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be attributed to the relative amplitudes which are
clearly dependent on focusing conditions. Extensive
tests were performed to establish that only a minor
portion of the incident beam missed the target and that
the results shown are characteristic of the reAection
from the target and have no other origin.

In the great majority of slow-electron diffraction
units operating at normal incidence, the specularly
rejected beam cannot be observed because it is lost in
the structure of the gun. However, Sproull, '-using a
magnetic deflection method, has studied this beam from
the (112) and (100) faces of tungsten. Sproull's analysis
was within the framework of conventional diffraction
theory and he viewed the specularly reflected beam as
a special case (colatitude angle zero) in which the

' W. T. Sproull, Phys. Rev. 43, 516 (1933).

volume interference condition was satisfied. In this case
a specularly reflected spot splits into two spots which
diverge along a principal azimuth as the incident energy
is raised. There appears no doubt that Sproull's observa-
tions on the (112) face fit this interpretation. However,
in our experiments, even though we could visually
observe the central spot almost continuously for incident
energies from 0 to 180 ev, we observed no tendency for
this spot to split. We suggest therefore that there exist
cases in which the specularly reflected beam should not
be considered as a limiting case of beams diffracted at
other colatitude angles. The theory of MacColla on the
reQection of electrons by metallic crystals appears to be
a good starting point for these cases. We have not yet
attempted to apply this theory to the results of Fig. 2.

' L. A. MacColl, Bell System Tech. J. 30, 888 (1951).
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An electron gas with short-range interactions is considered in the presence of a uniform magnetic field.
It is shown that (1) the cyclotron resonance frequency is independent of the interaction; (2) for a two-
dimensional gas, the de Haas —van Alphen period is independent of the interaction. The low-lying excited
states are briefly discussed.

HERE has been considerable interest in recent
months in the effects of the electron-electron

interaction on the cyclotron resonance frequency and
de Haas —van Alphen oscillations of a gas of electrons.
As some of the theoretical treatments of these problems
use very sophisticated methods, ' and others are based
on incorrect qualitative reasoning, we wish here to
present some simple considerations which we think
shed some light on what has been a rather confusing
sltua Pion.

In the present paper we restrict ourselves to the case
of a short range electron-electron interaction, deferring
specific e6ects of the long-range Coulomb force to a
later account.

We write the Hamiltonian of our system, in a uniform
magnetic field 3C in the s direction, as

and the interaction U is

L'=Q tt(r —r )

then

P—=P;P;,

dP i—=—LH, P]=—

(4)

which is the Lorentz equation for the whole system in
operator form. We now define

CYCLOTRON RESONANCE

We verify directly that if we define the kinetic
momentum of the whole system as

where

P, =[p..., p, ,,+(e5C/c)x, , p. ..],

P+ Pg+ Imp )
(1)

and the cyclotron frequency,

(o.=eX/mc.

(2) Then by (5) we find that
* Supported in part by the Office of Naval Research.' J, M. Luttinger, Phys. Rev. 121, 1251 (1961). I P,Pg1= +it(a,P~.
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+~—=P++p~ (10)

we see that 0 ~ is an exact excited eigenstate of H with
energy

R=@2+kiev (11)

Now let 4& be the true ground state of the system (or,
for that matter, any other eigenstate), and operate on
+o with Eq. (8). Denoting the energy of 4& by E2,
we obtain

IIP+N p
—EpP+%'p ——Ace,P+@'p.

Hence, if we call

associated with the following possible values of k,

k = 22r/L2, 42'/L2, . sLi,

and the two possible spin orientations.
I.et E be the total number of particles. Then if 3C

has a value, denoted by 3C„, such that

(20)

the ground state of the system will have the v lowest
levels (17) completely filled and all higher ones empty.
These values of K are given by

Now if the system is placed in a homogeneous rotating
microwave Beld, ' we must add to B the perturbation

2' 8
1/X„= v —, v=1, 2,

Ac A
(21)

g P g

'Eblis

'EcoPE

(12)

We see that the perturbation (12) connects the state
0'p with, and only with, the state 0'&, so that there
results a sharp absorption at the frequency co=co,.

In summary: Cyclotron resonance is not affected by
the interaction U.

(13)

whose eigenfunctions are

where
P„,,=e'"&I„(x+k/s),

s—=eSC/kc,

(14)

and e (x) is the nth harmonic oscillator eigenfunction
of the Hamiltonian,

2+ k2$2$2j
2m

The energies associated with g„,y, are

e„,2= (22+-2, )ks)„

and each level has a degeneracy

g = (s/2r) LiL2 (18)
'The practically important case of an inhomogeneous micro-

wave Geld will be discussed in a later publication.' For further details of such a gas see F. Seitz, Modern Theory
of Sokds (McGraw-Hill Hook Company, ¹wYork, 1940), Sec.
183.

