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The magnetic properties of a linear chain of monovalent atoms
are investigated from the point of view of perturbation theory.
The many-electron wave functions for the system are expanded
as linear combinations of determinantal functions which are
eigenfunctions of S' and S,. These determinantal functions are
constructed from orthonormal one-electron orbitals of the Wannier
type so that the nearest neighbor exchange integral is positive
de6nite and approaches zero at large lattice spacings. The secular
equation is set up using the method of the Dirac vector model.
By means of the Kramers perturbation technique, the interaction
of ionic states with those arising from the ground configuration is

represented by means of an effective Hamiltonian operator with
its associated matrix. The results of this treatment are analogous
to those obtained by Paul in that an analytic expression is found
for an effective nearest neighbor exchange integral J'. This
quantity is represented as the difference between the positive
definite exchange integral and additional terms from ionic states.
The present treatment defines in a fairly precise manner the type
configurations which contribute to this effective exchange integral
and the limits for which this parameterization is valid. The
results of this analysis are compared with those obtained from
recent calculations on a system of six hydrogen atoms.

I. INTRODUCTION

' 'N this paper, we consider the magnetic properties of a
~ - linear chain of E monovalent atoms with periodic
boundary conditions. The single outer electron associ-
ated with each atom is assumed to be in an s state. While
this treatment can be generalized quite readily to a
general system of monovalent atoms containing closed
inner shells, we shall, for simplicity, limit our attention
to a hydrogenic system in which there is a single electron
associated with each atom.

The many-electron wave functions for this system are
expanded as linear combinations of deterrninantal func-
tions which are eigenfunctions of the square of the total
spin angular momentum operator (5') and its s com-

ponent (5,). The one-electron orbitals which make up
these determinantal functions are assumed to be
orthonormal, atomic-like Wannier functions' so that
the nearest neighbor exchange integral is positive
definite and the various energy levels reduce to atomic
states at infinite separation.

We approach this problem using a form of perturba-
tion theory due to Kramers. ' In this approach, the effect
of ionic states on those arising from the ground con-
figuration is represented by means of an effective
Hamiltonian operator with its associated matrix. The
results of this treatment are similar to those obtained
by PauP in that an analytic expression is obtained for
an eR'ective nearest neighbor exchange integral J'. This
parameter is represented as a sum of the positive-
definite exchange integral Ji plus additional negative
terms resulting from the effects of ionic configurations.
The sign of J' is determined by the relative magnitudes
of the two contributions.

The results of recent calculations on a chain of six
hydrogen a,toms indicate that J' is negative for that
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particular system. 4 Furthermore, these calculations
reveal that at large lattice spacings, the eigenvalue
spectrum of the Heisenberg exchange operator,

H= —2J'P; (s; s;+i——,'),
provides an accurate description of the low-lying energy
levels obtained from the more accurate configuration
interaction calculations. The values of J' obtained by
fitting the eigenvalues of Eq. (1) to the results of the
configuration interaction calculations compare favorably
with those obtained by evaluating the analytic ex-
pression for J derived in the present discussion.

Equally important is the fact that the present treat-
ment specifies in a precise manner the approximations
which are essential to the derivation of an expression
for the effective exchange integral J'. This permits one
to evaluate the limits for which Eq. (1) provides an
accurate description of the magnetic interaction in a
non-ferromagnetic system such as the present one. For
example, it is shown that Eq. (1) depends not on the
fact that the second nearest neighbor exchange integral
is negligibly small compared to the nearest neighbor
integral, but ra, ther that the parameter Js' (which
represents the sum of a second nearest neighbor
exchange integral plus additional terms due to ionic
states) is negligible in comparison to J'.

II. METHOD

The method employed here involves a form of pertur-
bation theory which was first introduced by Kramers. '
This perturbation technique is useful in physical situa-
tions where a finite energy gap exists between a rela-
tively small number of low-lying states which are of
primary interest and a multitude of excited states
which intera, ct with these low-lying states. This condi-
tion is satisfied at large internuclear separations in the
problem presently under consideration. The low-lying
states represent those arising from the ground configura-
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tion where there is a single electron associated with each
atomic site. The excited states include those ionized
states which have up to Nj2 pairs of doubly filled

orbitals. The lowest excited states correspond to a
single doubly filled orbital, and the energy gap in this
case corresponds approximately to the energy required
to take an electron from a neutral atom and transfer it
to a neighboring atom. This is approximately equal to
the difference between the ionization energy and the
electron amenity for the atoms in question. The energy
separation between the states arising from the ground
configuration is small compared to this gap, since it is
proportional to the nearest neighbor exchange integral
which is zero at infinity and therefore is quite small at
large separations.

