'l/2 1g9/2
2d 3/2

—2d 5/2

2d6/2 1gv/2

1g'l/2 1g9/2
2d3(2 —2dgg
2d5/2 —1gy(2

1g7/2 1g /2

2d3/g —2dg 2

2d5/2 —1g7/2

1gy/2 —1gg/2
2d 3/2

—2d q/2

2A/2 1g7/2

1g7/2 —1gg/2
2d3/2 —2d5(g
2d g/g

—1g7/2

1gI/2 —1g
2d3/2 —2d5/g
2d5/g —1g7(2

1gq/2 —1g
2d3/g —2dg/g

2d5/2 —1g7/2

2d3/2 —2d3(~
2d3/2 —2dg/g

1hg(2 —1hgg(2

2d 3/2
—2d3/2

2d3/g —2dg/2
1«9/2 —1«ii/2
3$1/g —2dg/g

2d 3/2
—2d 8/2

2d3/g 2dg&/g

1«g/g —1«gi/2
3$]/2 —2d3/g

2d3/2 —2d 3/2

2d3/2 —2d5/2
1lzg/2 —1hgg(2
3$]/2 —2d3/g

2d3/2 —2da/2
2d3/2 —2dg2
1h9/2 1hl 1/2

3$y(g —2d3/2

0.624
0.628
0.614—0.359

0.616
0.625
0.609—0.356

0.594
0.622
0.604—0.353

0.591
0.619
0.599—0.350

0.588
0.617
0.594—0.347

0.628
0.614—0.360

0.625
0.609—0.356

0.622
0.604—0.353

0.620
0.599—0.351

0.617
0.595—0.347

0.615
0.590—0.345

0.518
0.522
0.638—0.470

0.515
0.520
0.636—0.467

0.513
0.518
0.635—0.465

0.511
0.516
0.633—0.463

0.509
0.514
0.632—0.461

0.637
0.462
0.560—0.378

0.560
0.457
0.551—0.372

0.412
0.453
0.542—0.367

0.408
0,449
0.533—0.362

0.404
0.445
0.525—0.357

0.462
0.562—0.378

0.458
0.552—0.373

0.454
0,543—0.367

0.449
0.534—0.362

0.445
0.526—0.357

0.441
0.518—0.353

0.395
0.406
0.467—0.400

0.392
0.403
0,464—0.396

0.388
0.400
0.461—0.393

0.385
0.397
0.459—0.390

0.382
0.394
0.456—0.387

Neutron states

2d3/2 2dg/2
1«9(g—1hgg/2

2d3/2 2dg&(2

1«g(2 —1hgg(2

2d3/2 —2dg(2
1lzg(2 —1hgg(g

2d3/2 —2d5/~

1«g/2 —1«g g(g

1lzg/2 —1«gi/2

3$i(s—3$i(~
2d3/2 —2d;(g
1«g/2 —1«yy(2

3$y/2 —3sy/p

2d3/2 —2d~~(2

1hg/2 —1h] y/g

2d3/2 —2ds(2
1«g2 —1hj g(2

2d3/2 —2d3(2
2d3/g —2d5(g
1«9(2—1«ii(~
3$i/2 —2d3(g

2dg/g —2dg(g
1lz9(2—1«)g(2

2f7/2 2f7/2

1lzg/2 —1hj]/2

3pl/2 3p3/2
1Zyl/2 —1zy3(2

3ps/2 —3p3/2
1z j.g/2 11/3/2

3p j/2 3P3/2
1111/2 1z13/2

3pl/2 3p 8/2

1&ll/2 1513/2

3pi/2 3p3/2
~ ~i 1/2 1i18/2

0.694
0.785

0.687
0.782

0.680
0,777

0.673
0.772

0.766

0.724
0.694
0.785

0,715
0.687
0.782

0.706
0.680
0.777

0.680
0.673
0.772—0.643

0.673
0.766

0.848
0.761

0,731
0.756

0.724
0.755

0.718
0.752

0.711
0.749

0.705
0.745

0.716
0.730

0.701
0.725

0.687
0.714

0.674
0.702

0.691

0.847
0.716
0.730

0,827
0,701
0.725

0,807
0.687
0.714

0.684
0.674
0.702—0.715

0.669
0.691

1.029
0.680

0.844
0.655

0.828
0.653

0.814
0.648

0.800
0.642

0.786
0.636
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TABLE IX.—Continued.

