
SPECTROSCOPY AND STI MUI ATED EMISSION IN RUBY

The spectral width of the emitted radiation was
investigated with a Fabry-Perot interferometer. In
general, one or more sharp components were observed
of spectral width 6g 10 4 A superimposed on a
broader background (see I'ig. 16). The fringe patterns
were not, however, reproducible; that is, the number
and relative intensity of the components changed in
each photographic exposure.

DISCUSSION

The variation in the behavior of stimulated emission
in ruby can be explained on the basis of the discussion
in Part I. It was asserted that badly strained crystals
scatter the energy into many cavity modes and that
from the curves presented there it was expected that a
clearly de6ned threshold would not be present in such
cases. This is corroborated by the fact that the rubies
which exhibit the pronounced beam and spectral nar-
rowing, when viewed with polarized light, appear to be
less strained than the others.

Several theories to account for the oscillatory nature
of the output based upon relaxation behavior have been

advanced. ' "There is, however, a possibility that some

type of mode-hopping process is also taking place, since
the frequency of the inverted transition is certainly
being swept in time during the oscillation pulse due to
temperature changes and also due to a time-varying
magnetic 6eld produced by the current Row in the
helical flash tube. Moreover, it is dificult to explain
the appearance of several extremely narrowed lines
observed with the Fabry-Perot interferometer unless
some sort of mode sweeping is invoked. Further experi-
mental work is indicated before the characteristics of
the emitted light can be fully understood.
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The method developed by Begbie and Born has been applied to alpha uranium, where equations are
developed which give the macroscopic elastic constants in terms of the microscopic force constants. Inter-
actions of an atom with its first through fourth nearest neighbors, which involve twelve atoms, are con-
sidered. Through symmetry considerations, nineteen atomic force constants enter into this force system.
An independent determination of the force constants is required before a valid verification of the solutions
can be made. However, using measured values of the nine elastic constants, two sets of force constants are
evaluated, one based upon quasi-central forces and the other upon neglect of fourth nearest neighbors.

I. INTRODUCTION

EGBIE and Born' developed the so-called "method
of long waves" in order to study the relationship

between elastic constants and atomic force constants.
In their development the atomistic equations of motion
are expressed in terms of the second derivatives of the
potential energy function with respect to atomic
displacements. These derivatives termed the atomic
force constants are general in the sense that no assump-
tion is made regarding the form of the potential. The
elastic constants are obtained in terms of these atomic
force constants by comparing these atomistic equations

*This work was carried out under the auspices of the U. S.
Atomic Energy Commission.

' G. H. Begbie and M. Born, Proc. Roy. Soc. (London) A188,
179 (1947); G. H. Begbie, Proc. Roy. Soc. (London) A188, 189
(1947).

of motion with the elastic equations for a macroscopic
medium.

The structure of alpha uranium can be described as
a close-packed hexagonal lattice that has been distorted
to orthorhombic symmetry. Choosing any particular
atom as origin, it has two nearest, two second nearest,
four third nearest, and four fourth nearest neighbors.
The structure may be viewed as two interpenetrating
side-centered orthorhombic lattices with a unit cell
containing two atoms. Using symmetry considerations
it is possible to study the interactions of an atom with
its first through fourth nearest neighbors in terms of
nineteen atomic force constants.

In what follows, we develop equations which express
the nine elastic constants in terms of these nineteen
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FIG. 1. First through fourth
nearest neighbors of atoms 0 and
0' of a uranium. The unit cell is
described by the basis vectors a1,
a2, and a3. The vector b1 separates
the two interpenetrating lattices.

parameters. Using measured values' of the elastic
constants of alpha uranium and certain assumptions,
thirteen atomic force constants are evaluated for the
case where fourth nearest neighbors are neglected. For
the case of quasi-central forces between all atoms,
fourteen force constants are computed. We must view
these values merely as representing an order of magni-
tude. Before a more accurate test of the example can
be made, an independent determination of the atomic
force constants should be obtained.

II. THEORY

The equilibrium position of an atom of type k in tlie
lth cell is represented by the vector

In this expression + is the lattice potential energy,
e (l; k) is the n component of the displacement vector
of lattice site (l; k), n=1, 2, 3, and Np(l'; k') is the
corresponding quantity for site (l'; k').

