
P H YS ICAL REVIEW VOLUME 123, NUM BER 4 AUGUST 15, 1961

Some New Interrelations in the Properties of Solids Based on
Anhar gixonic Cohesive Forces*

JOHANNES N. PLENDL
Air Force Cambridge Research Laboratories, 0/fice of Aerospace Research, Bedford, Massachttsetts

(Received October 3, 1960; revised manuscript received February 13, 1961)

The lattice vibration spectrum of a solid can be characterized
by one single frequency, which is defined as "the frequency of
the center of gravity" of this spectrum or simply "center
frequency. " From its equality with the characteristic frequency
of specific heat we have recently derived the "center law of the
lattice vibration spectra. " In assuming now that in a lattice, at
equilibrium, the hypothetical maximum of vibrational energy
(kinetic energy). of an atom (ion) pair equals the total cohesive
energy (potential energy), and at the same time considering the
anharmonicity of lattice vibrations, we derive a basic inter-
relation between center frequency and total cohesive energy.
It constitutes a substantial extension of the above "center law. "
Its validity has been illustrated for 26 solid compounds of six
different lattice structures which cover almost the entire range of
lattice vibration spectra of solids. This interrelation allows a
first determination of thus far inaccessible data of cohesive energy
for solids of extremely high sublimation temperatures, such as
silicon carbide, boron nitride, and the two types of diamond.

Detailed study of the anharmonicity of lattice vibrations results
in additional interrelations, such as one between exponent of
repulsion and "related mass" /=reduced mass of the vibrating
atom (ion) pairs related to argon], one between exponent of
repulsion and "relative compressibility" (change of compressibility
with pressure over compressibility), and thus one between
"relative compressibility" and "related mass. " In combining
the two interrelations of center frequency, namely that with
characteristic temperature and that with cohesive energy, we
derive an interrelation between characteristic temperature and
total cohesive energy. Examination of the relationship between
anharmonicity and atomic behavior suggests a classification of
solids according to their different anharmonic force characteristics.
The solids can have either a soft or linear or hard force char-
acteristic, dependent on the con6guration which they resemble in
the periodic chart of the atoms. The underlying concept of
anharmonicity deduced in this paper helps to understand the
physical properties of solids from an atomistic point of view.

1. INTRODUCTION

ATTICE vibration (infrared) spectra are a very
'. & promising means for studying the cohesive forces

in solids, since they disclose the magnitude of these
forces. Generally speaking, the higher the region of
resonance frequencies in the vibrational spectrum, the
greater the cohesive energy of a material. It is the aim
of the present research to develop this statement into
a precise interrelation. We may proceed according to
either quantum mechanics or classical mechanics.

In order to simplify the problem, we may characterize
the vibrational spectra unambiguously by one single

frequency which is adherent to the substance examined.
As such a frequency we recently' introduced "the
frequency of the center of gravity of the lattice
vibration spectrum, " simply called "center frequency, "
which is defined by

f(v) dv, (sec—')

where v=frequency, f(v) =either t.he reflectance R or
the absorption coefficient E. The center frequency has
the following outstanding properties: (a) Its value
remains the same whether it is determined from the
reflectance or from the absorption-type spectrum of a

solid, although the two types can be very different
from one another. (b) Its value remains constant with

varying temperature from liquid air to the vicinity of
the melting point. (c) Its value is equal to the mean
value of Debye's characteristic frequency from specific
heat, within the entire range of vibrational spectra of
solids. This equality constitutes "the center law of the
lattice vibration spectra" which reads:

f
f(v)dv= (k/h)O, (sec ') (2)

dp

where O~ =mean value of Debye's characteristic temper-
ature from specific heat, k=Boltzmann's constant,
and h= Planck's constant.

In examining the lattice anharmonicity on the basis
of these results of a recent study, ' we have found that
we can discriminate the diferent types of anharmonicity
adherent to various solids and define them in simple
terms. This knowledge will help us to define, under-

stand, and even predict some physical properties of
solid materials from atomic data.

2. CO)CPUTATION OF THE VIBRATIONAL
ENERGY OF A LATTICE

* The essence of this paper was presented by the author at the A. According to Quantum Mechanics
Seventh Annual Science and Engineering Symposium of the
U. S. Air Force Ai' Research and DeveloPment Command, In the energy expression for anharmonic vibrations
November 30, 1960, at Boston, Massachusetts; also at the Fifth
European Congress on Molecular Spectroscopy, Amsterdam, The of a lattice we have not only a sum of independent
Netherlands, May 31, 1961. ~ ~

J' N piendl phys Rev ]]9 1$9g (l 960) L1n Etls (2) and (3)
terms corresponding to the diff erent normal vibrations,

read (h/h)O instead of h/h0. $ but also a sum of cross terms containing the vibrational
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quantum numbers of two or more normal vibrations':

(1/he)Uur, vs, ...——Xs+ P Xs(e„+-,)