Element

Hg

79

80

201

193

197

199

201

203

201

203

205

Proton states

2d3/2 —2d3/2
2d3/2 —2d5/2
1kg(2 —1hll/2
3$1/2 —2d3/2

1kg/2 —1k 11/2

1kg/2 —1h 11/2

1kg/2 —1kl 1/2

1kg/2 —1hl1/2

1hg(2 —1Izl 1(2

1kg/2 —11zll(2

3$1/2 —3$1/2
1hg/2 —ihyl/2

3$1/2 —3$1/2
1kg/2 —1hl1(2

3S1(2—3$1/2
1kg/2 —1hl1(2

3S1/2 —3$1/2
1izg/2 —ih]1/2

3$1/2 —3$1/2

1 kg(2 —1hll(2

0.507
0.512
0.630—0.459

0.637

0.635

0.634

0.632

0.630

0.629

0.505
0.634

0.503
0.632

0.501
0.631

0.498
0.629

0,496
0.628

0.379
0.391
0,454—0.383

0.464

0.462

0.457

0.455

0.452

0.427
0.460

0.424
0.458

0.420
0.455

0.417
0.453

0.413
0.450

Neutron states

3p 1/2 3p3/2
izll/2 1Z13/2

3pl/2 —3pl/2
3p3/2 3p3/2
3P1/2 3P3/2
izll/2 iz13/2

3p3/2 —2f5/2

3pl/2 3 pl/2

3p3/2 3p3/2
3pl/2 3p3/2
izll/2 —iz13/2

3P3/2 —2f5/2

3pl/2 3p 1/2

1Z11/2 1Z13/2

3p3/2 2'/2

3pl/2 3p1/2
1Zl 1/2 —1i13/2

3P3/2 —2f"/2

3P3/2 —3P 3/2

3P1/2 3P3/2
izll/2 —iz13/2

3p3/2 2fp&/2

3pl/2 —3pl/2
3P3/2 3P3/2
3pl/2 3p3/2
1z11(2—1Z13/2

3p3/2 2f,'j(2

3pl/2 3p3/2
iz11/2 iz13/2

3P1/2 —3p3/2
1Z 11/2

—1Z13/2

3pl/2 3p 3/2

1Z11(2—1Z13/2

3pl/2 —3p3/2
izll/2 iz13/2

3pl/2 —3p3/2
iz 11/2 iz13/2

0.699
0.742

0.735
0.715
0.724
0.755

—0.604

0.728
0.709
0.718
0.752

—0.598

0.721
0.749

—0.593

0.714
0.745

—0.588

0.693
0.699
0.742

—0.583

0.702
0.687
0.693
0.739

—0.578

0.711
0.749

0.705
0.745

0.699
0.742

0.693
0.739

0.688
0.736

0.773
0.630

0.850
0.809
0.828
0.653

—0.691

0,834
0.796
0.814
0.648

—0.680

0.818
0.642

—0.669

0.804
0.636

—0.658

0.760
0.773
0.630

—0.649

0.775
0.748
0.760
0.625

—0.639

0.800
0.642

0.786
0.636

0,773
0.630

0.760
0.625

0.749
0.620

follows that we can formally write I using Eq. (A.12a)$

1 (2q f41
4 ' ~s Spgs (bs)2 '+

I

—
It ai(sp)+ (bs)4 1+

I If dz(sp) +a& 4 ~ gir (br)&dz(sp)+ (br)4&z(sp) jE5) E7)

( 9 ~ ~6q+Z ~ "'
I (bs)~l — l&~(4)+(bs)4I —l&~(~) lgs" —((b~)~~i(4)+(4)4~~(4))gi"

&yO) (7)

+& ~~"
I

— 1(bs)~&~(4)+I — 1(b.~)4~~(') gs&'&
&si &7)

* (33)
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where by colTipar1son with F~qs. (2.i) and (26)

+8 s.p ~ 2 y

+8 s.p. )2j+2'

alld

j(2j+3)
2j+2

for j=l+~, (34a)

2j+3
4j

for j= l —2, (34b)

1
g (s.p.) =—— f R, „(R)R',"+'R, (R)dR. (35)

g 2n

Here the suffix s.p. stands for "single particle" since
the contribution to —e from these terms alone is just
that which would be obtained for a single-particle
shell-model description.