The number of independent atomic force constants
C p are reduced by observing the following: (1) The
order of differentiation in (2.1) is immaterial, (2) 4 is
invariant under a rigid translation of the lattice as a
whole, (3) + is invariant under rotations, and (4) +
is invariant under all symmetry operations which

belong to the space group of the crystal. These embody
rotations, reQections, glide planes, and combinations of
these. These statements are, respectively, manifested
mathematically as

r(l; k) =r(/)+r(k), e.p(/ —l'; kk') =C,.(l' —l; k'k), (2.2)

where r(/) =/rat+/sas+/sas, with the l's being integers;
r(k) =)t'(k)at j)t'(k)as+A'(k)as, with 0~()t'(k) (1 (i =1,
2, 3); and ar, as, as are the basis vectors of the unit cell.

For small displacements u of atoms from their
equilibrium positions, we can develop the potential
energy of the lattice in a Taylor expansion. In the
harmonic approximation, it is sufhcient to retain only
terms quadratic in the nuclear displacements. The
coeKcients of these terms we de6ne as the negative of
the atomic force constants. They have the form

C.,(/ —l'; kk') = . (2.1)
cpu (l; k)BNp(l', k') s

'E. S. Fisher and H. J. McSkimin, J. Appl. Phys. 29, 1473
(1958); H. J. McSkimin and E. S. Fisher, ibid. 31, 1627 (1960).

QC p(l —l', kk')=0, (2.3)

+4 p(l —l'; kk')xx(/; k) =QC xp(/ —l'; kk')x (l; k), (2.4)
lk Lk

and
y (L,—L,' EK') = Te(/ l' kk') T", (2—.5)

where the matrix T represents a symmetry operation
of the lattice, T" its transpose, and (I.;E') is some

other lattice position.
Using the method of long waves, as found in Born

and Huang, ' we relate the macroscopic elastic constants

3 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1956), Chap. V.
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spy, nX] = )A,py]. (2.7)

In media free of stresses, the fourth-order tensor
c ~,sz (n, y, P, X=1, 2, 3) may be reduced to Voigt's
notation c„(p,0=1, 6) in the usual manner.

III. APPLICATION TO ALPHA URANIUM

Alpha uranium is orthorhombic with symmetry D»".
Its structure is similar to the hexagonal metals except
that atoms are skewed back and forth in the (010)
directions. The room temperature lattice constants are
taken as a=2.852 A, b=5.865 A, and c=4.945 A. The
parameter y, which is a measure of the skew behavior
in the b direction, is taken as 0.105. With any particular
atom as origin it has two nearest, two second nearest,
four third nearest, and four fourth nearest neighbors.
The structure may be regarded as a lattice with a basis
in which there are two interpenetrating side-centered
orthorhombic lattices with a unit cell containing two
atoms. The unit cell is formed from the three basis
vectors a~, a~, and aB. The two interpenetrating lattices
are separated by the basis vector b&. Figure 1 shows a
portion of the lattice where we have labeled the twenty-
four atoms involved in the calculation.

The twelve neighbors of origin 0 are split into two
groups P, P, and those of 0' into P', P' as follows:

P —+1, 2, 3, 4, 5, 6;
P —&1, 2, 3, 4, 5, 6;
P/ ~ 1l 2l 3l 4f 5l 6l,

Pl ~ 1l 2l 3l 4l 5l 6l

The six atoms that are in the plane containing the
origin 0 are denoted by type k=1, the six that lie in

to the interatomic force constants through the relation

c,,pg
——LnP, y) ]+LPy, nX]—LP.,ny]+ (ny, PX). (2.6)

The square brackets are linear combinations of the
atomic force constants and the curved brackets are
linear combinations of products of the atomic force
constants. Equation (2.6) holds only if we are dealing
with a lattice initially free of stresses. The compatibility
conditions for such a restriction are expressed in the
additional relation

the plane of 0' are of type k=2, and so forth. The
labeling procedure for convenience follows closely that
of reference 1. It is convenient to reduce the indices
(l; kk'), representing the positions relative to the
origin, to the notation (P; X), where the correlation of
(l; kk') —& P is given in Table I, and N'=1, 2, 3, 4,
denotes the first, second, third, and fourth nearest
neighbors, respectively. In this scheme D(l; kk') ~
D(P; 1V), where

(a) A twofold axis of rotation about the x axis,
followed by a reflection perpendicular to this axis and
then a translation of amount (0, —2yb, ~c):

—1 0 0
Tj—— 0 —1 0

0 0
(3 1)

The corresponding change of label is

P~ P' and P' —+ P.
It is to be noted that the translations a6ect only the
change of label.