8N—6

k=1 Z=l

where v~=the quantum number of the kth mode,
3Ã—6= the number of fundamental frequencies,
h=Planck's constant, c=the velocity of light, and
X=wavenumbers. The term Xst(es+ —', )(vt+~s) arises
from the effect of cubic, quartic, and other anharmonic
terms of the potential energy. Calculating the X&'s
from the cubic and quartic coeScients is, however, a
formidable problem which has been solved in only a
few of the simplest cases. '

ANHARMONI C "HAR D"

A

HARMONI C OR "LINEAR"

B. According to Classical Mechanics

The infrared spectra of lattice vibrations deal with
the relatively slow movements of the comparatively
heavy nuclei, and, therefore, the quantum mechanical
laws closely approach the laws of classical mechanics
(Bohr's correspondence principle). ' In this case we are
thus justihed in applying the laws of classical mechanics.

Lattice vibrations become strongly anharmonic with
increasing amplitude. Their anharmonicity may be
due either to lack of proportionality between nuclear
displacements and restoring forces, or lack of pro-
portionality between displacements of both the nuclei
and the electrical charges. 4 The nonlinearity of the
restoring forces as a function of the displacement r can
be twofold: (i) hard, when the second derivative of
f(r) increases with r Lsee Fig. 1A], (ii) soft, when the
second derivative of f(r) decreases with r Lsee Fig. 1Cj,
where f(r) represents the total cohesive energy, f'(r)
the restoring force, and f"(r) the stiffness. The linear
or harmortt'e case occurs when f"(r)=constant Lsee
Fig. 18j. Since we do not know in advance of trial
what type of force characteristic applies to the inter-
atomic forces of various solids, we shall first consider
the middle or linear case and develop the two an-
harmonic modes "soft" or "hard" from it.

For any atom (ion) pair within the lattice of a binary
compound which vibrates with frequency co against its
center of gravity, and has the displacements r, and r„
of its masses M and ns, respectively, we have.

Mr, =mr„. (4)
' E. Bright Wilson, Jr., J. C. Decius, and Paul C. Cross, Mo-

lecllar Vibrations, The Theory of Infrared and Eaman Vibrational
Spectra (McGraw-Hill Book Company, Inc. , ¹wYork, 1955),
p. 193.' M. Born, Optitt (Springer-Verlag, Berlin, 1933), pp. 469 and
53'7.

4F. 0. Rice and E. Teller, The Strlctmre of Matter (John
Wiley 8z Sons, Inc. , New York, 1949), p. 211.

J. J. Stoker, Nonlinear Vibrations (Interscience Publishers,
Inc. , New York, 1950), p. 15.

ANHARMONl 6 "SOFT"

FIG. 1. The different types of anharmonic force characteristic
(soft and hard) schematically represented. The linear or harmonic
force characteristic indicates the transition from soft to hard
force characteristics. t r =interatomic distance, f'(r) =restoring
force.j

max(r, )+max(r„) = rp (6)

is the hypothetical limit for the sum of the two ampli-
tudes, and we accordingly obtain the maximum vibra-
tional energy as

max(U, )=-,'tc'm„rs',

where m„=Mm/(M+m), the reduced mass, and cc an
angular frequency as defined below.

3. INTRODUCTION OF A DEFINITE FREQUENCY

In the linear case, co stands for a definite frequency
(&oa) which represents the vibrational spectrum of the
solid in its entirety. In order to determine co& from
experimental data we equate the maximum of the
vibrational energy (kinetic energy) with the total
cohesive energy (potential energy) per valency bond
(U/s). In this case, U=the total cohesive energy
(experimental value) and s=the valency within the
molecule. ' Proceeding in this manner and solving for

' According to definition, s is the largest common factor of the
vaiencies of all types of ions present in a solid (see H. H. Landolt
and R. Bornstein, Zahlenmerte Nnd Fgnktionen (Springer-Verlag,
Berlin, 1955), Vol. I, Part 4, p. 534.

We compute the vibrational energy of an atom (ion)
pair in the linear case simply by the formula

U„=,'cc'(Mr, '+mr„'). —

The vibrational amplitudes r, and r~ could in no case
be larger than the corresponding nuclear distance ro
allows. Hence,
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TABLE I. Experimental and computed data for 26 solid compounds of

No. Substance

4 NaC1
5 KC1
6 RbC1
7 CsCl
8 TlCl
9 NaBr

10 KBr
RbBr

12 CsBr
13 TlBr
14 NaI
15 KI
16 RbI
17 TlI
18 CaF2
19 SrF2
20 BaF2
21 BeO
22 MgO
23 CaO
24 ZnO
25 ZnS
26 A1203

Structure

rocksalt

rocksalt

cesium chloride

rocksalt

cesium chloride

rocksalt

cesium chloride

fluorite

wurzite

rocksalt

wurzite
zinc blende
n-corundum

1.748

1.748

1.763

1.748

1.763

1.748

1.763

5.04

1.639

1.748

1.639
1.638

25.03

J 0 mr

2.01
2.31
2.66
2.815
3.14
3.27
3.56
3.32
2.98
3.29
3.42
3.70
3.41
3.23
3.52
3.66
3.64
2.36
2.52
2.68
1.65
2.10
2.40
1.95
2.34
1.91

