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Precise critical field measurements and a direct measurement of (9H/dP)r as a function of temperature
were made on physically identical samples of - and 8-Hg. The purpose of these measurements was to obtain
data on the effects of crystal structure on the properties of superconductors, and to permit calculation of
various thermodynamic quantities difficult to obtain in any other way. The critical fields of the two phases
were found to be identical when expressed in terms of the reduced variables H/H, and T/T.. No generali-
zations of this type could be found to explain the pressure effects. The advantages of an H? vs 12
and (0H2/dP) vs T2 analysis for extrapolation to absolute zero are stressed. The critical fields of several
representative superconductors are compared with the critical field predicted by the Bardeen-Cooper-
Schrieffer theory, using a plot that emphasizes the detailed shape of the curves at low temperatures. This
plot also can be interpreted in terms of the §/7. dependence of the width of the energy gap. The agreement
between calorimetric and critical field determinations of the electronic specific heat in the normal state is
shown to be improved by using the H2—T? extrapolation. The volume dependence of the reduced energy
gap is shown to be very small for those superconductors for which pressure effect data are available.

INTRODUCTION

HE p-Hg phase, which is a stress-induced modifi-
cation of solidified mercury, is stable at zero
pressure below 79°K.! A solid-solid transition was first
observed in mercury by Bridgman above 200°K at
pressures in excess of 10 000 atm.? Extrapolation of his
data to zero pressure indicated that the transition
should have been observed near 80°K, but specific heat,?
metallographict and x-ray diffraction studies* gave no
indication of such behavior down to liquid helium
temperatures. The work of Jennings and Swenson® on
the effect of pressure on the zero-field superconducting
transition of mercury showed anomalous effects
depending upon the thermal and mechanical history of
the sample. Subsequent work by Swenson showed that
this behavior could be understood on the basis of a
polymorphic transition in mercury requiring stress to
initiate formation of the 8 phase at all temperatures.!
Preliminary work on the zero-pressure superconducting
properties of the two phases was reported elsewhere.®
B-Hg crystallizes in a body-centered tetragonal
lattice” which is close to a linear chain structure, while
ordinary mercury (a-Hg) possesses a rhombohedral
structure! which is almost close-packed. The great
difference in the symmetry of the two lattices suggests
quite different thermal and electrical properties for the
two phases. A Debye 6 for 3-Hg of 93°K at 79°K can
be estimated from the phase transition data and the
corresponding Debye 6 for a-Hg, 87°K. These values of
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Laboratory of the Atomic Energy Commission.
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6 are consistent with a resistivity ratio of 1.70 which
was observed at 79°K.

Mercury is the only known example of a_super-
conductor which exists in two crystallographic modifi-
cations, both of which exhibit nearly ideal super-
conducting behavior. A comparison of data on the two
phases offers an opportunity to investigate the effect
of structure upon superconducting properties. The
Bardeen-Cooper-Schrieffer (BCS) theory,® for example,
suggests that the superconducting properties of a metal
should be relatively insensitive to crystal structure and
should obey a law of corresponding states; that is, the
critical fields of all superconductors should be given by
a common curve when the data are expressed in the
reduced variables {=7/T. and h=H/H, (T. is the
critical temperature at H=0; and H,, the critical field
at 7'=0.) In addition to a check of these predictions
for this simple case of two modifications of a single
metal, a knowledge of the critical field of a super-
conductor as a function of temperature and pressure
allows the calculation of electronic contributions to the
specific heat and thermal expansions, which are, in
many cases, difficult to obtain in any other manner.
This is particularly true in the case of mercury where
the Debye 6 is unusually low, so that lattice effects
almost completely overshadow the electronic contri-
butions. With the above purpose in mind, critical fields
for both phases of mercury were obtained as functions
of temperature and pressure on physically identical
samples.

These measurements involved two experiments, the
direct measurement of the zero-pressure critical field
and a two-sample (one at zero pressure, the other under
pressure) method of obtaining (8H/dP)r. In the latter
measurement, the pressure was transmitted by solid
He!. The magnitude of the pressure was obtained by
calculating the pressure drop from the melting curve
to operating temperatures using the data of Dugdale

8 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).
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and Simon on the phase diagram of solid He*® and
subtracting this value from the fluid pressure initially
imposed on the sample. This determination was checked
using the ‘“known” value of (8H/dP)r. for Sn to
calculate the pressure difference between two small Sn
samples mounted with the mercury samples.®? The two
pressure determinations were found to agree to within
29%,. The apparatus and experimental procedures used
in these measurements are described in the preceding
paper by Hinrichs and Swenson.!