(b) A reflection in the plane perpendicular to the y
axis plus a translation (0, —2yb, ~c):

1 0 0'
Tg 0 —1 0——, P —& P', P —+ P' (3.2)..0 0

(c) A reflection in the plane perpendicular to the
x axis:

—1 0 0
TB= 0 1 0

0 0
(3.3)

1 —+ 1, 2 —+ 2, 3 —+ 3, 4 —& 4, 5 —+ 6, 6 ~ 5.

D.p (t; kk') = $1/ (mmmm g )l]C p (t; kk').

The symmetry operations of the lattice are referred
to a Cartesian coordinate system centered at atom 0
and oriented as shown in Fig. 1.The symbol C'~

describes the type of symmetry axes, etc. The sym-
metry operations which are sufficient to reduce the
number of independent atomic force constants are as
follows:

TAsLz I. Atom positions referred to the basis vectors of the unit cell.

lI
l&

L3

(uu')

l1
l,
l3

p u')

1
0

(11)

(22)

—1
0
0

(11)

2'

0—1
0

(22}

0—1
0

(11)

3/

0
0

(22)

0
0—1

(21)

0
0
0

(12)

0
1—1

(21)

1
0
0

(12)

—1
0—1

(21)

6'

0—1
0

(12)

—1—1
0

(11)

—1—1
0

(22)

0
1
0

(11)

2/

0
(22)

1
0
0

(11)

3/

0
1
0

i22)

0
0
0

(21)

0
0

(12)

—1
0
0

(21)

0—1
1

(12)

0
1
0

(21)

61

1

1
(12)
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TAsi, E II. Atorpic force constant matrices for the origin nuclei and their first through fourth nearest neighbors.

D(1; 2)

D{1',2)

D(2; 3)

D(2', 3)

—1 ( P(2) ~(2)

m g o o

—1 ( P(3) b(3)
~(3) v(3)

m ( 0 0

0

~(3)i
0

~(3)i
D(4; 1) —1 f P{1)

D(4' 1) m ( 0

0 0
i'(1) zz(1)
z (1) ~(1))

D(5; 4)

D(5', 4)

D(6; 4)

D(6', 4)

—1 t' P(4) s(4) ~(4))
&(4) ~(4) ~{4)

I

~(4) z (4) ~(4))
-1( p(4) -h(4) -&(4)y

I

—~(4) ~(4»(4)
I

m E —&(4) z (4) ~(4))

D(3;3)
I

—1 ( p(3) —e(3)

D(3'3) m q 0 0

D(i; 2)

D(i' 2)

D(2; 3)

D(2'; 3)

D(3; 3)

D(3'3}

D(4; t)

D(4'1 1)

D(5; 4)

D(5' 4)

D(6; 4)

D(6'; 4)

—1 ( P(2) —b(2)
s(2) v(2)

m ( 0 0

P(3) —~(3)

m ( 0 0

P(3) e(3)
~(3)

0

~(2) J
0

~(3))

~(3) /

—1( P(1) 0 . 0
o ~(1) —z{1) I

m E 0 —w(1) ~(&))

—1 f P(4) —S(4) X(4) )—~(4) v(4) —
z (4)

I
m & 1 (4) —

z (4) ~ (4))
—1 t' p(4) 3(4) —1 (4)&

s(4) ~(4) —~(4)
I

m E-1(4) -~(4) (4)&

D(O')

—1 ~2P(2)+4P(3)+.2P(1)+4P(4) 0 0
0 2y(2)+4m{3)+2v(1)+4i'(4)

!0

m ( 0 0 2u(2)+4n(3)+2zz(1)+4n(4) )

(d) A reflection in the plane perpendicular to the
s axis:

0 0
T4 —— 0 1 0

0 0
1 —+1,
4 —+4,
1 —+1,
4 —+4,

2~2
5 —+6,
2~2
5 —+6,

3 -+ 3, (3.4)
6 —+5
3~3
6~ S.