8.5
17.3
21.4
23.4
31,0
41.8
46.8
50.7
29.7
43.9
69.0
83.4
96.2
32.4
50.0
85.6

131.0
21.6
26.2
28.0
9.7

16.1
19.2
21.5
36.0
16,8

(10 cm) (10 ' g)
U

(kcal/mole)

246
218
193
184
169
162
157
168
176
160
157
153
164
166
152
150

~155
629
597
564

1053
940
842
965
853

3610

(10 4 cm)

19
33
43
51
67

98
92
62
86

114
138
132
72

101
139

~170
31
38
43
11.3
19
26
21
34
16

(~rest)
(10 4 cm)

24
34.5

(-45)
53
65

( 79)
( 95)

87
( 64)

84
(105)
(125)
(117)

( 73)
95

(-125)
(~150)

31.5
(40)
(43)
(13)
19.5
27.5
22
32.5
(17)

0.79
0.95

~0.96
0.96
1.03

~1.06
~1.03

1.06
~0.97

1.03
1.09
1.11
1.13

~0 99
1.06

~1.12
~1.14

0.98
0.95
1.00
0.87
0.97
0.94
0.96
1.04
0.94

the definite frequency ~'=co&, we obtain

ppq= (1/r p) (2U/zm„)'*, (sec ')
or

Xg= 13.3X 10"rp(zm, /U)'*, (microns) (9)

(all members in cgs units). '
Anharmonicity of the lattice vibrations would shift

the frequency cod away from the linear value. Hence
we may conceive the frequency shift to be a function
of the anharmonicity and attach the corresponding
frequency ratio as a factor, F(A), to prq. On the basis
of Eq. (9), applying molecular and cohesive energy
data (experimental values), ' the author determined the
definite wavelengths Xg for 26 nonconducting or semi-
conducting solids. They cover the region from 11 p to
170@ and represent the essential part of the lattice
vibration spectra of the solid state. From these ex-
perimental results, shown in Table I, we may study
the definite frequency (1/X&) in detail and subsequently
determine F(A).

4. COMPARISON OF THE DEFINITE FREQUENCY
WITH THE CENTER FREQUENCY

A striking phenomenon is discovered when comparing
~~ with the wavelength X, which corresponds to the

~ The wavelength scale is chosen instead of frequencies because
the original data in pertinent literature are mainly presented in
wavelengths.

For detailed representation of experimental data for a great
number of solids, and also a comprehensive bibliography of
pertinent literature, see Landolt-Bornstein, reference 6; further:
O. K. Rice, E/ectronic Structure and. CherrIica/ Binding (McGraw-
Hill Book Company, Inc. , New York, 1940), and I. Sherman,
Chem. Rev. 11, 93 (1932).

frequency of the center of gravity of solids. ' For the
majority of these solids we establish equality between
Xd, and X„considering the over-all inaccuracies of the
data used for determination of their values. Table I
gives a compilation of values for X~ and A, for 26 solid
compounds for which data are now on hand, ' while
Fig. 2 is a graphical presentation.

In Fig. 2 the frequency ratio

&(&)=&a./p g
——),g/X,

is plotted against the reduced mass m„(curve a). The
line parallel to the abscissa at 1.00 represents Xd

——X,.
The limits of experimental error are indicated by dotted
parallels at distances of ~0.05 from the line Xd=) „
while the average inaccuracy of the experimental data
is about &3%.With due regard to the above-mentioned
factors we establish near equality between co& and co,

for 14 out of 26 solids, ranging in m„values from 20 to
50X 10 ' g. Below and above this range, however, we
observe deviations which are opposite in the sign and
at the same time beyond the limits of data inaccuracy.
Thus for the light compounds, such as Beo and LiF
(m,( 20X 10 '4g), the deviation increases rapidly in
the minus direction, whereas for the heavy compounds,
such as RbI and CsBr (m„& 50X 10 '4 g), the deviation
increases slowly in the plus direction. For the heavy
compounds )~ approaches the main resonance wave-
length Xp (defined as the wavelength of maximum
absorption) which here has an average value of 1.10 X..

Since coy is computed on the basis of harmonic
vibrations, pp, /cps =unity corresponds to the quasi-
harmonic or linear case. Consequently, the deviations
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six diferent lattice structures (used for the graphs of Figs. 2, 4, and 9).