EXPERIMENTAL DETAILS

The B-Hg samples used in the zero pressure critical
field work were formed at 77°K by extrusion through
a hole sufficiently small (0.016 in.) so that pressures in
excess of 7000 atm were required to initiate flow, thus
assuring formation of the B phase in the chamber.
Extrusion rates had to be kept low (about an inch an
hour) so as not to anneal the wire back to the a phase.
The samples consisted of 2-cm lengths of this wire,
which had been, in some cases, stored under liquid
nitrogen for several months.

As described by Hinrichs and Swenson, the pressure
work involved the measurement of the critical fields
of two similar samples, one under pressure, the other
at zero pressure.’” Samples used in this work were formed
by inserting mercury into an Al foil holder (0.019-in.
diam by $ in. long) with a hypodermic needle. The
B-Hg samples were formed iz situ in the pressure
chamber. Difficulty was encountered in initiating the
formation of the B phase with purely hydrostatic
pressure, and indications that the a-8 transformation
may be martensitic in character will be discussed in a
subsequent paper.!

As was described in an earlier paper, a 33-cps mutual
inductance technique was used to observe the super-
conducting transitions.’® The large paramagnetic
susceptibility of the intermediate state was observed
in every case, and indeed was more pronounced than
in the tantalum measurements.’® This aided greatly in
the precise determination of the transition. For both
the zero-pressure and the high-pressure experiments,
single instances were observed in which individual
samples showed discrete transitions corresponding to
both the a- and B-Hg phases. This behavior also had
been observed in the x-ray work where superimposed
a and B powder patterns were obtained for one sample.”
In each of the cases where the a- and §-Hg super-
conducting transitions occurred in the same sample,
they were separate and distinct, and agreed with
monophase sample data, whereas Jennings and Swenson?®
had observed single, rather poorly defined (0.05° wide)
transition temperatures in their deformed samples

°J. S. Dugdale and F. E. Simon, Proc. Roy. Soc. (London)
A218, 291 (1953).
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which were intermediate between the 7'’s now estab-
lished for the two phases. A possible explanation for
this behavior may lie in the sizes of the crystallites
of the mixed samples. Pippard has suggested on the
basis of skin depth determinations and the sharpness
of the superconducting transition that a long-range
order effect must exist between the electrons of a
superconductor.”? Homogeneous distributions over dis-
tances of 10~* cm satisfy the theory. If the samples
formed in the work of Jennings and Swenson possessed
many small crystallites randomly distributed between
the a and B phases, over regions of this critical size,
one might expect an average transition temperature
depending upon the proportion of each phase appearing.

It was not feasible to mount a B-Hg sample in the
zero-pressure chamber, so the direct isothermal com-
parison of two transitions was not possible for this
phase. In a-8-Hg run I (which used a mixed sample),
the carbon resistance thermometer was used to obtain
critical field data at precisely the same temperatures for
a run at 28 000-psi gauge pressure, and one at 3000 psi,
so that the pressure effect could be obtained by sub-
traction. The thermometer did not warm above 20°K
during these two runs. This procedure was tedious,
however, and in 8-Hg run I, an o-Hg sample was
mounted in the zero-pressure chamber, and the differ-
ences in critical fields of the a sample and the 8 sample
were obtained for two pressures on the 8 sample. Thus,
the zero-pressure sample served as a precise secondary
thermometer with the same characteristics as the
property of the sample being measured.

TaBLE I. Zero-pressure critical field data for o-Hg.?

Run I Run IT Run III

T (°K) H, (gauss) T (°K) H, (gauss) T (°K) H, (gauss)
4.0986 11.43 4.0907 12.65 4.0894 13.18
4.0122 28.32 3.9264 4498 3.9585 39.49
3.8950 51.31 3.7706 74.53 3.8955 51.59
3.7687 74.78 3.5650 111.32 3.7588 71.15
3.6026 104.86 3.2493 163.99 3.5747 109.61
3.4465 131.45 3.0014 201.79 3.2180 168.59
3.1177 184.16 2.7370 238.65 3.0199 198.72
2.7660 234.61 24727 271.45 2.7352 238.40
2.4069 279.57 2.2811 293.67 2.5081 267.08
2.2656 295.37 2.0570 316.81 2.3331 287.56
2.0712 315.47 1.8221 337.99 2.0480 317.49
1.8572 335.16 1.5597 358.22 1.6320 352.84
1.5709 357.57 1.4371 366.46 1.9088 330.46
1.3739 370.50 1.2858 375.54 1.5963 355.75
1.3441 372.14 1.1721 381.94 1.4803 363.75
1.2844 375.57 1.1402 383.54 1.3851 369.78
1.2016 380.05 1.3464 372.19
1.1414 383.13 1.1576 383.06
1.3120 374.28
1.1921 381.13
1.1565 383.21

a T¢=4,1534+0.001°K; Ho=412 41 gauss.