(e) Equation (2.2) in connection with Table I gives
us the identities,

D(1; 2) =D'"(1; 2),

D(2;3) =D"(3 3)

D(3;3) =D"(2; 3),
D(1'z 2)=D"(1'; 2),

D(2'; 3)=D"(3' 3)

D(3'; 3)=D"(2' 3)

D(4; 1) =D"(4'; 1),

D(5; 4) =D"(5'4)
D(6 4) =D"(6', 4),
D(4', 1)=D"(4; 1),
D(5' 4)=D"(5 4)

D(6', 4) =D'(6; 4).

(3.5)

The use of Eq. (2.5) in conjunction with the stated
symmetry operations gives us the dynamical matrices
in their simplest form. From (3.1), we have

we find that Di2(1; 2) =D2i(1; 2), D2i(1; 2) =Di2(1; 2),
and so Dz2(1; 2)= —D2i(1; 2). Using these and the
other symmetry operations, we get the structure of
the remaining matrices.

The entire set of dynamical matrices is given in
Table II, where D and D ', representing the force of
the atoms 0 and 0' on themselves, are determined
from Eq. (2.3). In this table we have introduced Greek
letters for the force constants where the arguments 1,
2, 3, 4, denote respectively the first, second, third, and
fourth nearest neighbors.

The values of rP to be used in Eqs. (2.6) are given
in Table III.

Finally, through the use of Tables II and III and
Eqs. (2.6), we arrive at the following equations giving
the elastic moduli as functions of the atomic force
constants:

28
~ =—2P(2)+P(3)+P(4)

bc

I 26(2) —8(3)+e(3)+25(4)j', (3.7)
I (~) J

D(P'; N) = TiD(P; iV) Tzz' = D (P; N),

D(P; N) = T,D(P'; N)T, '=D(P' N)

(3.6)
2b

c„=—~(3)+S3'~(1)+4m &(4)
CC.

64
L3~(1)—&7(4)]', (3 g)

r(v)

(3.V)

We see that we need only calculate the twelve matrices
D(P; N) and D(P; N) as the rest follow from (3.6).

The relations in (3.4) show for P=1, 2, 3, 1, 2, 3,
that the atomic positions are not affected by T4, and
hence D(P; N)= T4D(P; N)T4". This gives Di3(P; 2) 2, (1)=Dzi(P; 2)=D2z(P; 2)=D32(P; 2)=0. Now (3.3) q„y (4) I- (1)+2 (4) j2
takes 1 —+ 1, 2 —+ 2, and 3 —+ 3. Using (3.3) and (3.5), ab 2 I'(7)
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Twm, K III. Atom positions referred to the Cartesian coordinates centered at atom O.

1-~ (r; 11)

bx'(l 11)

—xg(/; 11)

1 2

1
2

1
2

1
2 0 1

0 0

-SI (l' 21)
1
8

1—xg(l; 21l

1—x3(l; 21)
C

—2y 2
—2y

1
2

2 2y

1
2

2
—2y ——2y

28
c»=—[2n(2)+n(3)+n(4)1,

bc
(3.11)

2b...=—~(3)+»t (I)+48 t (4)

64
[yP(1) 8P(4—)]', (3 10)

r(p)

2a 2G—[2n(2)+a(3)+a(4)]=—[r'P(1)+P(4)], (3.17)
bc ab

2b 2G—[n(3)+8y'a(1) +48'a (4)]=—[r'r (1)+y(4)], (3.18)
Qc ab

while (2.4) gives

2c
«4= —kv(1)+y(4) — [~(1)+2~(4)]'

ab I'(n)

a[28 (2)y 6 (3)—5 (3)—26 (4)]
(3.12) =4b[y&(1)—8P(4)], (3 19)

4b[yn(1) —Bn(4)]= c[p(1)+2p,(4)]. (3.20)
2=- —&(4)+ [p(1)+2 ( )][2b(2)—b(3)

b rh)
28

+e(3)/28(4)] ——[2a(2)y (3)+n(4)], (3.13)
Ac

8=- y~(1)—8~(4)— [yy(1) —8v(4)][ (1)
Gl 1(y)

2b
+2y(4)] ——[n(3)+Sy'n(1)+48'n(4)], (3.14)

2
c)~————[b (3)+e (3)]+488(4)

+ [yv(1) —87(4)][2b(2)+~(3)—b(3)
r(~)

28
+2b(4)] ——[27(2)+7(3)+Y(4)] (3 15)

bc

where I'(n)=2n(1)+4n(4), I'(P)=2/(1)+4P(4), and
p(y) =»(I)+~(4).