)0
(10 4 cm)

32.6
40.6
~ ~ ~

61,1
70.7
84.8

102
117
74.7
88.3

114
134

~ ~ ~

85.5
102
129.5

~ ~ ~

51.5
69
73
~ ~ ~

17.3 24.0

(from measured values)

6.1
8.9
9.0
9.1

10.7
11.5
10.8
11.5
93

10.8
12.3
12.9
13.5
9.8

11.5
13.0
13,5
9.5
8.9

10.0
7.4
93
8.7
9 1

11.0
8.7

X„=m, /m, (A)

0.275
0.56
0.69
0.77
1.00
1.35
1.51
1.64
0.96
1.42
2.22
2.69
3.10
1.045
1.61
2.76
4.23
0.70
0.845
0.905
0.315
0.52
0.62
0.695
1.16
0.54

0.81
0.94
0.96
0.97
1.00
1.03
1.05
1.06
0.99
1.04
1.09
1.11
1.13
1.01
1.06
1.12
1.17
0.96
0.98
0.99
0.86
0.93
0.95
0.96
1.02
0.93

6.4
8.7
9.1
9.3

10.0
10.8
11.2
11.3
9.8

11.0
12.3
12.9
13.8
10.1
11.3
13.5
14.8
9.1
9.6

10.0
7.3
8.5
8.9
9.1

10.4
8.5

n= exp
X '~& (2.303X 'I&)

Ug
(kcal/mole)

291,
251
218
206
186
177
160
177
195
177
170
158
172
180
165
159
161
710
670
625

1320
1110
965

1115
935

4350

6.5
7.6
8.7
93

10.9
11.8

~ ~ ~

(&6)
10.2
9.6

13.0

(21)
12.8
12.7
17.5
(27)
8.8
9.5

10.2
5.0
6.6
7.8
7.5

11.4
6.0

6
7
8
8
9
9.5

10.5
10.5
8.5
9.5

10
11
11
9.5

10.5

12
8
8.5
9.5

~ ~ ~

7
8
8
9
7.5

n= Uc/ o
(Ug —U) (after Sherman)

X,=~/X„1~~
(computed)
(10 ' cm)

23.5
35
45
53
67
81
93
87
63
83

105
124
117
73
95

124
145
32
39
43
13
20.5
27.5
22
33
17

F(A) = (v,/au X"", ——(12)

where X =m„/m„(A), and m, (A) =31X 10—"
g cor

responds to the reduced mass of KCl, with the argon
configuration satisfied in all ion partners. The intro-
duction of the dimensionless quantity X helps to
simplify the equations. We may coin it "the related
mass, " i.e., the reduced mass of the vibrating atom
(ion) pairs related to the reduced mass of K and Cl.

above and below are understood to be caused by the
anharmonicity of the lattice vibrations. Combining
now Eqs. (9) and (10), we obtain as a general formula
for the center frequency

u, =F(A) cog F(A) (1/r——s) (2U/srN„)'. (11)

5. ANHARMONICITY OF LATTICE VIBRATIONS AND
EXPONENT OF REPULSION

The frequency ratio F(A) =~,/co& represents a unit
of measure for the anharmonicity. Strictly speaking,
the anharmonicity is inversely proportional to F(A),
as shown in curve b of I'ig. 2. The anharmonicity is
mainly caused by the forces of repulsion, since the
repulsive energy increases rapidly when the ions
approach one another during vibrations (r & rs), but
is close to zero when the ions deviate from one another
(r)ro), as Fig. 3 indicates. The repulsive energy is
inversely proportional to the exponent of repulsion e.
Hence F(A) must be a function of I.

The analytical expression for curve (a) of Fig. 2
obeys the function

For the value of p we have p=23.0 X for the small
range of m„~12X 10—'4

g, and p=9=constant for the
large range of m„~12X 10 "g. In order to determine
the e-scale units (Fig. 2) we take into consideration
that for X =1 (KCl), I=10, corresponding to F(A)
= 1.00; and for X ~ 0, e —+ 1, corresponding to
F(A) —+ 0. It thus conveniently follows that

X '»=F(A) =logrse or I=exp(2.303X 'I"). (13)

Values of e, determined for the solids of Table I
according to Eq. (13), in general agree with the values
of e obtained by various other methods, as Table I
shows. ' Thus Eq. (13) gives a useful interrelation
between exponent of repulsion and "related mass. "

6. EFFECT OF ANHARMONICITY ON THE
VIBRATIONAL SPECTRA OF SOLIDS

Nonlinear relationship between restoring force and
displacement in free oscillations causes at resonance
an increase of amplitude with frequency if the force
characteristic is hard, but a decrease of amplitude
with frequency if the force characteristic is soft,
whereas in the linear case the amplitude is independent
of frequency. 4 Therefore, the center of gravity of the
vibrational spectrum (1) shifts towards higher fre-

'The values of n, determined from the difference between
electrostatic and cohesive energy, deviate considerably for solids
with CsCl structure. The reason for this will be discussed. in a
forthcoming paper. For values of n from compressibility data,
see Geiger-Scheel, Handblch der I'hysik, edited by S. Flugge
(Springer-Verlag, Berlin, 1933), Vol. 24, Part II, p. 720, article
by M. Born and M. Goeppert-Mayer.
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gO

I.Z-
y

~ r ~

LO -0
~ ~

0.8-

O

f0

along curve (a) in Fig. 2, where

~,& or& for heavy solids,

co,& ~~ for light solids,

~,=arq for the argon configuration (KC1).