) The procedure is best illustrated using Lowdin's

matrix representation of the Kramers technique. ' It is
assumed that the matrix of the Hamiltonian operator
has been set up using determinantal functions formed
from orthonormal one-electron orbitals. The secular
equation has the following form:

( Hpp Hpl l (Cp l pco )
&(H„)+ H„) ~C,J &C, &

(2)

The ground and excited configurations have been repre-
sented by the subscripts 0 and j., respectively, in this
equation. The dimension of the ground configuration
portion depends on the number of electrons and the
multiplicity, and is determined by means of the usual

branching diagram analysis. The eigenvector C, repre-
senting the combining coeKcients for the determinantal
functions, has been subdivided into two portions Cp aild

C1 which correspond to the ground and ionic functions,
respectively.

If the matrix multiplication of Eq. (2) is carried out
in block form, the following relations are obtained:

HooCo+ H01C1=ECp,

H01 Cp+ H11C1——EC1.

If Eq. (3b) is rewritten,

(El—H11)C1=Hoitco.

(3a)

(3b)

(4)

5 P. O. Lowdin, J. Chem. Phys. 19, 1396 (1951).

By assuming that the matrix (El—H11) has an inverse
which is denoted by (El—H») ', it follows that

Ci ——(El—H11) 'Hoitco, (3)

which can be substituted into Eq. (3a) to yield the
relation

pH00+. Hpi(El H11) Hpitjcp=EC0. (6)

The 6rst term in the brackets represents the matrix
connecting only the ground configuration determinantal
functions. The second term describes the interaction
of these ground configuration functions with ionic

states. According to Lowdin, the matrix (El—H11) '

can be expanded by dividing Hll into its diagonal and
nondiagonal parts, representing these by H11" and
H»", respectively. Then, denoting the matrix contained
within the square brackets of Eq. (6) by Hpp', Lowdin
shows that

Hop Hop'+ Hpl Hol
E1—H„~

+H01 Hll" H pit+, (7)
E1—H ll" E1—H ) l"

where 1/(El —H11") represents the inverse of
diagonal matrix (El—H11"). The secular equation of
Eq. (6) is complicated. by the fact that the Harniltolljan
portion contains the energy eigenvalue E explicitly. As
a result, this equation must be solved by means of an
iteration scheme unless the difference between the un-
perturbed and perturbed energies is negligible. In this
case, it is possible to compute Hpp' using the unper-
turbed energy as an approximation to E in Eq. (7).

III. THE SECULAR EQUATION

Ke use the method of the Dirac vector model to set
up the secular equation for the system. Since this
method involves determinantal functions which are
eigenfunctions of 5 and 5„ it is quite straightforward
to show that there are no matrix elements of the
Hamiltonian and identity operators connecting states
of different 5 or M, . Thus, the secular equation is
factored into several noncombining portions, each of
which can be solved separately. The basis functions
for the secular equation have the form

P;"-(N,S,M, ) = (2)- »(N!)—*' P, ( 1)&P P-—
XC'" (1,2, .N)0, (N, S,M,), (8)

where (2) "»(N!) '
is a normalization constant and

Pi (—1)PP'P is the antisymmetrizing operator, P'
and J'" representing permutation operators for electronic
spatial and spin coordinates, respectively. C' is a
product of E orthonormal, atomic-like, one-electron
functions iptm;(r;) containing v pairs of doubly filled
orbitals

C" =mmi(ri)Wmp(r&)
' ' '11mov —1(rov—1)Wmov(rov) ' ' 'Wm~(r~). (9)

The superscript m enumerates the different configura-
tions containing v doubly filled orbitals. The integral
subscripts m; indicate the atomic sites about which the
various orbitals are localized. For v doubly filled orbitals,
the m, corresponding to a given configuration are
chosen such that

5$$ ssg/s$3 sz4+ ' ' +882@

512vdÃov+1N 8'$1o'. (10)
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For v paired orbitals, the total number of possible
con6gurations T„ is given by