The compatibility relation (2.7) and the invariance
relations (2.4) give us additional relations among the
force constants. Equation (2.7) gives

2b—P(3)+gy'P(1)+48'P(4)]

2Q=—[2y(2)+y(3)+y(4)], (3.16)
Ac

We have a total of nineteen atomic force constants with
fourteen relations between them. Equations (3.9) and
(3.12) are equivalent to a single relation for our fourth
nearest neighbor model, since their ratio equals I'(y)j
I'(n). This reduces the number of independent equations
to thirteen.

IV. DISCUSSION

The model employed is based upon the fact that a
solid is regarded as a collection of atoms coupled
together by springs in which the spring constants play
the role of the atomic bonds or atomic force constants.
In view of this, the calculation expresses how the bond
strengths and bond directions combine to give the
various extensional and shear moduli. For example,
c&~ which is the extensional modulus in the x direction,
depends upon atomic force constants of the second
through fourth nearest neighbors. Intuitively, one
expects a term relating the force in the x direction on
the second nearest neighbor due to a unit displacement
of the origin atom in the x direction. This is manifested
through the appearance of P(2). Similar arguments can
be applied to the other linear terms appearing in this
and the other elastic moduli.

Once the atomic force constants are known, we can
determine the normal modes of vibration by solving
the familiar secular equation and the frequency distri-
bution spectrum determined. It turns out to be im-
possible to do this entirely from elastic constant data
when considering interactions out to fourth nearest
neighbors as the number of force constants exceed the
number of equations. An independent determination
of the atomic force constants is required before we can
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TABLE IV. Elastic moduli in units of 10"dynes/cm
extrapolated to O'K.

c11=1.90
egg=2. 12
c33——2.89
c44 = 1.42
cg5 =0.928

c66——0.865
c12=0.387
c23 ——1.099
c13——0.255

proceed with such an evaluation. In principle it is
possible to evaluate them according to various theo-
retical approaches' and/or to deduce them from
experimental data obtained from long-wavelength
neu tron scattering.

For an order-of-magnitude evaluation of the atomic
force constants, we have resorted to the quasi-central
force approximation and the three nearest neighbor
atom model. The elastic moduli @33 and c44 are each
functions of the same argument. Consequently, the
number of independent relations reduce to thirteen.
The equation remaining serves as a cross check. In the
numerical examples below the agreement with that
equation was within an order of magnitude. It must also
be noted that in the four nearest neighbor atom model,
8(3), e(3), and B(2) occur in such a way that all of
them cannot be evaluated. This is a consequence of
the fact that the matrices D(2; 3) and D(3; 3) are not
symmetric. It is sufficient for them to be symmetric
but not necessary. Therefore, in the calculation we have
assumed B(3)= e(3). This reduces the number of force
constants to thirteen. The elastic moduli we obtained
from extrapolations of the temperature-dependent data'
to O'K. The results are given in Table IV.

To achieve the quasi-central force parameters we
set P(1), y(2), n(2), 8(2), and n(3) equal to zero. The

TABLE V. Atomic force constants in units of 10 dynes/cm.
Quasi-central atomic force constants.

&*(1)= 10.1
*(1)=

&*(1)= —2.5
p*(2) = 4.9

P*(3)= 2.6
&*(3)= 15.2.*(3)=&*(3)=1.08
P (4)= 16

~*(4)= —1.9
*(4)= 4.7

~*(4)=
X*(4)= —3.3
„*(4)= —0.048

Atomic force constants out to third-nearest neighbors.

I8(1) = 3.1
& (1)= —0.89

(1)= -5.7
y(1) = —2.8

p(3) = 1.9
v(3)= 23

(3) = 0.19.(3}=~(3}= —1.6
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