THE DE HAAS-VAN ALPHEN EFFECT

For simplicity we restrict ourselves here to a two-
dimensional gas of fermions, ' confined to a rectangle,
J-~XI-2, in the x-y plane.

In the absence of the interaction U, the Hamiltonian
(1) becomes the sum of single-particle Hamiltonians,

where A=22r'iV/L, L2 is the cross-sectional area of the
Fermi "surface. "

At absolute zero, all physical properties of the
noninteracting gas show a quasi-periodic behavior—
with the same period —as function of 1/3C. For our
purposes, we note especially that when K=BC, the
ground state of the system isisolated, the lowest excited
states being at an energy Ace, above it. At intermediate
values of BC, v hen the highest occupied single-particle
level is not completely occupied, the ground state is
not isolated but degenerate.

Now let BC=X„and imagine the interaction U turned
on. Then clearly, to al1. orders in perturbation theory, 4

the ground state will remain nondegenerate. Therefore,
at the same sequence of fields BC„as without interaction,
the system passes through the stage of having an
isolated ground state. '

Hence in summary: The de Haas —van Alphen period
of a two-dimensional electron gas is not altered by an
interaction, to all orders in perturbation theory.

LOW-LYING EXCITED STATES

We conclude with some remarks concerning the
very-low-lying excited states. Consider the case where
the field has a value BC„, such that the ground state of
the whole system is isolated. In the absence of an
interaction the first excited level of the system has an
energy k~, . It corresponds to creating a hole in the
previously filled state v, k and an electron in the
excited state i+1, k'. The energy is independent of
the values of k and k', so that this level has a degeneracy
g'. Note that by Eq. (14) the values of k and k' deter-
mine where the locations of the hole and electron
along the x axis are.

4 Even if perturbation theory should have a vanishing radius
of convergence, the nondegeneracy of the ground state —and
hence the de Haas —van Alphen period —is unaffected by the
interaction. For all that is used is continuity as function of the
strength of U, not analyticity.

~ The situation has a strong formal analogy to the shell structure
of atoms and nuclei: A number of particles which is magic (i.e.,
leads to completely Riled shells) in the absence of interparticle
interaction, remains magic when the interaction is included.
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Now consider the situation when the interaction has
been turned on. We note first that the spatial extent
D of u„(x), for a= i, is of the order of

D=kp/s, (22)

gjv —
g ~(6) g (&)

where the e's are defined as follows

e„+,'& =Eo((V+1) Eo(N), —
e, & "& =Eo(X)—Eo()7—1),

(24)

Eo(M) denoting the ground-state energy for a total
number of 3f electrons. That is, the excitation energy
of the pair is the sum of the individual quasi-electron
and quasi-hole energies.

The number of electron-hole pairs for which (23)
does not hold is by (19) and (23) of the order of gkzL2
which is negligible compared to the total number of
electron-hole pairs, namely g'=g(L, s/m)L&. Hence, .for

where kp is the wave number at the top of the Fermi
distribution. Hence, by (14), we expect that if

7i/s 7i'/s))—D, or k —k'))k p, (23)

the hole and electron will be outside each other's range
of interaction. For in this case their wave functions do
not overlap, and we are postulating short-range forces
whose range E will be negligible compared to D, for
the fields of interest (s«k~ '). For such an electron-
hole pair we must have the excitation energy

(26)

Denoting the state with a hole in v, k and an electron
in the state i+1, k' by %z,&, we find

P+%'0 =Const+A 4 k, k. (27)

Thus we see that this state is a coherent linear combi-
nation of states in which the electron and hole are in
the same location. When the interaction U is turned
on, the energy of this state remains ken„by our previous
argument, but will be shifted relative to those states
in which the electron and hol.e are far apart.

Slightly more elaborate considerations show that in
fact the level which is the lowest excited level when
U=o, broadens into a band when U is turned on.
This band has a very high density near E=EO+AE,
but also encompasses the cyclotron level at E=ED+ fico..
A study of the detailed nature of this band is in progress.

the overwhelming number of electron-hole pairs, the
excitation energy is practically given by AK

Now we know from our discussion of cyclotron
resonance that there is an excited state with energy
Ace, above the ground state. However, we shall see that
this state is one of the "exceptional" ones and that in
general AEg A.co..

Consider the "cyclotron state" in the absence of the
perturbation U. lt is obtained by operating on the
ground state with the operator


