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an analytical expression (Roothaan procedure). None

of the eigenvalues differ by more than 0.01 ry except
for a difference of 0.02 ry for e3, ,3, and 0.06 ry for

e1, , 1,. The sum of one-electron energies of the con-

figuration for the present results is 1993.418 rydbergs

compared to Watson's $.993.144. In view of the devia-

tions of our numerical results for hydrogenlike con-

figurations, no better agreement could be expected.
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Rosenzweig and Porter have shown a "repulsion of energy levels" in spacing distributions determined from
energy levels in complex atomic spectra. The present paper extends their work by showing that these spacing
distributions can be determined from calculated positions of the levels in these spectra. Since calculated data
are available for spectra where the observed data are scarce or incomplete, this partially overcomes limita-
tions imposed by statistical inaccuracy when direct use is made of the observed data. The equivalence of the
two approaches is demonstrated by showing that calculated data for Ta rr yield the same spacing distribution
as obtained from observed data for Ta ri and Re t combined. These are complex spectra in which a fully de-
veloped repulsion effect is present. A similar demonstration of equivalence is carried out for spectra of Ru x

and Mo i, where the repulsion effect is in an intermediate state of development. The results also indicate that
numbers easily evaluated from the radial parameters of the theory will indicate roughly the degree of
repulsion, replacing to some extent the need for an explicit calculation of the spacing distribution.

E(x)=e (2)

Formula (1) predicts zero probability for zero spacing,
whereas formula (2) makes the zero spacing most

'E. P. Wigner, Proceedings of the Conference on Neutron
Physics by Time of Flight, Gatlinbnrg, Tennessee, 1956 $0ak
Ridge National Laboratory Report ORXL-2309 (unpublished),
P»3.

1. INTRODUCTION

S TATISTICAL models are often used to interpret
nuclear data. Usually, mean values of the

observables are calculated, but recent increases in the
quantity and quality of observed data have dictated
a need for calculating distributions about the mean.
Wigner has suggested a formula for the distribution of
nearest-neighbor level spacings (between levels of the
same total angular momentum and parity), S, when
the average spacing of such pairs is D.' Expressed in
terms of the ratio x=S/D, this formula is

P(x) =-',7rx exp( —-', x').

The distinguishing feature of formula (1) is the
"repulsion effect." If levels occurred randomly, with
the probability the same per unit energy interval over
a given range of energy, then the distribution of
nearest-neighbor level spacings would follow instead
the Poisson formula,

probable. If spacings in the 6rst one-third-interval are
counted (i.e., the number of spacings between zero
and a third of D), then formula (1) predicts that about
9% of all the spacings will be in this interval, while
formula (2) predicts 28%. In the first two-thirds-
interval the predictions still differ considerably, being
30% and 50% of all spacings for formulas (1) and (2),
respectively. For large values of x there is also a
difference between the formulas; 5% and 15% of the
spacings are greater than 2D according to formulas (1)
and (2), respectively. In this paper, it is considered
that a spacing distribution shows a "full" repulsion
effect only when there is close agreement with the
predictions of formula (1) for the 6rst one-third-
interval, the erst two-thirds-interval, and the number
of spacings greater than 2D. For convenience, all the
spacing distributions are normalized to a total of 74
spacings. The corresponding spacing distributions from
formulas (1) and (2) are given in Table I.

The deficiency of small spacings can be understood
intuitively as a "repulsion effect" by considering the
well-known interpretation of a second-order perturba-
tion as a mutual repulsion between two levels. The
de6ciency of large spacings can be interpreted as a
secondary result of this, if it is assumed that the
expansion of short intervals is preferentially (when
possible) at the expense of an adjacent large interval,



Thalz I. ¹arest-neighbor spacing distributions. The interval is measured in units of the mean spacing D, and the
normalization is for a total of 74 spacings.

Interval 0—1/3 1/3 —2/3 2/3 —1 1—4/3 4/3 —S/3 S/3 —2 2 —3 3—4 &4

Formula (1)
Formula (2)

6.2 15.6
21.0 15.0

18.4
10.8

15.4
7.7

10.0
5.5

5.2
4.0

3.1
6.3

0.1
2.3

0
1.4

resulting in an apparent contraction of the lat ter.
Though mutually connected in this simplified picture,
the deficiencies of large and small spacings are not
related unless the perturbations are large enough to
produce a full repulsion eRect. It is known that for
weak perturbations a considerable deficiency of small
spacings can be demonstrated in the absence of any
appreciable reduction in the number of large spacings.
Reference to the "repulsion effect" has usually been
used only in connection with the deficiency of small
spacings. Our calculations show that a decrease in
large spacings is easily demonstrated; since this is the
distinctive feature of a "full" repulsion effect, we have
also emphasized this deficiency.