Neglecting an additive constant to the energy, Eq. (15)
can be written as

1V„=N(N 1)—(N —2) (N —22+1)/(i!el), (11) H,oo=Q J,,r, (P,;). (17)

so that m takes on X, values.
The function e, (N, S,M, ) in Eq. (8) represent the N

electron spin product functions which diagonalize 5'
and 5, and form the basis for an irreducible representa-
tion for the group of spin coordinate permutations.
From this last property,

P 0, (N, S,M, ) =Q, I','(P);,0;(N,S,M,). (12)

When considering v doubly 6lled orbitals, it is necessary
that the corresponding spin functions be singlets. This
is equivalent to requiring that the interchange operatorsI 12 F34 ' ' I (2 —j )2 have diagonal matrices, the di-
agonal elements being &1. Serber has described a
method for constructing the basis for this representa-
tion. ' We assume that the basis functions 8, (N, S,M, )
have been ordered such that first the —1's (singlets)
and then the +1's (triplets) of r, '(P22) occur along the
diagonal. Then, those functions with diagonal elements
of (—1) for r, '(Pis) are arranged so that the —1's for
I,'(P24) occur first, then the 11's, and so on.

It will be necessary to work through some of the
details of the Dirac vector model in order to obtain the
results of interest. This serves a useful purpose in that
it permits the approximations inherent in the present
treatment to be pointed out explicitly. The general
expression for the matrix elements of the Hamiltonian
operator connecting the p and ii' configurations (now
denoted by a single index) can be written

H,»'= p~ r, (P)V(P)»', (13)
where

V(P)""'= (2) '"+"""(C"
~
&P'~ C"'"') (14a)

r.(P) = (-1).r. (P).

For the ground configuration, Eq. (13) reduces to

(14b)

H, o=[ P Q;+ P &,,]1,+ P J,,r, (P,,), (15)

z.
Q;=(w;(r, ) —,'vp+x - u;jr, )), (16a)

1
E,"= ze, r1 m 12 mi r1 zv. r2, 16b

(16c)

' R. Serber, Phys. Rev. 45, 461 (1934).

where 1, is a unit matrix of appropriate order and Q;,
E;;, and J;; are the one-electron, Coulomb, and ex-
change integrals given by the expressions

At larger distances, Eq. (17) can be further simplified

by assuming that all but the nearest-neighbor exchange
integrals (Ji) can be neglected. Then, Eq. (17) re-
duces to

H,"=J,[N1,+Q; r, (P, ,+,)j. (18)

M„=(w,+„(r;)~H(2)

+ P (w, (r2) w (r2))w (r;)). (21)
r;—r2

In this expression, H(2) is the one-electron operator for
the ith electron and I.I, is a three-center exchange
integral:

i
JI,=— K] r] ZVI, rg wj„r] m2 rg . 22

r1—rg

~ G. F. Koster, Technical Report No. 8, Solid-State and Molec-
ular Theory Group, M.I.T., 1956 (unpublished), Chapter 4.

The eigenvalue spectrum of the secular equation re-
sulting from Eq. (18) is known to be identical with that
of the Heisenberg exchange operator of Eq. (1).r The
zero of energy in Eqs. (1) and (18) has been adjusted
to coincide with that of the ferromagnetic state.

We are now interested in obtaining an expression for
Hpi in Eq. (7). The matrix H» represents that part
of the complete Hamiltonian matrix which connects
the ground and ionic configuration portions. For the
present, we consider only that part of Hpi which con-
nects the ground configuration with those states con-
taining a single doubly filled orbital and hole located at
adjacent lattice sites. There are a total of 2' configura-
tions involving such states. One such con6guration can
be represented by the spatial function,

C"=w, (ri)wi(r2)ws(rs)w4(r4) wiv(riv). (19)

The entire set of 2S functions similar to this one can be
obtained by applying the 2X operations in the group
of the Hamiltonian (Civ„) to this function. These opera-
tions are equivalent to the rotations and rotations
followed by reQections which send a regular X-sided
polygon into itself.