The no' and n~' refer to Al=o and 61=2 excitations
respectively, the label i designating a particular
admixture. Their values could be written down ex-
plicitly by referring to Tables III through VII but
this will not be done here. Finally the 0 (i) are the
relevant radial matrix elements LEq. (20)J for the ith
admixture and g8"' and gL,

") are the g factors for the
excited particle in this admixture.

It is to be noticed that in terms of the parameters o.,
the theoretical value for the magnetic moment resulting
from admixtures of the above type is

The latter wouM correspond to the ratio of the point
interactions (since these measurements are performed
in a uniform magnetic field, and are therefore insensitive
to any departure from a point magnetic moment), in
most cases to a degree of accuracy much better than
is required for the above comparison. In view of this,
only the part of the Rosenthal-Breit-Crawford-
Schawlow correction" which a8ects the Bohr-VUeisskopf
e6ect through the variations of the charge distribution
between isotopes is included. This is obtained formally
by using in the calculation of. e electron coeA~cients 6
which are functions not only of Z and a value of A
which corresponds, for example, to the most stable
isotope, but actually b(Z, A). In the case where the
magnetic moments are very nearly equal and the
spins identical for the two isotopes, the Breit-Rosenthal
point-magnetic moment correction may however still
predominate. "Consequently, for one-electron spectra,
using the relationship between W and hAv (the hfs
separation energy between the two states F+ j+-', ——
and P =j——'„with the electron angular momentum
1=2), we find'0 for two isotopes 1 and 2, using Eq. (3),

Av& gi(2 j&+1)(1+e))
)

Avp gp(2 jr+1)(1+&.)

or as Av=cF+, where u is the magnetic dipole inter-
action constant in the Hamiltonian, and neglecting
terms other than linear in e,

pis=o's .,„.gs+~s ., gi, +Q; ~o"(gs"—gr. "') (36)
Q.(go

(38)

Now, as can be calculated, the hi=2 contributions are
generally small. Thus if, for example, there is only one
likely Dl=0 admixture, i,=k (say), then no(@ could be
determined empirically by requiring that p&& of (36)
agrees with the experimental value of p. The 0.0"' so
determined could then be used in (33) to obtain an
empirical value for —~. Alternately, if there are two

likely admixtures, we can use the magnetic moment
and the "hfs anomaly" data for the determination of
their contributions. Both of these methods and the
direct computation of e will be used in the fol)owing
investigation of the experimental cases.

Experimental Data

The comparison of the theoretical value of e with
that obtained experimenta) ly is usually not made
directly through the relation of Eq. (3). This is because
Wp '

$ would have to be calculated to a precision of
better than 0.1% in order to compare it meaningfully
with the experimental result, TV, &,„d,d. In practice this
is not achieved except in light nuclei, which we do not
consider here, and we compare therefore the ratio of
the measured values of single electron magnetic
interaction constants for two isotopes with the
independently-measured ratio of the nuclear g values.

Cygne

The comparison with experiment is therefore via Eq.
(38). It is clear that if we deal with a spectrum of more
than one electron, the contribution of the single s~~~ or
p&~& electron first has to be separated out properly
from the measured magnetic interaction constant.
Schwartz29 has pointed out that in the case of p electrons
a number of important corrections have to be applied
before a value of 6 can be obtained. These involve
screening effects as well as configuration interaction
influences. In part. icular he shows that such con-
figuration interactions ran lead to hfs anomalies for a
p3~2, and in fact any electron. Thus for other than s
electrons, in view of these possible ambiguities, the
comparison of the experimental data v ith our calcula-
tions may be subject to significant modifications. The
experim. ental results are given in Table X.

