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Effect of Periodic Adiabatic Time Variations on Interacting Systems
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It is shown that a many-particle system subject to periodic adiabatic variation of certain of its parameters
is to a certain extent equivalent to a non-time-varying system with a radically modified interaction between
the particles. The particular case of an electron gas in a metal is discussed in some detail.

''T is well known in classical mechanics that small
~- periodic forces applied to a system often transfer
it from one kind of motion to a completely different
kind. Over time intervals long compared with the
period of the forces the system follows an almost
smooth orbit which differs qualitatively from the orbit
in the absence of the periodic forces. Two well-know~
examples are the electromagnetic suspension of bodies
against the action of gravity, and the alternating-
gradient forcussing of charged beams.

In this paper we show that similar effects should be
obtainable in a quantum-mechanical system, provided
it is possible to vary some parameter of the system in
an adiabatic manner. In particular, under certain
circumstances it should prove possible to cause a
vanishing, or a reversal in sign of the interaction
between the constituents of a many-particle system, at
least if the interaction is weak. As a special case we
shall discuss artificial enhancement of the transition
temperature of superconductors by reversal of the sign
of the electron-electron interaction in a region of
momentum space where it is normally repulsive. It
must be pointed out at the outset that the convergence
of certain procedures used in this paper is assumed
without being proved, and that in fact it might be
possible to disprove convergence, thereby casting doubt
on the validity of the conclusions. It should be noted,
however, that one case of "decoupling of the inter-
action" by modulation techniques has already been
verified in the laboratory: In ferromagnetic resonance
certain phenomena caused by interaction terms in the
spin-wave Hamiltonian have been quenched in this
manner. ' Though the theory of this particular process
was given in terms of equations of motion, ' it could
equally well have been presented in a Hamiltonian
formulation such as is used in this paper.

GENERAL THEORY

Consider a system whose Hamiltonian can be written

H=Ho+Hi(t)+V,

where HI and IIp commute with each other but not
with V. The time variation of HI is assumed to be
explicitly contained in a nlmericat parameter: Ho and

V are time-independent. Though V may be quite
general, for the purpose of this paper it will denote the
interaction between the constituents of the system.
We first transform the Hamiltonian (1) into a partial
interaction representation by means of the transfor-
mation exp(iS)H exp( —iS), where

fS= H, (t)dt.

In this representation, Schrodinger's equation reads

ivy/at= LHo+ V(t)fy,

where V(t) = exp(iS) V exp( —iS), and where 5 has been
equated to unity. In Eq. (2), Ho has remained untrans-
formed, inasmuch as III commutes with Hp and the
time integration only involves the varying parameter,
not the operator constituents of HI. %e now assume
further that the time variation is sinusoidal. Then it is
obvious that V(t) may be expanded in a Fourier series
with operator coefficients V„:

V(t)= P V„exp(irsft),

where f is the frequency of the sinusoidal variation.
The main point of this paper is that by suitable choice
of the depth and the frequency of the modulation any
particular coefficient, and more especially Vp may be
given a wide range of either positive or negative values,
or may be made to vanish if desired. The conditions
under which such manipulations may be of interest
will now be examined.

We define a quasi-stationary solution of Eq. (2) as
one which in the limit f=0 reverts to the usual expo-
nential time dependence characteristic of the wave
function of a time-independent Hamiltonian. Such a
solution must have the form

&=exp( —iEt) g p„exp(issft).
n=—oo

From (2) and from the Fourier series for V it follows
that the functions P satisfy the recurrence relations,

' T. S. Hartwick, E. R. Peressini, and M. T. Weiss, Phys. Rev.
Letters 6, 176 (1961).

~ H. Suhl, Phys. Rev. Letters 6, 174 (1961).
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We now present plausible arguments that in the limit
of small V, a particular @„, say @p, is the dominant
part of the wave function, and that to order V, the
equation for Qp is

(Ho+ Vo)ko= E4o.

orientation s, the Hamiltonian is

H=E pkcks eke++ ttk(t)cka cks

'VqCk+qs Cki qs& Cks&k's' ~

qkk'ss'

From (3), we have

Ego= (Ho+Up)go+ Q V- 4 .
mgo

Here ttk(t) is the time-varying part of pk. For the sake
of definiteness we assume that the parameter that is

(5) being varied is the effective electron mass. In that case

ttk (t) = —pkbm* cosft/m*,
Assumilg that ttp is large compared with the other
harmonics, we may solve for these approximately:

(E mf Ho—Uo)—lt =—V 4o,

which, together with (5), gives

(E Hp V—p)gp—

= g V (E—mf —Ho —Vo) 'V„yo. (5a)
mgo

If the sum on the right-hand side converges, it will be
of second order in the interaction. More accurate
solutions for @ will lead to still higher correction terms
to Eq. (4), which we henceforth regard as a satisfactory
zero-order approximation to our problem. The reason
for giving Vo preferential treatment vis-a-vis the other
coeKcients and not relegating it to perturbation theory
is that in some cases one will wish to arrange the
modulation in such a way that Vo is an attractive
interaction where the original V was repulsive. Pert;ur-
bation theory starting with IIO as the unperturbed
Hamiltonian is then not usually justified, since the
ground-state energy will then not in general be an
analytic function of Vo for small Vo. In fact, it is only
under these circumstances that the present theory
corresponds to more than a mere rearrangement of
ordinary time-dependent theory.

It is to be noted that no special signiicance attaches
to the choice of Qp as the "large" harmonic. Had we
picked some other P„, this would still have led to an
equation of the form (Sa), with a slight relabeling of
the various quantities.