It is quite straightforward to show that the matrix
connecting the ground configuration states with those
states having a spatial part equivalent to R,4" (R, rep-
resenting one of the 2Ã operations in the group of the
Hamiltonian) is given by D,", where

D,&'= (2)-:M,fr, (R,)+r, (R,)r, (P„)j
+ (2)-' Z. J.,[r,(R,)r, (P„)

+r, (R,)r, (P„)r,(P„)]. (20)

M„ is a generalization of the quantity M de6ned by
PauP
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For the matrices I,(R;) in Eq. (20), the permutations
Ri have the following signi6cance. If we consider the
ground configuration function C" which contains a
single orbital localized about each atomic site, then the
permutation R,' is defined such that R,8R,4"=4".
Similarly, r, (P») is the matrix which represents the
interchange operator P2~'.

Since the second term in Eq. (20) involves a sum
over the three-center integrals I.~ which are expected
to be considerably smaller than M&, we can neglect
these terms. Then, Eq. (20) can be reduced to

D"= (2) '~ [r.(R*)+r.(R*)r.(P )3 (23)

In this approximation, the matrix Hoi of Eq. (7) has
the form

X X X X
D 01 X D 02 X D 03 . . . X D 0(2%i

.X X X X
(24)

The X'd columns of Eq. (24) represent the nonvanish-
ing columns of D,";these correspond to the +'s in the
matrix r, (Pi2) [or to the —'s in the matrix r, '(Pi2)).
For the spin-wave states where S=ItI/2 1, th—is corre-
sponds to a single column. In this case, the matrix
1/(El —H»") may be written

2&V

r, (E)+r,(P„)
r, (L)+r.(Pig)

El —Hii" 2(E—Hi')
r.(E)+r.(P ) (25)

r, (E)+r,(P„)

[N 1,+P; r.(P;,„)j. (29)
(E—II)')

where II& denotes the diagonal element of H»" for Eq. (27) can be written

which the electron and hole are separated by k lattice
sites. The matrices r, (E)+r, (Pi2) contain a single 1

nonvanishing element in the upper left-hand corner,
but we choose to write them in this form for con-
venience in the following discussion. Using the relation
given by Eq. (25) for 1/(El —H»"), it is quite straight-
forward to show that

1
H(j] Hoit

El—H ii" 4 E—Iji'

X{2,[r,(R;)+r,(R,)r, (P„)]

X[r.(E)+r.(P .)3
X[r.(R')'+r. (P.)r.(R')'j) (26)

Equation (26) reduces to

Thus, using this relation. along with Eq. (18), the first
two terms of Eq. (7) can be written

( 2Mi2 )
Hoo'=

I
~i+ I[cV1,+p; r, (P;,+i)j. (30)

E—IIi')

The result oi Eq. (30) cannot be extended to include
those states containing a hole which is located two
atomic sites away from the doubly filled orbital. For this
case, the equivalent to Eq. (29) contains the term

HPl Hol'=
El Hi i" 2 (E—Hi')—

2M''
Z' r.(P. '+2)

(E—IIP)
(31)

x[4Nl, +2+, r, (R,)r, (p„)r,(R,)tj. (27)

If one makes use of the identity

Z r.(R;)r.(P )r.(R,)'=2K r.(P +), (»)

From this result, the nature of the general term repre-
senting an arbitrary separation of the hole and doubly
filled orbital is obvious.

The generalization of the result given by Eq. (30) to
states of lower multiplicity involves an additional ap-
proximation. For these lower multiplicities, the matrix
r, (E)+r, (Pi2) contains, in general, more than one
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nonvanishing diagonal element. In order to write the
matrix 1/(El —Hn") in the form of Eq. (25), it is
necessary to assume that the non-vanishing elements
of Hqq" are degenerate. This should correspond to a
reasonable approximation at large separations since
these diagonal elements di6er only by multiples of Ji,
and these exchange integrals become quite small at
large lattice spacings. For these states of lower multi-
plicity, a reasonable approximation is to use the average
energy of H]] for ay'.