Empirical confirmation of formula (1) has been
obtained by analysis of the spacings between slow-
neutron scattering resonances. ' Very close neutron
resonances could not be resolved, and significant
corrections had to be made to allow for this. A deficiency
of small spacings was demonstrated in agreement with
the prediction of formula (1), but statistical uncertainty
prevented the demonstration of a deficiency in the
number of large spacings.

Rosenzweig and Porter have considered levels of
atomic spectra'4 in odd configurations of the third
long period; they were able to demonstrate deficiencies
of both large and small spacings that were very close
to the predictions of formula (1). An exceptionally
large amount of atomic data was available for their
analysis' (admitting a total of 1156 spacings). They
found small departures from formula (1) that could
not be attributed to statistical inaccuracy. They could
be attributed to the fact that the experimental data
were incomplete. No simple procedure was available
to correct for this. However, it can be assumed that
the levels are missed at random. The corrections' are
then smaller than for the nuclear spectra where the
omissions were systematically correlated to the smaller
spacings.

In odd configurations of the second long period the
deficiencies of both large and small spacings were not
as great as predicted by formula (1).' For odd con-

~ J. A. Harvey and D. J. Hughes, Phys. Rev. 109, 471. (1958).' N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 (1960).
This is referred to as I.

4C. E. Porter and N. Rosenzweig, Suomalaisen Tiedeakat.
Toimituksia (1960). This is referred to as II.

5 C. E. Moore, Atomic Eeergy Levels, National Bureau of
Standards Circular No. 467 (U. S. Government Printing Once,
Washington, D. C., 1958), Vol. III.' P. A. Moldauer (to be published).

figurations of the first long period, the distribution of
formula (2) applied, except for a small deficiency of
spacings in the first one-fifth interval. These are spectra
where the perturbations are too weak to produce a
full repulsion effect. This conclusion applies as an
average result for the whole long period.

In I, spacing distributions were also determined for
the levels of the even configurations of the three long
periods. These spectra are considered in detail in the
present paper and the results will be considered later.

The work of the present paper utilizes both calcula-
tions and experimental observations for atomic spectra.
This eliminates uncertainty associated with lack of
completeness in the experimental data. At the same
time, the statistical Quctuations are reduced, since the
calculations effectively increase the amount of data
that is analyzed.

A direct approach to the derivation of formula (1) is
illustrated for low-order matrices in II.' It has also been
shown empirically that it closely reproduces spacing dis-
tributions of eigenvalues of matrices whose elements are
generated from random members. ""It is expected
that the eigenvalues of matrices derived from suffi-

ciently complex physical systems will show the same
spacing distribution as the eigenvalues of random ma-
trices. If that assumption is made in connection with
the work of the present paper, then instead of a "veri-
fication" of formula (1), the emphasis is on determining
whether or not the system is complex enough for the
formula to apply.

Descriptions of matrices are presented in the present
paper to establish a correspondence with the random
matrices, and give some measure of the "complexity"
of the spectrum. "From a simple viewpoint, complexity
is increased (a) the larger the orders of the matrices,
(b) the larger the off-diagonal elements of the matrices
(or, equivalently, the larger the radial parameters that
define these elements), and (c) the larger the number
of different interactions. A full discussion is outside
the scope of the semiquantitative treatment of the
present paper. It is expected that a later paper will
extend the present work to consider the correspondence
to random matrices that is illustrated in II.

7However, see also L. Dresner, Phys. Rev. 113, 633 (1959),
and M. L. Mehta, Nuclear Phys. 18, 395 (1960),

s S. Blumberg and C. E. Porter, Phys. Rev. 110, 786 (1938).
9¹Rosenzweig, Phys. Rev. Letters 1, 101 (1958).