Discossion of the Experimental Cases

In discussing the various isotopes we indicate only
the groups of nucleons which contribute in zero-order

2 M. F. Crawford and A. I. Schawlow, Phys. Rev. 76, 1310
(1949).

A. LIIrio and A. Q. Prodell, Phys. Re~. J,O]., 79 (1956).
2' C. Schwartz, Phys. Rev. 97, 380 (1955); 99, 1035 (1955);

105, 173 (1957),
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TAIU, E X. Experimental data of magnetic moments (p), g-value and hfs interaction constant (a) ratios, and 6,„„=(aug~/a2gl) —l;
this is the quantity which is compared to the theoretical calculation, Dgg=&1 —E'2. The atomic state in which the hfs was measured
is also given. In the cases of spectra of more than one electron the a-value ratios indicated may not be equal to those of single s or p
electrons and reference should be made to the literature for a proper interpretation. Consideration should also be given to electronic
perturbation effects (see text) in the case of p states. For a review of the experimental techniques, as well as that of the Bohr-Weisskopf
effect and our early work see J. Eisinger and V. Jaccarino, Revs. Modern Phys, 30, 528 (1958).

K39
19&4'

29Cu63
2gCu"

3/2
3/2

3/2
3/2

31Ga"
31Ga"

35Br7'
35Br"

37Rb"
37Rb'7

3/2
3/2

3/2
3/2

5/2
3/2

Isotope I
uCP' 3/2
&7CP' 3/2

(nm)

0.8211
0.6835

0.3909
0.2145

2.2206
2.3790

2.0108
2.5549

2.0990
2.2626

1.3482
2.7414

gl/g2

1.20132a5

1.82189&17

0.933424m 19

0.7870148&13

0.927691~16

0.2950740& 12

Atomic state
in which hfs
measured

P 1/2

P3/2

Sl/2

Sl/2

P 1/2

P3/2

P 3/2

$1/2

P1/2

P3/2

Gl 82

1.20136&1
1.2013078&3

1.81767%4

0.933567&2

0.7870196+6
0.7869949+9

0.927697~ 20

0.2961101&2
0.295&4
0.295 &3

(percent)

0.0033F43—0.0010%42

—0,232%10

0.015&2

0.00062&23—0.00252 +32

0.00065~280

0.3511&4—0,02&136—0.02&102

f) g h, i

m, nn
n

References
p, hfs

a, b, c

47Ag'0
47Ag 109

Cdlll
Cd113

1/2 —0.1130
1/2 —0.1300

1/2 —0.5923
1/2 —0.6196

0.86985& 1

0.955947&3

S1/2

3P1
3P2

0.866268&27

0.955945&6
0.9559612&6

—0.412&6

—0.0002&7
0.0016&3

v) w

In113
4gIn"'

5,sb121
51Sb'"

S133

S135

S135

55Cs13~

9/2
9/2

5/2
7/2

7/2
7/2

7/2
7/2

5.4960
5.5077

3.3600
2.5484

2.5789
2.7290

2.7290
2.8382

0.9978609&12

1.84661+1

0.945001+8

0.961492+8

P 1/2

P3/2

4S3/2
Paramagnetic

resonance

Sl/2

$1/2

1.840763%55
1.84012+9

—0,3l7&3
—0.352~5

0.9453527&15 0.037&9

0.9612967&21 —0.020&9

0.99786844&25 0.00075~13
0.99783716+26 —0.00238&13

a) C) Z

CC

j, ee

ee

aa
bb

dd
cc

ee, ff

ee

Hg199
Hg201

1/2 0.5041 —2.70902~3
3/2 —0.5582

Pl
3P2

Knight shift

-2.705039+48
—2.704764&1—2.708925+73

—0.1746&89—0.1636+27—0.16&10

j, gg hh, ii, jj
kk
11

Tl203
ITl205

1/2
1/2

1.5962
1.6118

0.9902578%10 Pl/2
P3/2

0.9903622+5
0,9886498~5

0.01050~15
—0 00162~62

w, mm nn
oo
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and through excitation (to or from them) to the
magnetic moment and to the hyperfine structure
anomaly. The uncertainties indicated in 5 include
only those which arise from some 5 or 6% variations
in e which may result from neglected terms in the
series expansion of the Dirac equation as was discussed
in Sec. III.