2 A. B. Pippard, Proc. Roy. Soc. (London) A203, 210 (1950).
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The data taken on the a-3 samples and the usual
procedure of taking the 3 data (transforming the sample
to @ by warming it above 93°K and repeating the
experiment) ensured identical conditions for comparing
the properties of the two phases. All the mercury used
in these experiments was obtained from Goldsmith
Brothers Smelting and Refining Company, and was
described on the container as “chemically pure, triply
distilled, impurities less than 0.0049.” The ratio of the
resistance of the a-Hg at 215°K to that at 4°K was
about 600.

RESULTS

The zero-pressure critical field data consisted of three
runs for each phase; these data are tabulated in Tables
I and II. The results of the pressure work are given in
Tables IIT and IV. The pressure data were normalized
to runs in which tin pressure calibrations were obtained.
Runs at several pressures showed (9H/dP)r for Sn,
Hg, and Ta to be independent of pressure to within
our experimental uncertainties. The 7’55z vapor-pressure
scale was used throughout.

It has been customary to express critical field data
in terms of power series expansions in #=(T/T.)?
since critical field curves are so nearly parabolic. The
data then can be displayed conveniently in terms of a
deviation from parabolic behavior, 64(=h—141) vs £.
This has been done in Fig. 1, where the deviations of
least-squares power series fits to 4th order in # of the
critical field data are shown for each phase. The values
of T, of 4.1534-0.001 and 3.949+0.001°K for a- and

TaBLE II. Zero-pressure critical field data for g-Hg.?

Run I Run II Run III
T (°K) H, (gauss) T (°K) H, (gauss) T (°K) H, (gauss)
3.9428 1.21 3.8863 10.90 3.8851 11.47
3.8786 12.56 3.7605 32.51 3.7616 32.44
3.8033 25.21 3.5674 064.04 3.5511 66.61
3.7240 38.55 3.4081 88.80 3.3972 90.37
3.6063 57.54 3.2384 113.70 3.2149 116.98
3.4545 81.50 3.0343 142.31 3.0165 144.14
3.3176 101.90 2.7616 177.18 2.7318 180.51
3.0782 135.96 2.5475 202.45 2.5097 206.32
3.0067 145.51 2.3253 226.45 2.3705 221.58
2.8373 167.20 2.0531 252.45 2.0495 252.53
2.6796 186.49 1.8237 271.77 1.8116 272.31
2.4361 214.35 1.5613 290.69 1.6198 286.53
2.2631 231.92 1.3037 306.14 1.4596 297.00
2.0765 249.77 1.2863 307.12 1.1766 312.34
1.8479 269.15 1.1706 313.08 1.2910 306.65
1.5649 289.48 1.1381 314.75 1.1454 314.13
1.3832 301.25 1.3764 302.08
1.3566 302.65
1.2748 307.10
1.1235 314.33
1.1282 314.19
1.2141 310.10

2 T, =3.949 +£0.001°K; Ho=339.3-£1 gauss.
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TasBLE III. Pressure data for «-Hg.
—(0H/dP)r (80H/3P)r
AH X103 AH X103
T(°K) (gauss) (gauss/atm) T (°K) (gauss) (gauss/atm)
a-Hg®—Run I
3.4297 11.88 7.60 2.5273 16.87 7.40
3.1375 11.79 7.60 2.1670 16.72 7.34
2.5790 11.41 7.35 2.0449 16.84 7.38
2.2027 11.63 7.49 1.8636 16.74 7.34
2.0201 11.45 7.38 1.5990 16.59 7.28
1.5572 11.11 7.16 1.1416 16.48 7.23
1.2134 10.91 7.03 4.0222 17.35 7.61
-8 HbP—Run I a-Hge—Run IT
3.7296 17.27 7.58 3.4716 18.70 7.39
3.4397 17.13 7.51
3.2022 17.29 7.58
3.0028 17.16 7.53
2.7451 16.87 7.40

2 Gauge pressures 28 000 psi and 3000 psi.
b Gauge pressures 40 000 psi and 3000 psi.
¢ Gauge pressure 40 000 psi; AHrc for Sn, 18.50 gauss.

B-Hg, respectively, were obtained from these power
series; the corresponding values of Hy, 41241 and
33941 gauss, were found using the analysis described
below. A typical run has been shown for each phase to
indicate the scatter. The a- and B-Hg critical fields

TasirE IV. Pressure data for 3—Hg.