In describing the matrices, the notation of atomic theory is
used for convenience, but an exposition of the terminology of
atomic theory is not attempted.
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A, B,C, $, a

(d~or d s ) G2

H2
A, B',C', f', Gs, a

(d~s or d7s)
K2

H2

A", 8", C", f", a

d2s2 or ds~

Fio. 1. Matrices oi (d+s)' and (d+s)' configurations. The
partitioning emphasizes configuration interaction and shows the
distribution of parameters. The orders of the matrices and
diagonal submatrices as a function of the J value are as follows:

J value 0 1 2

g4

(Ps
$2S2

Over-all

5 4
2 7 10
2 1 3
9 12 21

6
8
1

15

2 2
6 4
2 0 0

15 6 3

"R. E. Trees, %. F. Cahill, and P. Rabinowitz, J. Research
Natl. Bur. Standards SS, 335 (1955)."R.E. Trees, J. Opt. Soc, Am, 49, 838 (1959),

2. OUTLINE OF METHOD

The calculations of the present paper utilize a set
of seven matrices that are applicable to atomic spectra
with three conlgurations commonly specified as (d+s)'
or (d+s)s, corresponding to the use of a positive or
negative value, respectively, for the spin-orbit parame-
ter (see Fig. 1).Values of the individual matrix elements
have been published in papers referenced elsewhere. ""
The nonvanishing elements are linear combinations of
fifteen adjustable parameters. The distribution of
these parameters in the matrices is shown in Fig. 1.
The parameters B2 and G2 determine the con6guration
interaction. The parameters f, |', and f" define the
spin-orbit interaction. These two interactions are the
most important ones that give nondiagonal matrix
elements. The other parameters originate in the electro-
static interaction, and contribute mainly to the
diagonal elements of the matrices. (There are a few
instances where 8 and 8' contribute to nondiagonal
elements, but these exceptions have been ignored for
simplicity. ) By simple permutations of the rows and
columns, the matrices may be presented in a form
which is diagonal in the SL-value, as shown in Fig. 2.
This presentation is more appropriate for consideration
of "constants of the motion, " and is the same as
Fig. 11 of I.

When the spin-orbit parameters are set equal to
zero (but other parameters retain appropriate values),
the eigenvalues and eigenvectors obtained from the
matrices are referred to as "third-order" eigenvalues

S)L)

FIG. 2. Matrices of (d+s)' and (d+s)' configurations. The
partitioning emphasizes spin-orbit interaction. The matrices are
the same as shown in Fig. 1, except for simple permutations of
the rows and columns. The order of the diagonal submatrices as
a function of the J value are as follows (numbers in parentheses
indicate a multiplicity of that particular order of submatrix):

J value 0 1 2 3 4 5 6

SiI-i 5 5 5(3) 5 5 2(2) 2
SsI-i 3 3 3 3 4 1(2) 1
SiI.i 1 1 (4) 1 (3) 2 (2) 2 (2)
S4L4 1(3) 1(2)

Over-all 9 12 21 15 15 6 3

and eigenvectors. "When spin-orbit interaction is weak
in a given spectrum, the eigenvectors can be well
characterized by specification of a single dominant
third-order eigenfunction. The SL value can then be
regarded as a constant of the motion. The re6nement
introduced in I to take account of these constants has
been omitted in the present paper, again for simplicity.
Third-order eigenvectors have been published for
Ru z, '4 and it has been shown that a single dominant
component accounts for more than 50% of the eigen-
vector in all but three of 59 observed levels. In Ta zz,

the spin-orbit parameter is twice as large, but un-
published calculations show that the eigenvectors can
still be well described by a single third-order eigen-
function. When spin-orbit interaction is very strong,
the eigenvalues approach the values of jj coupling";
the latter eigenvalues are listed in Table II. It is
simple to show that the spacing distribution has an
excess of small spacings beyond the predictions of the
Poisson formula (2). In this case, the constants of the
moticz are the j values of the individual electrons.

The set of parameters designated as A in Table III
applies to the spectrum of Ta n. The calculations
leading to these parameters have been described, "but
the eigenvalues of the matrices were not given.
Calculated eigenvalues and g values are therefore
given in Table IV. For Ta rr, another procedure was
used to obtain parameters designated as 8 (Table III)."

"C.W. Ufford, Phys. Rev. 44, 732 (1933).
'4R. E. Trees, J. Research Natl. Bur. Standards. 63A, 255

(1959'."E.U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, London, 1951), Chap. X.' In determining parameters 8, the parameter n was fixed to
have the value 60 cm ', while other parameters were de];ernIing. .(l
by lea, st squares,
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TAELE II. Eigenvalues of matrices of (d+s) in jj cou-
pling. Numbers in parentheses specify multiplicities of the
eigen values.