Hence we have to assume three diferent types offorce
characteristic in the solid state:

hard for compounds heavier than KCl,

soft for compounds lighter than KC1,

i&sear for compounds in the vicinity of KCl.

0.6-

~Rgb ZC.

0.2-
I I
I I

I

I
I

I j I I

ao ~ be go

Nr (10 g)

l
fDO f20 1+0

FIG. 2. Anharmonicity data of lattice vibrations (derived from
spectral data compiled in Table I) as a function of the reduced
mass ra, . Circles: anharmonicity factor F(A)=Ad/X, (experi-
mentally determined). Curve (a): F (A) =X "& (calculated),
also exponent of repulsion n. Curve (b): 1/F (A) =X
(calculated). Crosses: "relative compressibility" (Ito/so) r=o,
(from experimental data compiled in Table II, the scale being
E=6 times that of X,„"&).Equality between Xd and X, occurs at
m, =31X10~'g (KCl). It indicates the linear force characteristic
as a transition from soft to hard force characteristics.

16 ~-

14
RbI

J CsBr

10

CsCI

iL
8

BOO

Here it is essential to note the behavior of f'(r), as
indicated in Fig, 1:

For the heavy compounds (hard force characteristic)
the curve initially is Bat, whereas for the light com-
pounds (soft force characteristic) the curve initially is
steep.

quencies (cv,& cod) if the force characteristic is hard,
(2) shifts towards lower frequencies (&u,&~~) if the
force characteristic is soft, and (3) remains unchanged
(~,= coq) if the force characteristic is linear. This
corresponds exactly to the frequency shift observed

2

0
0

I

.5
1

1,0
l

1.5
I I

20 2.5

o (10+ CM)

3,0 3.5 4,0

FIG. 4. Experimental data of the exponent of repulsion n as a
function of the interatomic distance at equilibrium (r0) for
various solids. The vertical lines indicate data inaccuracies, the
dashed horizontal lines correspond to the various n levels. A
point of inflection occurs at r0 ——3.14X10 ' cm (KCl).

10-

0 1.5

~U ~r~ ~ ~r
~ I

-V ~.'

I

4.'e

f 10 em3

F16. 3. Diagram of
the potential energies
for NaCl (calculated)
as a function of the
interatomic distance r.

~ electrostatic (Cou-
lomb) energy of attrac-
tion (—Uq); ---- re-
pulsive energy (+Uz),
based on the value of
9 for its exponent n;—total cohesive energy
( —'U = —U&+ U&).
Equilibrium (=mini-
mum of U) occurs at
ro =2.815X 10—s cm, U0
=8.0 ev.

Because of the importance of anharmonicity in
understanding the properties of solids from an atomistic
point of view, this concept shall be illustrated and
confirmed in the following three ways:

(A) By means of the force characteristic itself:

Setting y =r/rs, we have

U= —(«isse'/ro)(y '—y "/~)
(cohesive energy),

d U//«= («iss"/«') (y
'—y '"+")

(restoring force), (15)

d'U/dr'= —(usis&e'/rs')(2y ' (n+1)y '"+"$—

(stiffness), (16)
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where n=Madelung's constant (e.g., n=1.748 for the
rocksalt structure), e= the unit electronic charge,
ro ——the nuclear distance between adjacent atoms at
equilibrium, s~ and s2= the valencies of the ion partners,
and e= the exponent of repulsion. At equilibrium
(r = re), the repulsive term as compared to the attractive
term, is small in (14), becomes equal in (15), and has
in (16) a value (n+1)/ro larger than that in (15).
Hence the material constant (n+ 1)/rs essentially
characterizes the anharmonic portion of the stiGness.
As we see from Fig. 4, the exponent e increases with
ro and, although in various steps of different constant
values (n —levels), it may be approximated by a
continuous curve which is best defined in the vicinity
of KC1 (n= 10). In plotting (n+1)/ro against ro (b)

+1]/r

4"
U

Oh
I
Ch 3 ~ ~

2--0

+
~ ~

fb) d[(it+1)/S' ]/dt

FIG. 6. Principal shape of the resonance absorption curves in
relation to the two types of anharmonic force characteristic:
(a) soft and (b) hard (schematically represented for the heavily
damped lattice vibrations).

while curve (b) corresponds to a solid of hard force
characteristic. "As a matter of fact, the experimental
absorption curves in Fig. 7 indicate a soft force
characteristic for LiF and NaCl, but a hard force
characteristic for RbCl, exactly as expected. " In

--L,O-

R.Q 2.5

(10 CM)

I
L

~l
I

I

I

Fro. 3. Curve (a): experimental data of the anharmonic portion
of the stiffness coefficient p(ii+1)/roj for various solids. Curve
(b): its differential quotient with respect to ro, both as a function
of ro. Minimum in (a) corresponds to a change of the sign in (b).
They occur at re=3.14X10 s cm (KC1), indicating a change from
soft to hard force characteristics.