—(0H/3P)r —(8H/dP)r
A X103 AH X103
T (°K) (gauss) (gauss/atm) T (°K) (gauss) (gauss/atm)
a—p Hg—Run I AH,
3.7296 19.37 8.50 3.72711 19.39 8.51
3.4397 18.95 8.31 3.6467 19.37 8.50
3.2022 18.80 8.25 3.5424 19.25 8.44
3.0028 18.70 8.21 3.0809 18.03 8.17
2.7451 18.04 791 2.9135 18.58 8.15
2.5785 18.11 7.95
2.5273 17.76 7.79
2.1670 17.40 7.63 2.3061 17.75 7.79
2.0449 17.44 7.65 2.1157 17.45 7.66
1.8636 17.25 7.56 2.0485 17.26 7.57
1.5990 16.76 7.35 1.9737 17.09 7.50
1.1416 16.49 7.23 1.6571 16.69 7.32
B—Hg*—Run 1 1.5149 16.44 7.21
AL 1319 1639 710
.1958 16.20 .10
3.7283 19.42 8.52
3.5375 19.28 8.46 1.1795 16.26 7.13
3.3309 19.03 8.35
3.0810 18.68 8.19 AH,
2.8600 18.49 8.11 3.3469 19.01 8.34
2.9695 18.61 8.16
2.5862 18.05 7.92 1.9124 17.08 7.49
2.3110 17.80 7.81 1.6618 16.58 7.27
2.1607 17.32 7.60 1.3585 16.43 7.21
1.9069 17.11 7.50 1.2037 16.30 7.15
1.4595 16.53 7.25

a AHrefor tin, 16.40 gauss.
AH1 = (Hpg480 atm — F,0 atm) — (F 200 abm — FJ 0 atm)%,
AH; = (Hpg280 atm — 0 atm) _ (Fg200 atm — F,0 atm),

where * denotes values as obtained from smooth curves through the
experimental points,
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Fic. 1. A plot of the deviation from parabolic behavior of the
critical field curves for a- and 8-Hg. The solid curves are the results
of least-squares power series fits to all the experimental data, while
the points shown represent typical runs. The maximum difference
between the two curves corresponds to, roughly, 0.4 gauss.

appear to be identical to within experimental
uncertainties.

The pressure data are illustrated in Fig. 2, where the
curves are least-squares fits to all the data, and data for
a typical run for each phase are given to show the
experimental scatter. The error bars constitute the
uncertainty in AH, and additional uncertainty of about
39, is inherent in the determination of AP.

In spite of the convenience of displaying the data
as in Fig. 2, very little insight is given to the primary
problem of extrapolating the data to absolute zero to
obtain values for H,, v, and the volume dependence of v
(v being the coefficient of the electronic specific heat
in the normal state). A method of extrapolation which
is different from that which has been employed by most
current investigators, although not entirely original,'
was used in this work. A brief discussion of this method
is given below.

The difference in the free energies of the super-
conducting and normal states can be expressed as'

F,—F,=H2V/8. (1)

If it is assumed that the lattice contributions are
identical in the normal and superconducting states, and
that the electronic contribution to the entropy in the
normal state is 7', the free energy of the electrons in
the superconducting state can be expressed as

Fo=—H2V/8r—~T%/2. (2)

In the low temperature limit, the BCS theory of super-
conductivity predicts an exp(—1/¢) dependence for

B D. Shoenberg, Superconductivity (Cambridge University
Press, Cambridge, 1952), 2nd ed., Chap. 3.
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the heat capacity of the superconducting state,? so
the quantity F, could be expected to approach its
limiting value of —H?V/8r much more rapidly than
T2. In this limit, then, Eq. (2) becomes

M= —4xyT?/V+Hp A3)

If this equation is simplified and differentiated with
respect to pressure at constant temperature, one
obtains

(9H2/dP) = (4nyK/V)[(d Iny/d InV)—1]T?
+dH2/dP, (4)

where K is the isothermal compressibility at absolute
zero. The slopes at 72=0 of Egs. (3) and (4) (when
plotted against 7?) yield v and d lny/d InV, and the
intercepts at 7%=0 give Hy and dH */dP.