J=0 1 2 3 4 5 6

—6p
3g/I

—2f'
-f (2)
1/2f'
3/4
2p/I

-9/2f'
—7/2f.
-2f'(2)

-1/2f."
1/2f'(3)
3/2f(2)
3g/

-9/2f'
-7/2f

3g/I

-2f'(3)
-f (4)
-1/2f"
1/2f'(4)
3/2f (2)
2g//

3r'(2)

-7/2f-
-2f'(3)
-f (2)
—1/2f'"
1/2f'(4)
3/2f (3)
3g/I

-7/2f-
-2f'(2)
-r(3)
-1/21."
1/2f'(3)
3/2r(2)
2|-//

3g/

4p

1/2f'
1/21'(2) 3/2f
3/2P
3g/

TABLE III. Values of parameters (cm '). Unprimed parameters
refer to d (d s2), single primed to d's(drs), and double primed to
d's'(d') with g positive (negative). A, 8—Ta rr. C —Ru x.

The parameter sets A and 8 di8er enough so that
comparison of the results will give some indication of
statistical uncertainty. Excepting this instance, no
eGort has been made to determine the statistical
fluctuations that would be produced if the parameters
were systematically varied by small amounts. In other
cases, unrealistically large variations of the parameters
have been used instead. This is to illustrate large
changes that are expected to result. Since these large
changes can be consistently demonstrated, the statisti-
cal uncertainty does not seem to be an important factor.

The parameters C of Table III are applicable to Ru I;
the eigenvalues obtained with these parameters have
been published "

The calculations of spacing distributions were carried
out on the 704 computer with a code similar to one
described previously for the SEAC."On a typical run
that required 17 min of machine time, the seven
matrices were generated, each with eight sets of

parameters, for a total of 56 matrices. For each matrix,
the diagonal elements were selected, sequenced in
order of increasing magnitude, and printed on tape.
The differences between nearest-neighbor diagonal
elements were then obtained, sequenced, and printed
on the tape. Eigenvalues were next computed. The
procedure described for the diagonal elements was
repeated for the eigenvalues. From these results, the
spacing distributions were then determined by use of
a desk calculator. The difference between the largest
and smallest value was divided by the order of the
matrix less one to obtain the mean spacing. The
number of nearest-neighbor differences was then
counted in intervals of length 3D in the range of
spacings from 0 to 2D, and in intervals of length D
beyond that. The counts for corresponding intervals
were then added for the seven matrices associated with
any one set of parameters.

3. RESULTS

The variances of the diagonal and off-diagonal
elements of the matrices wiH be estimated 6rst. From
the ratio of these variances, p,', the quantity Ep' is
estimated, where 1V is the order of the matrix (the
notation used here is the same as in I). The quantityi'' measures the degree of repulsion in matrices
whose elements are generated from Gaussian distribu-
tions. In the latter matrices, as shown in I, the repulsion
effect was fully developed for values of Ep,'&0.2, while
negligible repulsion eGects were present for values of
iVp, '(0.002.

The diagonal elements of the matrices are considered
to have the spacing distribution described by formula
(2). This corresponds, approximately, to assuming that
the probability distribution of the elements is uniform
over the interval ED, where X is the order of the
matrix and D is the mean value of the nearest-neighbor
spacings of diagonal elements of the matrix. The
variance (about the mean) is then,

Individual
parameter

symbols

Parameter set
8

(ND(2

XD

g2D2
s dS=:—0

A
A'
A"

C
c/
C/I

G2
HI.

26 944
20 439
13 911

483
483
483

1841
1841
1841

1776
1776
1776

2872
538

0

26 512
21 055
14 655

492,6
516.4
540.2

1507.6
1548.0
1588.4

1719.7
1738.0
1756.3

3001.1
544.4
60

20 874
14 518
14 752

596.7
542.6
485, 7

2740.4
2578.6
2412.6

—970.6—915.9—837.8

1736.0
329.9
29.41

Values of D are given in Table V. This quantity should
be distinguished from the mean spacing between
eigenvalues, D, which is used in the determination of
the spacing distribution of eigenvalues.

For nondiagonal elements, the variance is dehned
as a sum of three contributions, one derived from the
spin-orbit interaction and the other two from the
configuration interaction.