Atoms irl, s~f2 States

I'otassiur/i K" .has (1d3/, )' protons with no possible
admixtures. Therefore we would expect this isotope to
have the extreme single-particle moment of 0.124 nm.
Actually this is not the case, and the discrepancy may
be attributed to a quenched g factor" for the d3f2

proton; we find, by demanding agreement with the
experimental value of ti in K", ge (effective) =4.7.
In K" we have, in addition to the (d3/2)' protons, the
contribution from excitations of the (1f;/2)' neutrons.
From the magnetic moment of K4', and using the
proton g8 value found in K", we determine the mixing
coefFicient of these neutrons. The value of 6 which we
obtain is —0.25+=0.03%. This is in excellent agree-
ment with experiment. If, on the other hand, one does
not consider configuration mixing in K" but tries to
fit the moment entirely with a different gs(effective),
the result is —0.36%. Similarly if in K4' we use gs(free)
and determine the 1f neutron admixture empirically,
we find 2 = —0.17%.

Copper We ha. ve for the protons 2pi/2(1'/2)' In.
Cu" the neutron contributions are (1'/2)'(2pi/2)', and
in Cu" (1'/2)'(2p3/2)'. The calculated magnetic
moments are 2.17 nm and 2.30 nm for Cu" and Cu",
and 6 is approximately zero with an estimated error
of about 0.015%.

Rubidium. The pair of isotopes Rb" and Rb" is
particularly interesting as the addition of two neutrons
changes the nuclear spin and hence causes a substantial
difference in the distribution of magnetiza, tion. (In
fact this was the first experimental observation of the
"hfs anomaly. ") For Rb" we have (1f&/2)'(2P&/&)'
protons and (1g9/2)' neutrons. The contributions in
Rb" are protons: (2p3/2)', neutrons: (1g9/2)". The
calculated magnetic moments are 1.32 nm and 2.79 nm
for Rb" and Rb" and 6=0.332& =0.016%%uo, which is
in good agreement with the experimental value. We
also calculate 3,=0.019&0.002% for the pi/2 hfs.

Silver. For Ag"' we have 2pi/2(1g, /, )' protons and
(2ds/~)' neutrons. In Ag"' we have the same protons
and (2de/2)' neutrons. The 8-function interaction does
not permit admixtures if the odd nucleon is in a pi/2
state. We therefore take the semiphenomenological
approach. By admixing either the g proton or d neutron
excitation, we obtain 6= —0.42&=0.30%%uo. The large

' I. Talmi and A. de-Shalit {private communication). Good
agreement between theory and experiment is obtained with such
an effective g factor for magnetic moments of the potassium
isotopes. See also S. D. Drell and J. D. Walecka, Phys. Rev. 120,
1069 {l960).

uncertainty rejects the fact that. for these silver
isotopes the values of e are large. As a consequence it
is not possible to determine the two admixtures
individually. If we attribute the entire deviation from
the single-particle magnetic moment to the g-proton
excitations, we find t through the use of Eq. (4),
reference 3j that this requires a mixing coefficient of
0.014 in the wave function.

Cesium. At Z=55 there is competition between the
1gvf~ and 24~f2 proton levels. We might have therefore
(1g7/2) (1g7/n) (2dg/Q) ol 1g7/2(2dq/~)'. In the 50—82
neutron region the 1g7/2 and 2dsf2 levels lie lowest,
with the 3s~f2, 1h~~f2, and 2d3f~ states on the top. The
program used for calculating the radial integrals 0',
gave binding energies of about 10.3, 9.6, and 9.4 Mev
for the 3s~f2, 1h&~f2, and 2d3f2 neutrons, respectively.
This order of filling the neutron levels also leads to the
best agreement in the magnetic moments. We should
remark, however, that the same Inagnetic moment
corrections are obtained in the three Cs isotopes which
we consider if the 3s&f2 states get filled after the 112&&f2

neutrons. Thus for Cs'" the neutron contributions
are (1hil/2) (2ds/&)'; for the protons a mixture of
1g&/2(2d5/2)' and (1g7/2) (2d5/2)' leads to agreement
with the experimental magnetic moment. In Cs'" the
neutron contributions are (1hii/~)" (2d3/2)', while for
the protons we have a similar mixture as in Cs"'.
Finally in (".si3' the best agreement in the magnetic
moment (/i=2. 67 nm) is obtained with 1g7/2(2dg/, )'
protons, and of course we have only the (1k»/2)i2
neutron contribution. The anomalies which we calculate
are Ai33 i35 ——+0.068% and Ai, ~ i37 ———0.026%, both
~=0.025. Thus it is indeed possible to obtain a
reversal in the sign of 6 in going from the Cs"'—Cs"'
pair to Cs"'—Cs"', and this we were not able to do
with purely effective moment calculations.