This analysis seemed to be appropriate in the case of
mercury, since the data below #£=0.15 could be fitted
to a straight line on the H? vs 12 plot. Least-squares
power-series expansion in # to the lowest order which
would fit the data to within the estimated experimental
uncertainties were obtained for 42, 2k(0H/9P)/
(@Ho/dP) and % using an IBM-650 computer. The
coefficients of the series are shown in Table V and are
denoted by a@sn, ben, and Ay, respectively. A disadvan-
tage of the latter two series [4#* and 2k(0H/AP)/
(dHo/dP) vs ] is that the considerable curvature of
these functions makes these quantities more difficult
to fit than the # and dH/dP vs £ functions. However, in
the regions of the validity of these series (0.08<#2<0.75
for Hg), one is able to give analytical expressions for
the free energy, the electronic specific heat in the super-
conducting state, and the electronic contribution to the
thermal expansion in the superconducting state.
Equation (2) can be written in dimensionless form by

8580 ; '

~“SIMILARITY
PRINCIPLE

780

~(9H/ aP); x10°  GAUSS/ATMOS

6.80 L 1 L
() 25 5 .75 1.0

18=(T/Tc)?

Fic. 2. (0H,/dP)r for a- and B-Hg. The solid curves are the
results of least-squares power-series fits to the experimental data
while the points shown represent typical runs. Each run was
made at a fixed pressure, the magnitude of which was uncertain

to 3%.
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defining fs=F,/Fsand y,=HV/2xT 2, to give
fs=W42yE/yp= 2 asul"+2v8/7,. (5)

n=0
Differentiating twice with respect to temperature and
putting in dimensionless terms gives:

CY/yTe= (tyo/4v) (82 f:/08)
= (vo/47)[ go 2n(2n—1)as 2" 1+4vt/v,].  (6)

Finally, differentiating Eq. (1) with respect to T and P,
and using the Maxwell relation S/9P=—43V /9T, one
obtains:

BT o= (—HPK /4T 2)
X 3 #[(dInHo/d InV)bsu+aza '+, (7)

n=0
where 3, can be shown to be equal to
(K¥T/V)d Iny/d InV.

If the power series used were to give the proper
values for the extrapolations to ahsolute zero, o would
equal unity and the # terms would drop out in Eq. (5).
Similarly, the terms linear in ¢ would cancel in Eq. (6);
in Eq. (7), the 8, factor and the term linear in ¢ would
disappear. In practice the machine extrapolations are
not correct, so these terms must be included.

The values of v, T, and H, obtained in this work are
shown in Table VI. The values of y=1.9140.05
mjoules/mole-deg? and Ho=4124-1 gauss obtained for
a-Hg may be compared with the corresponding values
of 2.1+0.15 mjoules/mole-deg and 41541 gauss
reported by Finnemore ef ol.** and with Chambers and

TaBLE V. Coefficients of machine power series in #2,

o-Hg B-Hg
agq 0.99889 1.0060
as —1.7788 —1.8438
as 0.2915 0.4446
as 0.7856 0.6430
as —0.2983 —0.2506
bho 1.955 1.970
b2 —1.315 —1.140
by —1.185 —0.639
bs 0.559 —0.926
bg 0.759
4, 0.9981 1.0021
Az —0.8651 —0.9027
Ay ~0.3746 —0.2892
As 0.3978 0.3104
Asg —0.1561 —0.1209

4
ah2= 2 ast?n.
n=0 )
4
b 24 (3H/dP)r/(dHo/dP) = Z bont?n,
n=0
ch= i: Aont?n,
n=0

4 D. K. Finnemore, D. E. Mapother, and R. W. Shaw, Phys.
Rev. 118, 127 (1960).
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TaBLE VI. Summarized properties of o- and 8-Hg.
a-Hg B-Hg

T. (°K) 4.1534-0.001 3.9494-0.001
H, (gauss) 4120 =1 3393 =+1
v (mjoules/mole deg?) 1.91 +0.05 1.37 £0.04
K (atm™1X106) 2.63 £0.1 22 01
V (cc/mole) 13.79 13.59
dHo/dP (gauss/atmX103) —7.2 %03 —70 +0.3
dInT./d InV 34 +0.1 5.5 %01
dInHy/d InV 6.7 =403 9.4 403
dny/d InV 7.3 +0.3 8.6 =+0.3
Bn°Y/T X108 (°K2) 26 0.1 19 +0.1

Park’s value of y=2.044-0.03.15 The difference in the
methods of extrapolation is sufficient to account for the
discrepancies since the actual data agree to about 0.29,.
Accurate calorimetric determinations of v are difficult
because of the overpowering lattice contribution to the
specific heat, but Goodman has obtained a value of
y=2.12£0.1 for «-Hg.1¢

The agreement of the pressure work with the AL/L
results of Rohrer!” is not, however, as good. Our value
of d1ny/d InV=17.3+0.3 differs from his value of 3.3
by more than the estimated experimental errors.
Extrapolation procedures are again very important,
and, furthermore, Rohrer’s data were obtained from
single-crystal AL/L measurements which were con-
verted to AV/V (and dH2/9P) for comparison with
pressure-effect data. For anisotropic substances such
as mercury, there may be some difficulty in combining
properly the values of AL/L in the various crystal-
lographic directions to obtain AV/V.