~2~2 —(ff-2+KG 2+k+ 2)/Q2

The coefficients f, g, and h are listed in Table VI.
Coefficient f was obtained by summing the squares of
the coefficients for the eigenvalues in jj coupling
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TABLE IV. Calculated and observed energies (in cm ') and g values for parameters A (Ta rr).

Ta n (obs)
Energy g value

4125
12 601

23 381

0 0.004
5331 1.550

10 713 2.353
13 475 1.498
14 628 0.861
17 375 1.168
23 406 1.2
26 234 1.332
29 963 1.004

1031 1.021
3180 0.740
5658 1.348
9690 1.047

11 875 1.426
13 560 1.119
14 495 1.476
17 168 1.2Gi
18 501 1.441
22 929 0.697
23 295 1.106
28 044 1.358
29 844 0.833
30 406 1.051

Calc
energy

4131
12 579
16 306
23 074
26 928
31 819
38 429
47 254
68 561

70
5327

10 633
13 579
14 504
17 441
23 155
26 043
30 495
32 820
37 229
46 069

1134
3626
5649
9564

11 832
13 430
14 730
17 039
18 440
22 976
23 049
27 394
30 134
31 004
33 678
35 894
37 092
42 828
43 116
47 407
57 395

Cale-Obs

—307

70

—80
104—124
66—251—191

532

103
446—9—126
43—130

235—129—61
47—246—650

290
598

0.039
1.562
2.358
1.521
0.853
1.160
1.228
1.279
0.995
0.998
0.515
1.492

1.009
0.766
1.320
1.067
1.396
1.130
1.467
1.235
1.430
1.071
0.757
1.356
0.752
1.161
1.026
1.395
1.140
0.933
1.248
1.007
1.002

0.035
0.012
0.005
0.023—0.008—0.008
0.0—0.053—0.009

J=2
—0.012

0.026—0.028
0.020—0.030
0.011—0.009
0.034—0.011
0.374—0.343—0.002—0.081
0.110

Ta rr (Calc A)
Calc

g value Calc-Obs

J=O

Ta n (obs)
Energy g value

2642 1.243
6831 1.089

11 767 0.908
12 436 1.585
14 581 0.988
15 726 1.455
18 554 1.347
23 620 1.065
24 870 0.988
26 829 0.854
30 624 1.257

4416 1,346
9746 1.219

12 705 1.019
14 205 0.994
15 851 0.919
17 231 1.191
18 494 1.227
23 083 1.033
24 433 0.985
25 385 1.085
28 165 1.094
31 532 1.129

6187 1.410
12 831 1.280
18 186 1.100
24 226 1.003
25 414 1.060
31 267

17 982 1.146
26 011 1.112

2775 133
6875 44

11 571 —196
12 265 —171
14 413 —168
16 049 323
18 580 26
23 638 18
24 813 —57
27 246 417
31 252 628
32 316
36 246
41 859
45 089

1.246
1.082
0.912
1.609
1.000
1.460
1.336
1.086
0.994
0.841
1.234
1.130
1.301
1.059
1.039

J=3
0.003—0.007
0.004
0.024
0.012
0.005—0.011
0.021
0.006—0.013—0.023

J=4
4553
9444

12 222
12 760
15 601
17 171
18 510
23 023
24 532
25 001
28 814
31 570
36 200
42 688
47 397

137—302—483—1445—250—60
16—60
99—384

649
38

1.337
1.223
1.019
1.041
1.081
1.135
1.334
1.074
0.934
1.119
1.053
1.121
1.085
1.220
1.023

—0.009
0.004
0.000
0.047
0.062—0.056
0.107
0.041—0.051
0.034—0.041—0.008

6305 118
13 948 1117
17 897 —289
23 521 —705
25 916 502
31 329 62

17 569 —413
26 551 540
31 818

1.377
1.147
1.099
1.010
1.057
1.177

1.167
1.134

—0.033—G.133—0.001
0.007—0.003

J=6
0.021

Ta a (Calc A)
Calc Calc

energy Calc-Obs g value Calc-Obs

(Table II). Coefficients g and h v&ere obtained. by
direct evaluation from the matrices.

For the parameter sets of Table III, G2 is roughly
six times H2. In Table VI are given the ratios
$(h+36g)/f j'; this is the approximate ratio of the
value of i to Hs that is required to yield equal con-
tributions to Xp,' for the configuration and spin-orbit

TABLE V. Mean spacing, D, for diagonal elements of the
matrices (cm ').

interactions. The required ratio is about 5, while the
ratio actually present for parameters of Table III is
about 3. The spin-orbit interaction therefore contributes
to the repulsion 9/25( 1/3) the amount contributed
by con6guration interaction.

