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The polarization of a plasma in the neighborhood of a moving ion depends on the ion velocity. This
affects the distribution of the stochastic field acting upon the ion. The correction to the Holtsmark distri-
bution due to the complete test particle —6eld particle correlation including this dynamic eGect is calculated

up to the order e'. The result is: (1) a shift towards smaller fields, (2) anisotropy, and (3) velocity dependence,
which is not necessarily equal to the zero velocity effect even on the average.

I. INTRODUCTION

f 'EW methods for calculating the probability W(E)
that a test particle traveling through a plasma

experiences a given electric field E, have been suggested
recently. The original work on this problem is due to
Holtsmark' who determined the probability W(E) for
the case when the test particle is a neutral atom. This
calculation finds its application in problems related to
the broadening of spectral lines. ' Chandrasekhar' used
the Holtsmark results to find the probability W(F) for
a force F exerted on a star, due to the gravitational
attraction of the neighboring stars. The Holtsmark dis-

tribution is obtained by the complete neglect of the
correlations between the particles, and by treating the
stochastic field as a superposition of independent
random events. In fact, of course, correlations do exist
in the system and they cause deviations of various

types from the Holtsmark distribution. One may con-
veniently classify them as (1) correlations between the
plasma particles themselves, and (2) correlations
between the test particles and the plasma particles.

Diverse approaches have been employed to include
the correlations in the calculations of the probability
distribution. A group of workers have concentrated on
the effect of the collective correlations. Mayer4 treats
the system of field particles as a system of simple har-
monic oscillators for small fields [small E in W(E)j, and
for large fields he takes into account only a single
nearest neighbor. By using the Bohm-Pines' method of
cotlecA've coordAsates in separating the electric field into
short- and long-range components, Broyles' has been

' J. Holtsmark, Ann. Physik 58, 577 (1919);Physik. Z. 20, 162
(1919);25, 73 (1924).
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able to consider these correlation effects rather ac-
curately. Another school has used the egectsne poterrtial
of Debye-Huckel type' (which is again a result of col-
lective correlations) to describe the field of the indi-
vidual particles. Calculations have been made by
Edmonds' and Hoffman and Theimer. " Ecker and
Muller"" have refined these methods and have been
able to show by careful machine calculation" that one
can approximate the collective correlations by using a
cutoff at the fieM corresponding to the Debye length.
Some further aspects of the effective potential method
have been discussed by Theimer et al. in several articles. "
A novel approach has been given recently by Baranger
and Mozer. " It is based on a systematic cluster type
expansion of the many-particle distribution and takes
into account correlations of increasing order in the per™
turbation parameter e'.

The correlations between the test particle and the
plasma particles, if considered, are taken generally into
account through the Boltzmann factor, eventually
containing the Debye-Huckel potential. However, the
concept of local equilibrium, which is the underlying
physical picture, is hardly applicable to plasmas. "
Instead, the distribution of field particles around a
moving test particle results as a solution of the corre-
sponding nonequilibrium problem. ""Such a treatment
reveals the essential dependence of the particle dis-
tribution on the test particle velocity. One can easily
convince oneself that such a po7arisatiori egect results

P, Debye and E. Huckel, Phys. Z. 24, 185 (1923); L. D.
Landau and E. M. Lifshitz, Statistica/ Physics (Pergamon Press,
New York, 1958), pp. 229—236.
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127, 477 (1958); 129, 224 (1959); 0. Theimer and R. Gentry,
Phys. Rev. 116, 787 (1959).
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partly in an angular dependence of the fmld distribution,
partly in a change in the distribution of the directionally
averaged field. The present note is devoted to the
explicit calculation of this effect. Our starting point is
f"'(r, v), the field particle distribution calculated by us
in reference 14. In this treatment f"' is correct up to
e' and yields the distribution of the field particles within
the Debye sphere. Outside the Debye sphere (r)h,
h'=hT/47re'n, or for wave numbers h(h ') f"' has
been taken to be zero. This approximation has been
justified at length in reference 14. Thus our procedure
consists of the following. The unshielded Coulomb field
of the uncorrelated field particles is considered. The field
particles are distributed according to the polarized
perturbed density in the neighborhood of the test ion.
The integration of f&'& around the ion is extended to
finite region only. As a lower limit we take b= e'/kT,
the collision parameter: Within this sphere the linear-
ization certainly breaks down, "but the contribution of
the corresponding large field is not significant. For the
upper limit, h is employed as explained in the foregoing.
We may point out that in this way both the Boltzmann
factor (up to e') and the screening (through the cutoff)
are automatically included. Apart from these customary
corrections a distinct velocity-dependent dynamical
effect shows up, which in our approximation is additive.

The integration of the unperturbed part of the dis-
tribution f"'(v) is extended over the whole space and
results in the usual Holtzmark type C(p) (Chandra-
sekhar's' notation is used). The probability distribution
W(K), however, is not a linear functional of C(p) and
the additivity does not prevail in the final result.