Lsee Fig. 5(a)j, we notice a distinct minimum at
KC1. This indicates a change of stiGness with respect
to ro from a negative to a positive value, as
shown unequivocally through the differential curve
(dL(n+1)/roj/dre being a function of ro) in Fig. 5(b).
In this manner, the change of the force characteristic
from soft through linear to hard, with increasing value
of ro, is confirmed.

(B) By means of resonance absorption data:

The resonance curves of anharmonic vibrations have
an unsymmetrical shape as Fig. 6 schematically shows.
Curve (a) refers to a solid of soft force characteristic,

I

I l
) I

) oc(l-
I

f.0

~ ~LiF

»RhcL ~ KNocL ~

FIG. 7. Experimental absorption spectra of some alkali halides. '
LAbscissa: related frequency ca/&oo, where coo ——frequency of
maximum absorption. Ordinate: relative values of E or (1—D),
setting E or (1—D),„=1.0, where %=absorption coefficient,
D=transmission. j The shape of the main lobe indicates a soft
force characteristic for LiF (—) and NaC1 (- - - -), but a hard
force characteristic for RbCl (- -.-), when compared to Fig. 6
above. $KC1 (not shown here) has a symmetrical shape, indicating
a linear force characteristic. g

"J.J. Stoker, Nonlinear Uibrations, (see reference 3), pp. 21
and 92.

"For I.iF and NaCl see pertinent literature in reference 1;
for RbCl see R. B.Barnes, Z. Physik 23, 723 (1932).
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LiF
NaCl
RbCl

(1—oo,/coo)

0.21
0.04

—0.06

(1—9)

0.75
0.15

—0.20

The proportionality between the values of the two
columns is evident, its factor C being the same (C=3.5)
for all three solid compounds. Both this proportionality
and the change of the sign that occurs when we pass
from compounds lighter to those heavier than KC1
once again confirm the above concept. In addition, we
obtain the relation:

which requires verification by some more solids, once
conclusive data become available.

addition, KC1, not shown here, has a nearly sym-
metrical absorption curve and hence a linear force
characteristic. This observation again confirms the
above concept.

We should, moreover, observe proportionality be-
tween both the deviation from harmonicity of the
lattice vibrations and the deviation from symmetry in
the absorption curves. Since we define the anhar-
monicity as a function of oo,/nod, the deviation from
harmonicity (="coefficient of anharmonicity") be-
comes (1—oo,/op&). Further, we define the asymmetry
of the absorption curve by the ratio (q) between the
half-widths at both sides of the maximum; con-
sequently, the deviation from symmetry (= "coefficient
of asymmetry") by (1—q). In comparing now

(1—oo,/ooq) with (1—q), we obtain the following results:

TABLE II, Data of compressibility (Ko) p p and change of
compressibility with pressure Itto, according to Slater" (applied
in determining the data of "relative compressibility" (&0/Kp}y p.

reduced to the absolute zero).

mr
No. Substances (10 '4 g)

—Ko Kp

T=30'C T=0'K
P1/(10'o d/cmo) j Q0/KO

T=O'K

1 LiF 8.5
2 KF 214
3 LiCl 9.6
4 NaCl 23.4
5 KCl 31 0
6 LiBr 10.6
7 NaBr 29.7
8 KBr 43.9
9 RbBr 69.0

10 KI 50.0
11 RbI 85.6

1.53
3.31
3.41
4.20
5.63
4.31
5.08
6.70
7.94
8.54
9.58

1.4
3.2
2.7
3.3
4,8
3.2
39
5.5
6.5
7.0
7.6

11.7
20.1
19.8
21.9
26.5
24.5
25.5
31.8
35.0
39.1
43,0

8,3
6.3
7.4
6.6
5.6
7.6
6.5
5.7
5.4
5.6
5.6

(C) By means of compressibility data:

A striking phenomenon is discovered when we plot
against m„ the dimensionless ratio (|pp/Kp)r p (i.e.,
change of compressibility with pressure over com-
pressibility, reduced to O'K," for which we propose
the notion "relative compressibility. " The curve thus
obtained (see Fig. 8), in using the data of Table II, is
very similar to the anharmonicity curve (b) of Fig. 2,
representing X 'tr =f(m,). In fact, by correlation of
the two quantities (leap/Kp) r p and X 'tr we find
proportionality between them, the coefficient being
E=6. This is illustrated by the crosses in Fig. 2,
fitting the curve (b) within the limits of error L= ~10%
for the data of (|Po/Ko)r=o, due to the extrapolation to
O'Kj, if the ratio between the two ordinates is chosen
as 1/K. Thus we arrive at the interrelation

10-- Qp/Kp)r p JX itr, —— —(18)

II

p 6--
0

0

4

2--

0
0 20 60 80

( ~0-24 )

Fra. 8. Experimental data of "relative compressibility"
Q'o/Ko) r=o L= ratio between change of compressibility with
pressure $0 and compressibility Ko, reduced to the absolute zero)
as a function of the reduced mass m„. For the compilation of
pertinent data see Table II.'~ Decrease of the "relative
compressibility" indicates hardening of the force characteristic,
as m, increases.

where the coefficient K equals the coordination number
of the rocksalt structure. Since the substances
examined here all belong to this structure, and X is
determined per ion pair, while It p and Kp are volumetric
quantities, it seems obvious that E corresponds to the
number of ions of opposite sign surrounding each ion
within the lattice (=coordination number). However,
this statement has to be confirmed for solids of struc-
tures other than NaCl, when the corresponding tt p data
become available.