YABI.E VI. Coefhcients in the variances of nondiagonal
matrix elements.

value
Co 0 1

Set of+1 value
parameters+

A
B
C

0 1

5668 3193
5071 2900
7202 2977

2 3 4 5 6 f 73.5 56 101.25 43.25 57.75 16.75 3.5

2442 2523 2543 4467 6268 ~ 22 6 18 6 12 0 0
2348 4246 5711 jg 1160 1320 3090 1.110 990 130 40

2588 2655 2946 4906 6825 t'(h+36g)/fg& 5.15 5.22 6.06 5.55 4.95 2.88 3.38
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TABLE VII. Values of Xp,' as a function of J value
and parameter set.

Set of+J value
parameters+ 0 1 2 3 4 5 6

0.384 0.414 0.296 0.283 0.312 0.252 0.256
0.489 0.507 0.348 0.333 0.371 0.275 0.306
0.081 0.163 0.092 0.088 0.079 0.065 0.069

The quantities EpP which define the degree of
repulsion are then evaluated from the formula

TABLE VIII. Spacing distributions for diagonal
elements of the matrices.

Int

Set of
ram eters

0—1/3
1/3 —2/3
2/3 —1

1—4/3
4/3 —5/3
5/3 —2

2 —3
3—4

A 8 C

16 20 19
16 13 12
14 11 15
8 12 13
6 6 2
5 2 3
6 6 8
2 3
1 1 1

by combining the data of Tables III, V, and VI; the
results are given in Table VII. The quantities XpP are
closely similar for different J values of any one set,
which justifies combining the data from diferent
matrices.

The spacing distributions of the diagonal elements
of the matrices are given in Table VIII. These distribu-
tions have about the same number of spacings in the
first two-thirds interval as called for by formula (2)—
31 to 33 observed, as compared to 36 called for by the
formula. There are 9 to 10 spacings greater than 2D,
in agreement with the 10 called for by the formula.

Table IX gives the spacing distributions for the
eigenvalues of the matrices. From parameters of sets
A and 8, modified sets have been derived by setting
configuration interaction integrals H2 and G~ equal to
zero, and these sets are specified with a prime in
Table IX. For sets A, 8, and C, other sets are also
derived by multiplying the three spin-orbit parameters
by simple factors of 0, 2r, 2, and/or 2; where such a
factor is used, it is indicated in parentheses following
the letter of the original set.

The levels of the low even configurations of Ta II
show a fully developed repulsion, as indicated by the
results for the two sets of parameters A and B.
However, the repulsion may have just reached the
stage of full development. The spacings in the first
third-interval slightly exceed the number predicted by

formula (1). This excess seems to be greater than
expected from statistical variation. When the spin-orbit
parameter is increased t parameters A(-,') and A(2)j
there is a decrease in the number of small spacings,
while when it is decreased Lparameters A(-,')j, there
is an increase of small spacings in the first two-thirds
interval and also of spacings greater than 2D. If the
spin-orbit interaction is set equal to zero, then no
repulsion is present, as shown for the parameter sets
A (0) and B(0). Though Xp' is reduced by only 25%,
the repulsion disappears because the matrices are then
resolved into separate matrices (Fig. 2), and the
spacing distribution really corresponds to a super-
position of several sets of independent eigenvalues.
The over-all spacing distribution for such a super-
position has been calculated, ' '~ and it has been shown
that formula (2) is approached as the number of
superposed sequences is increased. ' When configuration
interaction is set equal to zero, repulsion is again
absent, as shown for parameter sets A' and 8'. In this
case, the eigenvalues for two larger submatrices,
originating in the 5d' and 5d'6s configurations, have
primary importance in determining the spacing distri-
bution. If Xp,' is large enough, a repulsion effect about
half as great as called for by formula (1) is expected. '
This is demonstrated by the spacing distribution for
parameter set A'(2), obtained from set A by doubling
the spin-orbit parameters but still keeping configuration
interaction integrals equal to zero.