EXAMPLE. ARTIFICIAL ENHANCEMENT
OF SUPERCONDUCTIVITY

We consider an electron gas in a metal, in the limit
of high density. In the absence of interaction, the
electrons are described by Bloch functions, which we
approximate by plane waves exp(ikr). The correspond-
ing single-particle energies are denoted by ek. It is
assumed that these may be varied adiabatically. For
the present we assume that the interaction among the
electrons is purely repulsive; the Fourier transform of
the interaction being denoted by vq. In second quantized
notation, with ck, , ck, denoting creation and annihi-
lation operators in a state with momentum k and spin

where 6m* is the maximum excursion of the effective
mass from its average value m*. In the interaction
representation the Hamiltonian becomes

g PkCks Cks
ks

—Q v,ck+„*ck „*ck,ck, expL —iF(k,k', q, t)),

F(k,k', q, t) = (pk+o+ pk, pk p—k)8m*—Sinft/fm*.

The time-independent part of the potential has thus
changed from eq to

t,JP[(ok+,+ok, —Pk —Pk )6m*/fm*),

and its sign will depend on the value of the argument
of the Bessel function. Bearing in mind that under
suitable circumstances vqJO may be negative, we now
attempt the pairing of electrons with opposite momenta
and spin orientations characteristic of the Bardeen-
Cooper-Schrie8er theory of superconductivity, ' neg-
lecting the part of the interaction that cannot be
expressed in terms of such pairs. The time independent
part of the Hamiltonian truncated in this manner is

H Q pkckg ckg+Q pk kickt c kt—c &kctk-
ks kk'

XJoL2 (pk —pk )8m*/m*f), (6)

where the kinetic energies are confined such that

sp„ t (2(pk —pk )t'tm*/m*f (sp„, (tt= I, 2 ) (7)

where s is the eth zero of the zero-order Bessel function.
It is to be expected that the attractive interaction
becomes successively less effective as e increases, since
the corresponding kinetic energies, on the whole, will
move further and further away from the Fermi surface.
We therefore restrict the argument to the case e= j.,
in which case the attractive region consists of the
interior of the two strips S, S' in the ek, ek plane shown
in Fig. 1. These should be compared with the single
strip 8 shown in Fig. 2 in which the interaction is
attractive in the BCS theory, due to excitation and
de-excitation of virtual phonons. We note that 8
contains the Fermi energy, which is taken as the

3 J. Bardeen, I. N. Cooper, and J. R. Schrie6er, Phys. Rev.
108, 1175 (1957).
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FrG. 2. In the BCS theory, the interaction is attractive in the
strip J3, containing the Fermi energy.

FIG. 1. The interaction is attractive in the cross-hatched strips
S, S' symmetrically disposed about the Fermi energy.

reference zero in both Figs. 1 and 2. In order to make
further progress with the BCS theory, one replaces 8
by a square, centered at the origin, whose sides equal
the width of the strip, in that case equal to the maxi-
mum available phonon .energy. Similarly, to make
further progress in the present case it is necessary to
replace the strips S, 5' by two equivalent squares
delimited by a&(I'kI (a2 and a&(I'I'I (u» w"ere
a&,2——fm*s»/8m* The det. ermining equation for the
energy gap now takes the form

1=2VQ
&1 Cy 60

assuming that the actual interaction may be replaced
by an effective average V. The density of states may
still be regarded as substantially constant, equal to
X(0), over the range of summation. The equation for
the gap then becomes

sinh '(u2/eo) —sinh '(ai/eo) = 1/VX(0).

Taking the sinh of both sides it is readily found that a
solution will exist only if

s2/sg) expI 1/VX(0)3.

This condition is inconsistent with the present theory,
which is valid only in the limit of small VIV(0). There-
fore even if V were large enough to satisfy the last
inequality, this would be no guarantee that the origi-
nally normal metal becomes a superconductor, though
the possibility cannot be excluded.

The less ambitious project of raising the transition
temperature of an existing superconductor holds more
promise, however, even in the context of the present
theory. Outside the strip 8 in Fig. 2 the interaction in
the superconductor is repulsive. If we now adjust the
modulation depth and frequency in such a way that

the strips S, 5' abut the upper and lower lines bounding
the strip 8, the width of the region in which the
interaction is attractive will have been increased in the
ratio s2/s&. The condition on 8m* and f is simply

fm*s~ =a)gled*.

The eRective mass modulation of a superconducting
electron gas then eRectively multiplies the Debye
frequency co&, and therefore the transition temperature
by the ratio s2/s&.

SOME LIMITS OF VALIDITY AND CONCLUSIONS

From the preceding example one might gain the
impression that the interaction strength, and its sign
is controlled by the ratio of frequency to depth of
modulation, and that the absolute values of these
quantities separately are not critical. However, referring
to the correction to the quasi-stationary Schrodinger
Eq. (5a), we see immediately that the frequency of
modulation (times h) must be suKciently greater than
the interaction if the correction terms are to have any
chance of converging. Assuming V to be off-diagonal
entirely, (Ep—Hp —Vp —stf) ' acts on an excited state,
and is, therefore, of order 1/(V+mf) Hence, fo.r no= 1,
we require f))U; then, for cancellation or sign-reversal
of the interaction, the depth of the modulation must
also exceed V, since by the condition for a zero of the
Bessel function, the frequency and depth of modulation
must be of the same orders.

To produce modulation depths in excess of the
shielded coulomb repulsion in a metal may prove
excessively dificult. For this reason, it is desirable to
erst try the principles described here on genuinely
weakly interacting systems.

Finally, it must be pointed out that where a rigorous
theory is possible, it may transcend the limits of
validity described here. Such is the case in reference 2,
where it turned out that with square wave modulation
one could decouple the spin wave interaction with very
lorn modulation frequencies also.-
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