Atoms in p States

Chlorir2e. For the protons in both CP' and CP' we
have 1d3/~(2si/2)'. We have neutron contributions
only in Cia', i.e., (1d3/&)'. Here we adopt the modified
values of the interaction strengths as used by Arima
and Horie' so that I(1d,1d):I(2d,2d) =31:20, with
V,l(2d, 2d) having the standard value —25/A Mev.
The resulting magnetic moments are 0.710 and 0.582
for CP'" and CP'. The hyperfine structure anomaly
calculated for the p, /, electron is zero, in agreement
with experiment.

Ga/lium. There are two possibilities for the contribu-
ting protons —(2p&/2)'(1f7, &)' or 2p3/&(1'/2)'(1f7/2)'.
There is a neutron contribution only in the (~a69

isotope, i.e., (2p3/2)'. Arima and Horie' suggest that
the first choice is more likely on the basis of the positive
quadrupole moments. The magnetic moments for Ga"
and Ga" are 1.58 nm and 1.82 nm for the first choice
in the proton configuration, and 2.85 nm and 3.05 nm
for the second one, with the experimental values
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lying in between. Since we are dealing with a p-electron
hfs in relatively light isotopes, the anomaly is expected
to be very small in either case. Indeed we 6nd 6=0
& =0.0005%%uo with the first proton choice, and —0.001
&=0.001%%uo for the second. The Breit-Rosenthal cor-
rection is also relatively important here.

Bromiee. We have two alternatives for the protons:
(2p3/2)'(1f5r2)' and (2p3/, )'(1fb/, )'(igg, i)'. The neutrons
are (ig9/&)' and (ig9/2) for Br" and Br". The first.

proton configuration leads to p"= 2.56 nm and p"=2.53
nm while the second one gives p'"=1.92 nm and p"'
=1.90 nm. As both give moments which are nearly
identical for the two isotopes and the hfs is of a p
electron state, we again expect a very small anomaly.
We calculate 6= —0.001&=0.001%%uq for the first pro-
ton configuration.

Indium. The contributing protons are (1g9/2)'. In
In"' we have (2d5/2)' neutrons, and for In"' in addition
ilhii/q)' neutrons. We find /i'i3=5. 62 nm and /i"'=5. 59
nm, numerically close to the experimental values but
with wrong relative sizes. Similar electronic and other
correction considerations as in Ga apply. We find
~=0~ =0.004%

Thalkum The proto. n contributions are 3si/2(1hii, 2)".
For the neutrons, the program fills the 126 shell in the
order iiii/~, 3p3/&, 3pi/'2. Thus for TPo3 the neutron

contributions are (iii3/~)" (3p3/2) and in Tl' "'(1ii3/2)"

(3p3/2)4. This yields /i"'= 1.36 nm, /i"'=1.21 nm, and
6= —0.041&=0.017% in poor agreement with experi-

ment. Ke note also that experimentally p"' is larger

than p'O'. Somewhat better agreement can be obtained

if we assume the 1iE3~~ states to be filled last, but this

is more unlikely from the point of view of pairing

energy. For this case we have (1ii3/2)" and (lii3, 2)"
neutrons in Tl"' and TP", with resulting magnetic
moments of 1.58 nm and 1.56 nm, and 3= —0.011
&=0.023%%uo. As we pointed out earlier, the Breit-
Rosenthal correction and electronic perturbations are
significant here.

Other Cases

Cadmium The pr.otons contribute (1g9/&)'. For the
neutrons Cd'" has 3si/2(ig7/2)'(2d5/2)', and Cd'"
3si/2(ig7/2)'(2d5/2)'. The calculated magnetic moments

are —0.49 nm and —0,77 nm for Cd"' and Cd'", and
6=0.018&=0.006%%uo. In view of the small observed

anomaly, the electronic and Breit-Rosenthal corrections
are important and we do not draw any definite
conclusions.