From Eq. (18) follows that data for the "relative
compressibility" of solids can be determined from
"related mass" data, or in other words, that the
anharmonicity of lattice vibrations (see Eq. 12) can
also be expressed by pure elastic data. Since tlap was
found to be independent of temperature, " Eq. (18)
allows determination of compressibility data (Kp values)
at the absolute zero without a thus far uncertain
extrapolation.

We can obtain another interesting interrelation by
"Data for compressibility and change of compressibility with

pressure, reduced the absolute zero, from J. C. Slater, Phys. Rev.
23, 488 (1923).
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eliminating X 'I& and X '~" between Eqs. (13) and
(18), respectively. It results in an equation relating
the exponent of repulsion (ti) and the reciprocal of the
"relative compressibility, " as follows:

logipg= E(Kp/Pp) r=p.

As a matter of fact, Fig. 8 or curve (b) in Fig. 2
show that the "relative compressibility" decreases
with increasing m„. This indicates hardening of the
force characteristic as m„ increases, and in this manner,
once again confirms our concept above.

In summing up the methods used to illustrate and
confirm our concept of the anharmonicity of lattice
vibrations, we discovered through them useful inter-
relations and data concerning the anharmonicity, and
helped to explain the asymmetry of the main lobe in
the absorption spectra, e.g. , of alkali halides.

state, then, corresponds to the known breaks in grating
space, compressibility, and change of compressibility
with pressure at argon, when plotted against the rare
gas configurations. '~

The importance of this classification of solids, based
on their diferent anharmonic force characteristics,
will be shown through various applications in forth-
coming papels.

8. INTERRELATIONS BETWEEN TOTAL COHESIVE
ENERGY, LATTICE VIBRATION SPECTRA, AND

CHARACTERISTIC TEMPERATURES

From Eqs. (11) and (12) we may now formulate the
underlying interrelation between total cohesive energy
and lattice vibration spectra for the entire range of
nonconducting or semiconducting solids (binary com-
pounds, so far"):

V. CLASSIFICATION OF SOLIDS BASED ON THEIR
DIFFERENT ANHARMONIC FORCE

CHARACTERISTICS
or

co.= (X„""/rp)(2U/sm, )', (sec ')

U= (s)sm, (cg,rpX '~i')'. (ergs/mole)
(2o)

The concept of anharmonicity of the lattice vibra-
tions, deduced in this paper, allows us to draw certain
conclusions concerning the atomic behavior of solid
matter. Since for light compounds the values of atomic
weight and volume, number and density of the electron
shells, also their deformability (polarizability), are
small, the atoms experience mutual interpenetration
rather than deformation of the electron clouds during
vibrations. The mutual repulsion between adjacent
atoms, resulting from interpenetration, is initially
strong, but increases less than linearly with decreasing
distance, because, as Slater and Frank have stated, "
the part of each atom which penetrates the other finds
itself in a 6eld attracting it towards the nucleus of the
other, since it is no longer shielded by all the shells of
the other. For this reason, the force characteristic is
soft for the light compounds (argon configuration not
satisfied in at least one ion partner). On the other
hand, for the heavy compounds the values of atomic
volume, deformability of the ions, etc., are relatively
large. During vibrations, therefore, the heavy atoms
experience mutual deformation rather than inter-
penetration of the electron clouds. The mutual re-
pulsion between adjacent atoms, resulting from
deformation, is initially weak, but grows stronger than
linear with decreasing distance, due to the initial high
density of the electron clouds. For this reason, the
force characteristic is hard for the heavy compounds
(argon conaguration satisfied. in all ion partners).

Since mutual interpenetration prevails within the
light compounds and, mutual deformation within the
heavy compounds, we conclude that the effects of both
interpenetration and deformation are in equilibrium
and the force characteristic is linear, when the argon
configuration is just attained. The linear or transition

"J. C. Slater and N. H. Frank, IetroductiorI, to Theoreticc1
Physics (Mct raw-Hill Book Company, Inc. , New York, 1938),
p. 442.

80 Rbl
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Fro. 9. Equality of experimental data of the center frequency
(1/X,) with data of (1/X.) computed from total cohesive energy
values. The two types of data of 26 solids (compiled in Table I)
are plotted against one another, thus the deviations from the
45 slope stand for deviations from their equality. The fact that
they remain within the limits of error (=radius of the circles)
indicates the validity of the interrelation between center frequency
and total cohesive energy for almost the entire range of center
frequencies of solids (in logarithmic scales). In the same manner
as a corresponding diagram (showing the equality between
center frequency and characteristic frequency from specific heat,
see Fig. 6 of reference 1) constitutes the "center law of the lattice
vibration spectra, " the above diagram illustrates the extension
of this "center law" with respect to the total cohesive energy.