Similarly, it is not possible to extend Eq. (30) to
include the effects of states containing more than one
pair of doubly filled orbitals. For configurations con-
taining three or more doubly filled orbitals, the corre-
sponding portion of Hp& vanishes identically. For two
doubly filled orbitals, the coe%cient of the term equiva-
lent to Eq. (23) would be a four-center integral. The
corresponding coeS.cient arising from

state, then
e=1~'—Q Q,—Q K;.;+1VJ&,

i i&j

2Ml'J'= Jg+
e —3Jg—W+Cx

(35)

1
W= z„r» z„r2 m„r~ m~ r~

rl —r2
(36a)

Cg= K p r] Yv~q r9 Tv' r& 'R~q r2 36b

C, is an obvious generalization of Paul's C.'
For states of lower multiplicity, Eq. (35) is replaced

by

W and C~ are one- and two-center Coulomb integrals
between Kannier functions,

Hpg HOP
El—Hgg'

2Ml'J'= Jg+
e B(S)Jg —W+Cg—

(37)

would be proportional to the square of a four-center
integral divided by an energy denominator which is
approximately twice that of Eq. (29). Since it has been
necessary to neglect the three-center integrals I-I, in
obtaining Eq. (29), it is reasonable to expect that the
terms involving two doubly filled orbitals will be
negligible when the approximate techniques described
here are valid.

IV. EFFECTIVE EXCHANGE INTEGRAL

According to Eq. (30), the effective exchange integralJ' can be represented quite accurately by the relation

J'= Jg+ (2M)'/E —Hg'), (32)

if the most important interaction between the ground
and excited configurations occurs for those ionic states
which contain a single doubly filled orbital and hole
located at adjacent lattice sites. Physically, one would
certainly expect that the Coulomb attraction between
the negative ion and positive hole mould lomer the
energy of such a pair and thereby increase the impor-
tance of its interaction with the ground configuration
states. It is interesting to note that the validity of Eq.
(30) depends not on the fact that the second-nearest
neighbor exchange integral J2 is small, but rather on the
assumption that the effective second-nearest neighbor
exchange integral

2M2'
J2'= J2+

E—IIj'
(33)

is small compared to J'.
For the spin wave states, Bl' can be written in a more

explicit form. If we introduce e as the diGerence between
the eigenvalue E and the energy of the ferromagnetic

In Eq. (37), B(S) is a coeKcient which depends on the
multiplicity; it results from the averaging process which
is necessary to obtain the equivalent to Eq. (25) for
states with a multiplicity lower than S=cV/2 —1.

In those situations where the unperturbed energy
difference between the ground and excited states is large
compared to the ground configuration splittings, there
exist several approximate methods for evaluating the
parameter J' of Eq. (37). The simplest approximation
is to set e equal to zero. This corresponds to replacing
E in Eq. (7) by the energy of the ferromagnetic state.
Another approach involves substituting the exact value
of e into Eq. (37). However, this naturally requires that
the full configuration interaction calculation be carried
through. Finally, one can evaluate this relation for the
kth eigenvalue by setting e& equal to A&J', where AI,
represents the eigenvalue of the secular equation

detgÃ1, +Q; I .(P;; g)
—El,j=0

for this kth state. In this case, Eq. (37) can be solved
for J', yielding the relation

J'= —
I (—B(S)Jg—W+C) —AgJg$

23 g„-

(((—B(S)Jg—W+Cg) —ApJgg'
2AI,

+4Apt Jl(—B(S)J&—W+C&)+2Mpj}&. (38)

Equation (38) implies that the spin degeneracy problem
for the ground configuration has been solved. While this
problem can be handled for short chains, a branching
diagram analysis shows that this would become pro-
hibitively dificult for longer chains.
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TABLE I. The values of parameters involved in the evaluation of
the effective exchange integral J' for the six-atom chain.

R=2 R=3

TABLE III. Values of J' obtained by setting a=0 in Eq. (37).
This is equivalent to replacing E by the energy of the ferro-
magnetic state in Eq. (32).

W
t.",

1

Jl
3fl

0.900605 0.753950 0.677537 0.630948
0.574682 0.413099 0.310011 0.199007
0.006274 0.010178 0.005404 0.000833—0.725720 —0.239759 —0.107455 —0.026094

6JI
3J/
1J~

R=i
—3.049149 —0.299393 —0.055093 —0.002302—2.941844 —0.283307 —0.053427 —0.002290—2.890969 —0.275875 —0.052628 —0.002284

TABLE II. Values of J' obtained by Gtting the results of the
configuration interaction calculations described in reference 4 to
the eigenvalue spectrum of the Heisenberg exchange operator
of Eq. (tl.