3 et~'momy. The pair of isotopes Sb'" and Sb"',
similarly to the rubidium isotopes, change spin with

the addition of two neutrons. Thus for Sb"' we have

2d5/2(ig9/2)" protons and (ihii/2)'(2d5/, )' neutrons,
while in Sb"' we have igi/2 proton and (1hii/, )'(2d5/2)'
neutrons. The resulting magnetic moments are 3.49 nm

and 2.49 nm and the anomaly —0.421&0.033%%uo. If
we fill the neutron levels on the basis of the spins of odd
neutron nuclei in this region rather than on that of
pairing energies, we obtain yI2'= 3.55 nm, @12'=2.46 nm,
and 0 = —0.439% in somewhat worse agreement with
experiment.

Mercur'y. Hg"' has an odd 3pi/& neutron and therefore
again we do not have any corrections with the 8-
function interaction. Thus we adopt the semiempirical
approach for Hg. We assume that the 2d~;2 protons
close the 82 shell and that the (ihii/. )"' and (2d&/ )'
protons contribute the major part of the deviation
from the single-particle value of p. In Hg"' the odd
neutron is in the 3p3/2 orbit. With this choice the
magnetic moments and the hfs anomaly can be fitted
with reasonable admixture coefficients, i.e., in Hg'"
a (h) = —0.135 and n (d) =0.248, and in Hg"' u (h) =0.172
and n(d) =0.144. Here we made use again of Eq. (4),
reference 3. If we try to admix the ii»/2 or 3p neutrons
instead of one of the proton groups, or substitute both
neutron excitations for the two proton excitations, the
required admixture coeKcients become unreasonably
large.

Conclusion

The configuration mixing theory accounts satis-
factorily for a great number of magnetic moments of
odd-2 nuclei. We have extended this theory to permit
the calculation of the effects of the distribution of
nuclear magnetization as manifested by hyperfine
structure anomalies. From a comparison of the theory
with experiments performed up to date, reasonable
agreement is obtained. In view of this success, more
experiments of such a nature would appear fruitful.

We also note that the 8-function interaction does
not allow any admixtures if the odd nucleon is in a
pi/2 state. In this case, as well as for nuclei where there
may be only two important admixtures, the semi-
phenomenological approach has been found useful: it
permits the determination of these two configuration
admixtures by making use of the hfs anomaly data in
conjunction with the values of the magnetic moments,
while only one such admixture could be determined
from a knowledge of the magnetic moment alone.
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the s~~2 electron:

l.(26+2)

r ( . Itgn —1+Q21In 3+Q4—»In 5+—Q54l n 6+Q61ln—7)»

(A.4)
iln72 —7((26A++)ln 1Q—2ln —2 Q4ln —5 Q5ln —6 Q6ln 7].

APPENDIX

Evaluation of Electron Integrals in Eq. (4)

I.etting X~=rj, X&=rG, where X~ and X2 are the
small and large components, respectively, of a Dirac
wave function, and neglecting the binding energy of
the electron compared to its rest mass, i.e., taking
E=mc', the Dirac equation for the electron in the
potential of Eq. (7) becomes

dXI Xy
&—= —"y (K—Q 2X —Q4X —Q 5X —Q6X )»

dX X

The P172 electron recursion formulas are similarly ob-
tained by inserting (A.3) in (A.1). The result is

un'I= & ( +&n 1+—Q271n —5+Q4&~—5+Q57in 6+Q6&n —7)»—
2„(72+2)

rL(26A+R)un —1 Q2un. 6Q4u—n 5—
~5Nn —6

—+6gn—7 ~

Although explicit expressions for the above coefficients
can be obtained easily, in practice it is simpler to use
the recursion formulas numerically. The functions are,
for the s~~2 state

dx2 X2
W—=y(26A+IC Q2X —Q4X——Q5X —Q6X ).

IX X

(A.1)

The upper and lower signs above and in several
expressions below, are to be taken for s172 and pii2
electrons, respectively. Here &=Z42, where n=e2/Ilc is
the fine structure constant, 6A =—mcR5,./yk, m is the
electron mass, c the velocity of light, and A=h/27r,
where h is Planck's constant.