The results for Ta II indicate that a full repulsion
effect should be demonstrable in the low even con-
figurations of the third long period. Though the Ta II
results indicate only a bare attainment of full repulsion,
the five-, six-, and seven-electron spectra of this period
have a more complicated system of levels, and the
interaction parameters are larger, in general, than
those in Ta II."" These factors insure that the
observed data will show a full repulsion if eigenvalues
of the matrices for Ta II represent the true repulsion
in Ta II.

Using the calculations simply as a guide to the
completeness of the data, we determined the spacing
distribution from Ki.ess's latest data for Ta II, as
reproduced in Table IV; levels for J values of 0, 5,
and 6 were excluded because their sequences were too
short. In addition, the observed data for Re I which
are reproduced in Table I of reference 18 were used;
here, levels with J values of 1/2, 11/2, and 13/2 were
omitted, along with the lowest and two highest levels
for the J value of 5/2. This set of 74 spacings, by
chance the same number as obtained from the matrices,
has the distribution given in Table X, in close agree-
ment with the distribution obtained from the matrices
by use of the sets of parameters A and B.

The results of I for levels of the even configurations

"I.I. Gurevich and M. I. Pevsner, Nuclear Phys. 2, 575 (1957),
"R, E. Trees„phys. Rev. 112, 165 {1958).
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TABLE IX. Spacing distributions for eigenvalues. A number in parentheses indicates a factor used to multiply g;
a prime indicates that the configuration interactions are set equal to zero.

Inte

meter
et

A A ' A (0) A (-', ) A (-,') A (2) A '(2) B B' B(0) C C(0) C(2)

0—1/3
1/3 —2/3
2/3 —1

1—4/3
4/3 —5/3
5/3 —2

2 —3
3—4

7 16
15 12
20 12
13 13
12 10
2 3
4 6
1
0 1

17
15
15

7
6
4.

7
2

8
22
11
14

7
5
6
1
0

8
13
17
19
10
5
1
1
0

5
13
28
10
11
3

0
0

10
22
12
10
7
5
7
1
0

11
12
19
11
10
9
1

0

16
16
10
13
5
7
5
1

15
19

9
9

6
3
0

12
22
17

8

2

19
13
16
9
2
8

2
1

12
16
24
6
5
5

0
2

of the third long period indicates that about fifteen
spacings should fall in the 6rst one-third interval, and
that the number of large spacings should agree with
formula (2). This may be partly because incomplete
experimental data were utilized in the analysis of I.
However, the strong influence of the Hf z data on the
combined data for all levels of even configurations in
the third long period should be noted (see Table IV of I).
The spacing distribution for the even configurations of
Hf r alone is given in I, and there is a similar absence
of full repulsion. However, Hf x is not typical of the
spectra of the third long period, because even con-
figurations are present that are entirely unknown in
spectra of the rest of the period. The.matrices applicable
to these con6gurations have not been published, so it
would be impractical to include calculations for Hf x in
the present paper.

In the second long period, the interaction parameters
are much smaller, as seen from the parameter set C
which is applicable to the (4d+5s)' configurations of
Rut (Table III). For these parameters, i'' is about
0.09 (Table VII), half the minimum value of 0.2 that
is required for the development of full repulsion in
random matrices, but well in excess of 0.002, where
repulsion disappears. The results in Table IX indicate
that for set C there is a decreased number of spacings in
the first third interval, though this decrease is not as
large as called for by formula (1). The numbers of
spacings in the 6rst two-thirds interval and in intervals
greater than 2D are not decreased, but agree with the
predictions of formula (2). Set C(2), obtained by
doubling the spin-orbit parameters, shows a decrease
of spacings in the first two-thirds interval also, but
the number of spacings greater than 2D is still un-
changed. As expected from the discussion above, the
set C(0) with vanishing spin-orbit interaction, has a
distribution showing no repulsion effect. Though
statistical fiuctuations would be too great to allow us
to reduce the size of the 6rst interval for this small
sample of data, it is possible that in a smaller interval
the predictions of formula (1) would be approached
more closely. In general, it is expected that repulsion
effects can be demonstrated in the smaller spacings

TABLE X. Spacing distributions of observed energy levels, for
low even configurations. Observed data for the second long period
are taken from Mo I and Ru i, for the third long period from
Ta rx and Re x.

Inter
I'lod

Second Third

0—1/3
1/3 —2/3
2/3 —1

1—4/3
4/3 —5/3
5/3 —2

2—3
3—4

12.1
19.3
13.7
8.8
7,3
4.0
6.4
2.4

0

7
15
22

8
11
9
2
0
0

~ This was pointed out by Racah during a colloquium at the
Bureau of Standards.