The results of the calculation of dInT./dInV,
dInH,/d IV, B,°/T, and the parameters V, and K
used in these calculations are also listed for both
phases in Table VI. Equation (6) was used to calculate
C:/yT for both phases over the temperature range of
its validity (0.08<#2<0.8). Derivatives of the % vs £
expressions were used to obtain this quantity for the
region £2>>0.8. The various contributions to the specific
heat are shown in Fig. 3. where the lattice contribution
shown is as given by Smith and Wolcott.? The a- and
B-Hg fit the same C,*/yT. plot as would be expected
from Eq. (6), since the critical fields are identical in
terms of reduced variables.

A plot of the contributions to the thermal expansions
of the two phases is given in Fig. 4. The lattice term
was calculated from the specific heat values of Smith
and Wolcott,® using the relationship = — (KC%/V)
d1ng/d InV, and an estimated value of —d In6/d InV =2
(Griineisen’s constant).’ It is to be noted that the

15 R, G. Chambers and J. G. Park, Proceedings of the Seventh
International Conference on Low-Temperature Physics, Toronto,
1960, edited by G. M. Graham and A. C. Hollis (University of
Toronto Press, Toronto, 1960).

16 B. B. Goodman, Proceedings of Kammerlingh Onnes Memorial
Caonference on Low-Temperature Physics, Leiden, Holland, 1958
[Physica 24, S149 (1958)].

17H. Rohrer, Helv. Phys. Acta, 33, 675 (1960).
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F1c. 3. Contributions to the specific heats of a- and 8-Hg. The
electronic contributions are identical for the two phases on this
plot which is expressed in reduced variables. The lattice contri-
bution is given by Smith and Wolcott (reference 3).

superconducting contributions to the electronic thermal
expansions are negative for both a- and §-Hg. Similar
calculations using the available data'® for Sn,®® In,!®
Pb,2 and Ta! indicate that only tantalum differs in
sign from this result. A possible explanation may lie
in the fact that Ta is one of the transition metals which
possess characteristically high values of v. 1t would be
of interest to examine Nb and V to corroborate this
hypothesis.
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Fic. 4. Comparison of the various contributions to the thermal
expansion of a- and 3-Hg. The lattice contribution was calculated
from experimental specific heat data using an estimated Griineisen
constant of 2.

18 J. L. Olsen and H. Rohrer, Helv. Phys. Acta 33, 872 (1960).

1R, W. Shaw, D. E. Mapother, and D. C. Hopkins, Phys. Rev.
120, 88 (1960).

20 D. L. Decker, D. E. Mapother, and R. W. Shaw, Phys. Rev.
112, 1888 (1958).

SCHIRBER AND C. A.

SWENSON

DISCUSSION

The BCS theory of superconductivity assumes as a
first approximation that the superconducting properties
of the metal are independent of the crystal structure.?
Our zero-pressure critical field data on mercury seem
to bear this out. It is of interest to see if the differences
in Hy, T, and v between o and 8 Hg can be explained
using the observed pressure effects and the volume
difference (about 1.59%,) between the two phases. The
observed and calculated values of these differences are
compared in Table VII and do not appear to agree
except as to order of magnitude, showing the effect of
the crystal structure.

The pressure effect data show that the similarity
principle which would require that the %z vs £ curve
and the ratio of Ho/T. be independent of pressure is not
valid. A more general principle, that the % vs £ curve
does not change shape with pressure (Hyand 7', varying
independently), appears to apply to a-Hg, but not to
B-Hg. This is indicated by the dashed line in Fig. 2.
Hence, the critical field parameters (42, and as,) for
B-Hg in Table V can be expected to be functions of
volume.

Critical field data have been used to check the BCS
prediction of an exp(—1/f) dependence of the specific

TasLE VII. A comparison of the experimental shifts of 77,
Hy, and v between o~ and 8-Hg with those calculated from the
pressure data.

Experi-  As calculated from
mental (0Hw/dP)r (0Hep/dP)r
ATe=Teu—Tes (°K) 0.20 0.22 0.32
AHo=Ho,— Hos (gauss) 73 41 48
Ay =+,—vp (millijoules/deg?) 0.43 0.20 0.17

heat in the superconducting state. The theory, how-
ever, basically gives an expression for the critical field
curve® so it would appear to be more fundamental to
compare directly the experimental and theoretical
critical field curves. The BCS expression has been
evaluated by numerical integration using the ISU
Cyclone computer? in order to make this comparison.
A convenient method of representing both the theo-
retical and experimental critical field curves in the
region of greatest interest (£2<0.3) is by means of a
plot of [(1—74%)/#] vs #, since this plot is extremely
sensitive to slight experimental inaccuracies in this
region, and approaches a horizontal line in the limit
where the contribution of the superconducting state is
negligible.