Sym-
metry k»i~

6~e
lz

3' 6
3p
3@3
6Z

6p
lj
3p
3pe
lz
3r,
XP

~/3R
~/R
2~/3R
gr/R

0
2m./3R

/R
~/3R
m./3R
2~/3R

0
0

n/R

—1.382231—2.032575—1.588595—1.414510—0.819750—0.808411—0.753644—0.806216—0.659192—0.701888—0.640063—0.543572—0,568831

—0.216346—0.268761—0.174419—0.268449—0.174419—0.168544—0.171096—0.177750—0.153252—0.170279—0.155451
-0,138335—0.149660

—0.050459—0.055809—0.054274—0.053374—0.046444—0.044901—0.045111—0.046453—0.043222—0.045846—0.043916—0.041463—0.043779

—0.002275—0.002302—0.002296—0.002294—0.002283—0.002275—0.002272—0.002284—0.002277—0.002283—0.002285=0.002280—0.002286

V. EVALUATION OF J' FOR THE SIX-ATOM CHAIN

The expression for the effective exchange integral
given by Eq. (37) involves a number of integrals between
Kannier functions, the values of which are listed in
Table I for the six-atom chain. In this system, the
factor B(S) in Eq. (37) assumes the values of 3, 5, and
6 for S values of 2, 1, and 0, respectively. While the fact
that Eq. (37) is valid only at large separations has been
stressed, this relation will be evaluated at all four inter-
nuclear separations where conhguration calculations
have been carried out, namely 1, 2, 3, and 5 atomic
units. 4 This permits the variation in the accuracy of the
results to be evaluated as a function of the lattice
spacing.

For reference purposes, the values of the effective
exchange integrals J' which are obtained by fitting the
eigenvalues of Eq. (1) to the results of the configuration
interaction calculations are contained in Table II. The
ordering of states is equivalent to that of Table IV in
reference 4.

The approximation of setting e equal to zero in Kq.
(37) produces values of J' which are functions only of
the multiplicity Lthrough B(S)), so that at each inter-
nuclear separation for the six-atom chain, we obtain
the three values of &' +"J' listed in Table III.

If the value of e which is obtained from the configura-
tion interaction calculations described in reference (4)
is substituted into Eq. (37), J' becomes a function of
both the multiplicity and the eigenvalue e. The results

obtained by evaluating Eq. (37) using the actual values
for e are contained in Table IV. The ordering of states
is equivalent to that of Table II. It is clear that at small
lattice spacings where e is appreciable, the results of
Table IV are in much better agreement with the fitted
values of Table II than those of Table III, where e is
set equal to zero.

Finally, we present in Table V the results of evalua-
ting the expression for J' as given. by Eq. (38). Again,
the ordering of states is equivalent to Tables II and IU.
The results of Tables III, IV, and V are in good agree-
ment with those of Table II at a lattice spacing of 5
atomic units. At this separation, the values of J' are
relatively constant since their dependence on J3(S) and
e is relatively small. At the smaller separations, it is felt
that the agreement between the results of Table IV and
V and Table II is fortuitous since the higher terms in the
expansion of Hoo' in Eq. (7) undoubtedly become more
important in this limit. Furthermore, the values of J at
these separations vary considerably for the diBerent
states.

The calculations described in reference 4 provide
further reasons for suspicion regarding the agreement
between the results of Tables IV and V and Table II
except at large separations. Figure 5 of reference 4 indi-
cates that the doubly and triply ionized states make an
important contribution to the wave function of the
ground state at the smaller lattice spacings. To em-
phasize this point, let us examine the decomposition of
this ground state wave function for the six-atom chain
in terms of its diGerent ionic components. In Table VI,
we tabulate the sums of squares of the combining
coe%cients for the di8erent degrees of ionization for the
six-atom ground-state wave function. At a separation
of 5 atomic units, it is found that the ground and singly
ionized configurations represent 99.89% of the total
wave function. (Actually, the ground configuration and
singly ionized states with a neighboring hole and doubly
filled orbital represent 99.83% of the total wave func-
tion. ) At smaller separations, the doubly ionized states
assume a significantly greater role. Since we have shown
that the direct interaction of these doubly ionized states
with the ground conlguration is small, the indirect
interaction represented by the higher order terms of
Eq. (7) must become significant at these separations.

Q any case, the parameterization of the spin degeneracy
problem in terms of a single effective exchange integral
is no longer possible.
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TAai, E IV. Values of J' which are obtained by using the actual
calculated values of 6 from reference 4.

TABLE VI. Decomposition of the ground-state wave function for
the six-atom chain into the various degrees of ionization.