'4The treatment of a ternary compound, as an example, is
shown in Table III and Sec. 9.

In order to illustrate the validity of this interrelation
we plot calculated and experimental values of 1/X,
against one another for all 26 solids of Table I (see
Fig. 9). We obtain a perfectly straight line of 45' slope,
which indicates the equality of the two frequencies.
The deviations average &3% for all these solids, and
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TABLE III. First determination of total cohesive energy data for solids of extremely high sublimation temperatures
(hence thus far inaccessible) from their infrared spectra.

fp mr

SiC
BN
C—CI
C —C II

zinc blende
zinc blende
diamond (a)
diamond (p)
garnet

4 1,89 14.1
3 1,57 10.2
4 1.54 10.1
4 1.54 10.1
6 2.23 21.5

No. Substance Structure s (10 ' cm) (10~4 g) (10 4 cm)

12.0
7.0
5.9

17.0

0.92
0.86
0.86
0.86
0.95

U

I (kcal /mole) (kcal/g)

8.2 4200 105
7.2 5400 220
7.2 9500 395
7,2 17 000 710
9.0 25 000 34

thus agree exactly with the average inaccuracy of
data determination.

Impurities in the investigated nonconducting or
semiconducting solids (averaging close to 1%) may
cause small deviations in some of the experimental
data. However, no changes beyond the over-all in-
accuracies of the experimental data are to be expected,
either in the total cohesive energy, the center frequency,
or the frequency of maximum absorption, provided
these impurities do not substantially increase the
electric conductivity.

In combining Eq. (20) with Eqs. (1) and (2), we
obtain a substantial extension of the center law of the
lattice vibration spectra' which reads:

vf(v)dv f(v)dv= (X 'iv/2rrrp)(2U/sm„)'*
0 p = (k/h)O~. (sec ') (21)

In eliminating the center frequency, we arrive at a
new interrelation between characteristic temperature
and total cohesive energy:

O~ = (hX '»/2rrkr p) (2U/sm„)*'. ('K) (22)

This equation allows determination of characteristic
temperatures from cohesive energy data and vice versa.
Its value will be illustrated in a forthcoming paper.

Q. PRACTICAL APPLICATIONS OF THE INTERRELA-
TION BETWEEN TOTAL COHESIVE ENERGY

AND LATTICE VIBRATION SPECTRA

As such an application we may consider a first
determination of thus far inaccessible cohesive energy
data for some solids of extremely high sublimation
temperatures (e.g. above 4000'K).

On the basis of Eq. (20) the author determined the
total cohesive energy of four arbitrarily chosen solids,
as shown in Table III. Passing down the list from No.
1 to 4, we observe a successive, strong increase of the
total cohesive energy (U) from 105 kcal/g (as for SiC)
to 710 kcal/g (as for the diamond of type II). These
data may be compared with U= 35.5 kcal/g for
corundum (A1~0s), see Table I, No. 26.

The yttrium iron garnet (No. 5 in Table III)
represents an example for a ternary compound. It
consists of the two ionic groups F203 and Fe~03 of
which z =6. They are distributed in the ratio of
1.5/2. 5=3/5, in order to satisfy the molecular formula
V3Fe50~2. Since both ionic groups contribute to the

vibrational spectrum, whose center of gravity is at
X,=17p," we determine the effective mean values
m„ro, z, and I '~& for the combined ionic groups
according to their distribution ratio. In introducing
them into Eq. (20) we obtain U=34 kcal/g which is
close to the U value of A1~0p. In addition, Eq. (22)
yields 0=850'K for the characteristic temperature of
the garnet of No. 5.

The results of Table III will be independently
con6rmed and additional applications will be separately
treated in forthcoming papers.

iO. CONCLUSION

In both the preceding and the present paper we
examined experimental and computed data of a great
number of solids. Ke derived a series of equations
which interrelate various physical data of solids.
They are: characteristic temperature, total cohesive
energy, exponent of repulsion, and a number of new
concepts, such as "center frequency, " "related mass, "
"relative compressibility, " "factor of anharmonicity, "
"coeScient of anharmonicity, " and "coeKcient of
asymmetry. " These notions dehne the anharmonicity
in various ways, and at the same time, simplify the
interrelations. In addition, we deduced a method for
classi6cation of solids, based on their different an-
harmonic force characteristic (soft-linear-hard), and
drew certain conclusions concerning the atomic behavior
of solid matter. Finally we accomplished a erst deter-
mination of some so far inaccessible data of total
cohesive energy from infrared spectra.

Many practical applications may come from these
results, some of them highly important. As a first
example, the hardness of minerals and inorganic
crystals will be defined and determined on the basis of
interatomic forces in the next paper to appear.

It is hoped that the results of this presentation will
stimulate experimental and theoretical basic research
in the field, in order to provide confirmation and/or
modification of them.
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