Figure 5 shows this plot for a parabolic critical field
curve, for the BCS theory and for several superconduc-
tors for which precise critical field data are available.

2 The authors are grateful to Dr. D. R. Fitzwater and R. Dillon
for the programming. The results of these calculations will appear
in an ISU report.
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The shape of the experimental curves is very sensitive
to the value of H, which is chosen, and we have used
a linear extrapolation of the H? vs I? relationship
[Eq. (3)] to obtain the H¢’s which were used. These,
except for lead, where the different extrapolations made
no difference in the value of Hy, are appreciably lower
than those which have been reported in the literature.
This method of extrapolation appears to be on fairly
sound theoretical grounds, and has the more pragmatic
justification that it removes much of the disagreement
which has been reported in the past between calori-
metrict®:22-25 and critical field determinations of vy. A
comparison of the 4’s from these two sources has been
made in Table VIII for those metals for which precise
calorimetric and critical field data are presently
available.

The deviations of the critical field curves from
parabolic behavior (84=%k—14-2) are indicated in the
plot of Fig. 5, with the BCS curve showing the greatest
negative deviation, and lead the maximum positive
deviation. From this plot, it appears that the low
temperature exponential contribution to the specific
heat (since the curvature of the plots is related to this
quantity) becomes less pronounced as one approaches
lead-like behavior. This has been commented on by
Mapother.?? Even for tantalum, where this contribution
appears to be greatest, it is difficult to visualize experi-
ments which are sufficiently precise to determine the
detailed nature of the exponential dependence because
of the stringent requirements of both the temperature
and critical field measurements. The error bars in Fig. 6
illustrate the effect of a change of 0.05%, in H, (or H)
for various values of 2.

Figure 5 indicates that the usual deviation plot has
little basic significance, especially at the lowest tem-
peratures where the shape is extremely sensitive to the
value of H, which is assumed. Indeed, an anomalous
deviation plot of the type suggested by Bryant and
Keesom? for indium (where 64 passes through zero
and the deviations have both positive and negative
values) would follow naturally from this plot if the
experimental critical field data for indium had been
interpreted to give a slightly lower value for H,. It
would appear, however, that the calorimetric value
for v is too low for this substance, since our extrapolation
should, if incorrect, give values which are on the low
side.

Equation (5) for the reduced critical field curve can

( 2 D) White, C. Chou, and H. L. Johnston, Phys. Rev. 109, 797
1958).

2W. S. Corak and C. B. Satterthwaite, Phys. Rev. 102, 662
(1956).

24 M. Horowitz, A. A. Sividi, S. F. Malaker, and J. G. Daunt,
Phys. Rev. 88, 1182 (1952).

25 C. A. Bryant and P. H. Keesom, Proceedings of the Seventh
International Conference on Low-Temperature Physics, Toronto,
1960, edited by G. M. Graham and A. C. Hollis (University of
Toronto Press, Toronto, 1960).
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demonstrate the effect of a change of H, of 0.05% at those values
of 2

be written as

(1=2)/P=(1—1)/P+2v/7y. )

The intercept at #=0 of the curves in Fig. 6, which is
2v/% p, corresponds in the BCS theory to®

Vy/yp=4aT 2y HEV = (kT./2¢0)?81%/3. (9)

Goodman has shown that the reduced widths of the
energy gap at absolute zero, 2e/kT., as calculated
from Eq. (10), are a fairly smooth function of 6/7T..2
Figure 6 shows a smooth variation in the shapes of the
critical field curves from the BCS expression (which
assumes 8/ T'; approaches infinity) and lead (§/T.=13).%
This correlation, which is identical with Goodman’s,
has been indicated on the right-hand ordinate of Fig. 6
where the corresponding values of 6/7. have been
given. Richards and Tinkham?® have compared their

TaBLE VIII. Comparison of ’s obtained by our extrapolation
method with calorimetric values.

Our method Calorimetric
Ta 6.0 0.2 5.69@2)
Sn 1.7840.05 1.75@8)
In 1.7040.05 1.61@5
«-Hg 1.91+0.05 2.1+40.146)
B-Hg 1.3740.04 e
Pb 3.094-0.05 3.13e0

26 B, B. Goodman, Compt. rend. 246, 3031 (1958).

27 This correlation corresponds to the dependence of the magni-
tude of the deviation from parabolic behavior on 6/7. which has
been discussed by Mapother. See references 14 and 20.