Sym-
metry

SP6
lp
3I'g
3@~

3@3
5p5
5pi
lz
3p~
3I ~
lp
3r3
lz

&8Pin

s./3R
w/R
2m/3R
s./R

0
2~/3R
~/R
s./3R
vr/3R
2s/3R

0
0

~/R

R=i
—0.604231—0.323279—0.392600—0.324474—0.290701—0.374219—0.307352—0.287396—0.282183—9.241032—0.244382—0.239318—0.194093

R=2
—0.185439—0.112921—0.137534—0.138134—0.121393—0.120914—0.098719—0.093129—0.089105—9.075700—0.075966—0.072372—0.057859

—0.048030—0.042886—0.043668—0.040849—0.038930—9.039314—0.035675—0.034156—9.032539—0.030261—0.029510—0.027941—0,024402

R=S
—0.002286—0.002261—0.002266—0.002258—0.002247—0.002254—0.002238—0.002220—0.002211—0.002202—0.002189—0.002176—0.002150

TABLE V. Values of J' which are obtained by setting a=A IJ',
where Aq is the eigenvalue of the Heisenberg exchange operator
for this kth state.

Sym-
metry kapi&

'ra s./3R
'rg vr/R'r g 2~/3R
'rm s/R
3r, 0
'I'5 2m/3R
'rg m/R
'I'6 m/3R
'r, vr/3R
'rg 2m/3R
1I 0
3P 0
~r,

'
~/R

R=1
—0.864674—0,744890—0.736921—0.638361—0.552619—0,534439—0.468485—0,466321—0.421276—0.400903—0.386440—0.354317—0.326062

—0.193390—0.169821—0.170365—0.154086—0.138341—0.136853—0.122990—0.120117—0.111158—0.106594—0.102728—0.095794—0.088578

—0.048298—0.044760—0.045086—0.042879—0.040399—0.040490—0.037898—0.036921—0.035211—0.034218—0.033250—0.031720—0.029859

—0.002286—0.002262—0.002267—0.002258—0.002246—0.002254—0.002238—0.002222—0.002213—0.002205—0.002193—0.002181—0.002157

s I. C. Sister, Phys. Rev. 35, 509 (1931).

VL DISCUSSION AND CONCLUSIONS

The results of the previous sections serve to supple-
ment a discussion given by Slater in a paper concerned
with cohesion in monovalent metals. ' Slater showed
that a monovalent metal had little likelihood of be-
coming ferromagnetic in the limit where the energy
band approximation was valid. However, the situation

Z; n,m(0)

0.099360
0.175390
0.411802
0.940599

Z; n;2(1)

0.456733
0.487485
0.445978
0.058314

Z, n (2)

0.390393
0.304811
0.134148
0.001081

Z n'(3)

0.053514
0.032314
0.008072
0.000006

at large lattice spacings was not quite clear. A multi-
tude of states with multiplicities ranging from S=X/2
to S=O (or —,') approach the same limiting energy
(which corresponds to the non-ionized separated atoms)
and it was not clear then which of these states would lie
lowest. The present analysis indicates that it is unlikely
that the ferromagnetic state would have the lowest
energy at large separations. Certainly, the calculations
on a six atom chain4 substantiate this conclusion. The
ground state for this six-atom system is a singlet at all
internuclear separations. This fact does not mean,
however, that the Heisenberg exchange operator of
Eq. (1) is valid at all internuclear separations. Rather,
it implies that there is a gradual transition from the
energy band to the orthogonalized atomic orbital ap-
proximations which are valid at small and large lattice
spacings respectively. The results of Table VI trace
this transition for the ground-state wave function of the
six-atom chain.

It is reasonable to conclude that at large lattice
spacings, the Heisenberg exchange operator of Eq. (1)
provides an accurate description of the magnetic inter-
action between s-type electrons of a linear chain. How-
ever, it is clear that this description is only approximate;
the necessary approximations appear to break down
quite seriously at smaller lattice spacings. %hile the
extrapolation from this simplified one-dimensional
example to a more physical three-dimensional magnetic
system involves serious dif6culties, the present dis-
cussions serve to emphasize one fact. The magnetic
interaction is not exactly described by the Heisenberg
exchange operator. In a given problem, it may prove to
be desirable (or perhaps even necessary) to choose a
more fundamental approach.