'0R. E. Trees and M. M. Harvey, J. Research Natl. Bur,
Standards 49, 397 (1952).

when the interactions are weak, if the size of the first
interval is decreased accordingly. "

The same degree of repulsion shown by the eigen-
values of the matrices for Ru x can be demonstrated in
the observed data for even configurations of the second
long period. It is important to stay as close as the
available data will allow to the right-hand side of the
periodic chart, however, because the spin-orbit parame-
ter' is very much smaller on the left-hand side of the
chart. In this case, the observed data for Ru r that is
reproduced in reference 12 was utilized; levels with J
values of 0, 5, and 6 were omitted, along with the
three highest levels for J value of 3 and the highest
level for the J values 2 and 4. In addition, the observed
data for Mox which are reproduced in reference 20
were used; here, levels with J values of 0 and 6 were
omitted, along with the lowest and highest level with
J value of 3 and the three highest levels with J value
of 4. This yielded a set of 92 spacings with a distribution
substantially the same as determined from the matrices
for Ru I, as shown by the results given in Table X.
The over-all total has been renormalized to 74 spacings
to simplify the comparison. In I, the spacing distribu-
tion obtained for even configurations of the second
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long period shows no evidence of repulsion, even though
the erst interval is only a Mth of the mean spacing.
This is probably because data from both sides of the
periodic table were utilized for the work in I.

4. DISCUSSION

The use of eigenvalues to determine spacing distribu-
tions makes more data available for the determination.
The results of the last section indicate that the calcula-
tions will faithfully represent the observations. It is
not a priori evident that this would be the case, even
though the mean error of the calculation is small. A
reasonable estimate' shows "it is quite possible that a
root-mean-square shift per level of less than 15% of
the mean spacing will suf6ce to convert the exponential
to the Wigner distribution (or vice versa)". It is, of
course, considered that the shifts for each level are
carefully chosen. A mean error of this magnitude in a
calculation would probably not, however, lead to a
spacing distribution that differs appreciably from that
of the observed data, because the errors of theory
correspond better to random shifts of the levels. The
mean error for the Ru x calculation is ~63 cm ', less
than 5% of the mean spacing. " The mean error for
parameter set A is ~409 cm ', but if two levels with
exceptionally large errors are ignored (i.e., 14 205 and
12831), the mean error is reduced to +200 cm ',
which is about 10% of the mean spacing between
eigenvalues.

The simple indications of complexity given in the
introduction can be misleading. For instance, the
observed data for Hf x include almost all the levels in
the even configurations of (d+P+s)'. In the even
con6gurations of other spectra of the third long period
(including the isoelectronic spectrum of Ta rr), levels
containing a p electron are unknown. It is expected
that the inclusion of a P electron in the configurations
will increase the repulsion as con6rmed by the results
of I for the odd configurations. This is so because the
strong spin-orbit interaction of the P electron is added
to the perturbations already present. Along with this,

the system of allowed. levels is more complex, so that
any given level is perturbed by a larger number of
other levels. However, as shown in Fig. 5 of I, a full
repulsion is not present for the even configurations in
Hf r. Consideration of constants of the motion, such
as configuration assignments and the SL values,
would be necessary before the contradictions that
arise from the simple viewpoint could be explained.
Approximate procedures for doing this have been
utilized in I, namely, the consideration of SL7 sequences
instead of simply J sequences. These procedures would
not be applicable in the work of the present paper
because too few spacings are available.

For the same reason, too much reliance should not
be placed on the values of Np. ' as measures of the
degree of repulsion, even though the results agree with
what is expected from the random matrices. The
uncertainty associated with the significance of Np, ' is
related to the fact that the magnitudes of the non-
diagonal elements depend strongly on the particular
representation used for the matrices. This in turn can
be attributed to the presence of constants of the motion.
The largest contribution to Np, ' arises in the con-
6guration interaction. But it is possible to change the
form of the matrices by using the third-order eigen-
functions as a new system of base vectors, and then
these contributions to Xp,' are removed from the non-
diagonal elements. As a result, Np, ' is reduced by about
75%, though the eigenvalues of the matrices are, of
course, unchanged. The diagonal elements still show
the spacing distribution described by formula (2)
(see parameter sets A' and 8'), so that there is no

simple way of distinguishing the two equivalent forms
of the matrices.
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