28 P, L. Richards and M. Tinkham, Phys. Rev. 119, 575 (1960).
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experimental values of 2eo/k7". with those of Goodman,
and have found fair agreement except for mercury and
the transition elements. The deviation for mercury is
explained on the basis that it (and lead) show anomal-
ous structure in the energy gap. Recent work with
tantalum would seem to make any measurements of
the superconducting properties of the transition
elements suspect if these show anomalous properties,
since small amounts of impurities seem to produce
large effects.

SCHIRBER AND C. A.

SWENSON

Within this framework of the BCS theory, the pres-
sure effect data and Eq. (9) can be used to determine
the volume dependence of eo/k7.. Using the values for
dIny/dInV, d1nH,/dInV, and dInT./dInV given in
Table VI, d In(eo/kT;)/d InV is found to be zero within
experimental uncertainties for the two mercuries. A
survey of other available data show that this is also
true for Ta, Pb,? and Sn.%

2 M. Garfinkel and D. E. Mapother, Phys. Rev. 121, 459 (1961)
30 Unpublished data this laboratory.
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The anisotropy field, g value, and linewidth of several spinel
and garnet ferrites have been measured at X band and room
temperature as functions of hydrostatic pressure to 10¢ kg/cm?
The crystals studied include yttrium, ytterbium, and erbium
iron garnet; magnesium ferrite (with different distributions of
Mg?* ions on A and B sites); and Ni;—.Co.Fe;O4 with =0, 0.05
and 0.10. The pressure dependence of magnetization was measured
using magnetostatic mode methods in the narrow linewidth
materials, yttrium iron garnet and magnesium ferrite.

The complexity of the crystal structure and magnetic inter-
actions makes any quantitative interpretation very difficult.

INTRODUCTION

HE two dominant factors determining the

magnetic properties of ferrimagnetic oxides, the
superexchange and crystalline field interactions, are
sensitively related to the interionic spacings in the
crystalline unit cell. When hydrostatic pressure is
applied to a cubic crystal, such as a spinel or garnet
ferrite, the unit cell will remain cubic (provided no
phase change occurs!) and the lattice constant will be
reduced in proportion to the compressibility. As a
result of the compression, one would expect the super-
exchange interaction, which arises from the overlap of
neighboring wave functions, to become more pro-
nounced. Moreover, the crystalline electric fields at the
metal ions, produced by neighboring oxygen ions, would
also be expected to increase in intensity. Changes in
local crystalline fields would be manifested mainly by

* Supported by an Air Force contract.

t Based on a thesis presented by I. P. K. to the Division of
Engineering and Applied Physics, Harvard University, Cam-
bridge, Massachusetts, May 1960, in partial fulfillment of the
requirement for the degree of Doctor of Philosophy.

I Now at Bell Telephone Laboratories, Holmdel, New Jersey.

1 Experimentally, no abrupt changes, no hysteresis, and no
variations in symmetry of measured quantities are observed as a
function of pressure.

However, the observations can be understood qualitatively in
terms of the volume dependence of the crystalline fields and the
exchange interactions. In the case of erbium iron garnet, the
volume dependence of the ferric-rare-earth exchange constant is
calculated; and, in the case of nickel cobalt ferrite, a simple
explanation is offered for the observed volume dependence of the
Co?* anisotropy.

The contribution of thermal lattice vibrations to the linewidth
in yttrium iron garnet is discussed, and the possibility of an
anisotropic spin-orbit interaction is considered.

variations in magnetic anisotropy, and changes in
superexchange fields would cause variations in magnet-
ization. These macroscopic properties, magnetization
and anisotropy, as well as g value and linewidth, can be
measured at room temperature to 10* kg/cm? (about
10* atm) with the high-pressure microwave resonance
apparatus described below. It is found that the 0.29,
reduction in lattice constant occurring in the ferrites
at 10* kg/cm? produces rather large changes in the
resonance properties.

Although the prospect of varying the exchange and
crystalline field interactions directly is quite attractive,
a number of difficulties arise in analyzing the results of
pressure measurements. Despite the fact that the
pressure dependence of the lattice constant may be
determined from the compressibility by symmetry
considerations, the pressure dependence of the oxygen
parameters, which determine the relative positions of
oxygen ions in the complex unit cell, cannot be deter-
mined except by x-ray analysis at high pressure. The
simplest assumption, which is often a poor approxi-
mation, is to suppose that all interionic distances vary
in proportion to the compressibility, i.e.,

(0 Ing/0P)=5(3 Inv/9P)= —3x, ey