We obtain series solutions of Eq. (A.1) which are
well behaved at x=0 in the form"

f
r2 q ( r4

q
li+'21 I+'5l —I+"

k Ri»»22 ~ R~4)

1 (r2 ) fr'
G= —q6+q2l I+q4I I+

LR112& ( Ri»74]

and for the P,~2 state

1 (r2q (r4
u6+ u2I I+u, l

—I+
R~ ( Rid) ( R~4)

pr-'y pr'q
»+ "2l —I+'5l I+

E R74') E R174)

(A.6)

(A.7)

x,= P l,x"+'
n=l

Xn+1

The integrals in the numerator of Eq. (4) are now
(A 2) evaluated. For the s172 state we 6nd

I»12 1 —

( R2
FGdr =——',liq6I —

I

~o R17
for the s~~2 electron. It is found that 30=0; qo is the
normalization factor. Similarly for the Pi~2 electron p

R' q
+l«co+i v)l I+" (As)Ig 4)

Xi——Q u„x"+',

X2——Q 2»„Xn+"
n=j

The Pii2 integral is identical to (A.S) if we replace q by
(A 3) u, and l by 2». The terms in the remaining integrals of

Eq. (4) are related to those of (A.S) by numerical
factors and will be given below. We can write for the
electron factor of the spin contribution to 6 in (4)

where now F0=0, and No is determined by the normali-
zation. By inserting (A.2) in (A.1) we obtain the
recursion formula, s for the coe%cients in the series for J„J„

"See, for example, H. A. Bethe and E. E. Salpeter, Quantum
Mechanics of One- meed Two-I~lectrnn Atoms (Acatlemic Press, Inc, ,
New York, 1957), Chap. lb.

= (&2)2I I+(&s)4l I+, (A.9)
t, Rp') E R„4)
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~B ~3

FG—d~
~o

FoGodr

~
R' ~ ( R'

&=(4)
(

I+(& ) I, I+ (A1o)
( E"') & E"4)

and that of the orbital contribution,

R( rp~
IPGgy' I Ppopdpe)

I+(~.).i,,(+ (A 11)

Ke find the simple relations

where the coefficients bz are de6ned by comparison of
(A.9) with (A.8). The factor of the asymmetrical spin
contribution, D, in (4) is written similarly

(V= —Ze'/r) are obtained from the Dirac equation:

x1——C,J'„(2(2')&)+C2J 2, (2{2yy)'*),

X = (1/V)(C)L(~1 —p)J', (2(2vy)')
+(2') J"1(2(2Vy)-*)j~C2C(1~p)J 2p(2(2yy) l)

~(»y)'J-(2.+n(2(2n)'*) j) (A 18)

J are Bessel functions, p= (1—&') l, y=r/X, P,.=k/mc
= (1/2x) XCompton wavclength7. The constants C1
Rnd C2 Rlc determined by 111Rtcl1111g (A.13) to tl1c
interior functions (A.6) and (A.7). Using the approxi-
mate expressions of the 8essel functions for small
arguments, J,{x)=@~/2'p! and J,(x) =2'x ~/{—p)!,
we find

C1= W(2p —1)!L
&&5(1~p)~ (*=1)~y' (*=1)j, (A. 14)

wher«=(2'&/X. )i. For well-behaved point wave
functions, we must take C2= 0, and we assume, to
adequate precision, that C& of the point wave function,
equals C1 of (A. 14) Rs 111 Roscnthal Rnd Blc1t. Uslllg
the integration formulas for the Bessel functions, "we
obtain

(h&)2= (2/S) (&S)2,

(&n)4= (4/7) (bs) 4,

(A.12a)
C2

X
K.p(4p' —1)

(~1'2)
(A.15)

+1 (P)ip)

also

bJ-=b8-&D

The b coefficients in Table I were calculated with these
formulas, together with Zqs. (Sa), (6), (7R), and the

(A 12b) appropriate values of c) and sp.

"G. N. Watson, A Treatise on the Theory of Besse1 FunctionsI or yQg~, the necessary Coulomb wave funct»» ICambridge University Press, New York, 1952), 2nd. ed. , p. 403,