The reader should be warned here that our procedure
is definitely not consistent. The correlation between the
plasma particles themselves has a contribution of the
order e', and if there is no reason to the contrary this
gives a correction to the Holtsmark distribution of the
same order of magnitude as that considered here. The
justification of the omission of this factor is that we
believe that (this effect being physically distinct) its
inhuence should be considered separately. In fact, this
has been the chief concern of many previous inves-
tigations. In principle we might improve upon our
calculations in order to include these field particle—
field particle correlations by including results from
other works. We may use the r, =h cutoff for the
undisturbed part of the distribution (Ecker") or we

may add to C(p) the second-order correction ho(p) as
calculated by Baranger and Mozer. " The latter pro-
cedure is in our opinion the most consistent, corre-
sponding to the spirit of the perturbation analysis
employed here. In the first approximation the two
effects (ours, and the Geld particle —field particle corre-
lations) are additive, and therefore the superposition
of distinct corrections to C(p) is admissible. The non-
linear dependence of W(E) on C(p), of course, mixes
the various corrections finally.

Recently Baranger and Mozer" have extended their
cluster-expansion method to the case of a charged test
particle. Thus they succeeded in carrying out a syste-
matic analysis consistent with e', and their work in this
respect is superior to ours. On the other hand, they go
beyond the customary Debye scheme in the definition
of the correlations, using constant-density and Debye-
type distributions for large and small relative velocities,
respectively. These in fact constitute the two limiting
cases of our Eq. (7) for v»vr (thermal velocity) and
v«vz.

II. FORMULATION OF THE PROBLEM

We consider the probability W(E)dK that a moving
ion experiences an electric field in the range E to
E+d E in a plasma. The probability distribution
W(E) can be obtained by applying the usual Markov
method as obtained, e.g. , by Chandrasekhar. ' Chandra-
sekhar's basic assumptions (U —+ ~, Ã ~ ~, no 1V/U-—
= constant, no correlations between the sources of the
field) and notations will be adopted in this paper. The
field of an individual particle is taken as

K,= e2r/r',

and no explicit shielding effect is considered. (Here and
in the following, subscript 2 and i refer to the field
particles and subscript 1 refers to the test particle. )
However, in the correction we calculate, the particles
outside the Debye sphere do not contribute. Therefore,
to be able to apply the Markov procedure, we need the
additional stricter condition:

kg)&1, )VS, =h'eo,

that is, the number of particles within the Debye sphere
of radius h should be large. This requirement is well
satisfied under the usual circumstances in a high-tem-
perature plasma, the ratio h/d (d = interparticle distance;
no ——d ') being large.

To take care of the correlations between the test
particle and the field particles, one considers the density
of the field particles around the test ion, n(r). It is
customary to regard this as the static pair correlation
function (pertaining to a test particle at rest), given by
the Boltzmann factor containing the effective Debye
potentiap

n(r) = n expL —(h/r)e (3)

where b=eie2/hT is the collision diameter and no is the
average density. To be consistent with our cutoff
approximation and in virtue of the perturbation
approach we apply (and in the spirit of the Debye
approximation, too), we make the following simpli-
fication:

n(r)=no exp( —h/r), r&h
=No, r) h.

We make use of the fact that

h/d((1,
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and get to the low-velocity approximation. Nevertheless, no
significant part of the problem will be lost in this way.

(6) We approximate n(r) by expanding it with respect to v,
retaining first-order terms only:

r(b, r)h (13)=eo,

In fact, instead of (6) we wish to use the more exact
dynamical correlations, which result from the 6rst- n(r) =no{1—(blr)[1 —(2/V'~)w (r/r)]}
order solution of the Boltzmann-Vlasov equation. This b&r&h (13)
has been given in reference 14,

n(r) =no{1—(b/r)[1 —4)(nor v/r)]

)&exp( —ni)'[1 —(r v/rv)'])} b(r&h (7)
where

XW= o.'V.

r&b, r&h, Then (12) is replaced by

Xno[1 —(b/r)+(2/Qm)bw (r/r')] (14)
2

4 (x)—= exp (—t2) dt.
Q~ &o To carry out the integration, we consider the three

parts of the bracket separately.
(a) The first term,The essential difference between (6) and (7) emerges

(i) through the velocity dependence and (ii) through
the anisotropic distribution around the test particle
(compare with Fig. 2 in reference 14). These two effects
represent the essential departure in the present paper
from previous considerations. In contrast to the cus-
tomary isotropic W(E) it results in a probability dis-
tribution W(E) depending on the direction of E.

To proceed, we follow Chandrasekhar's considera-
tions. ' The probability distribution is given through the
characteristic function A (p) as

C(p)= o ~d {1— pLp E'()]},

is identical with the C(p) of the Holtsmark distribution
and yields'

Ci(p) =& ~p*'

E„=(4/15)*27re2noi= 2 61 I) g, .

L:g= e2/d'.

(16)

where v is the velocity of the test particle and where
er=nt2/2hZ is characteristic for the thermal velocity C(p)= dr{1 ex—p[ip E,(r)]}
of the plasma. C is defined by

~(K) =(2~) ' "dp A(p) exp( —ip E),

A(p)= g dr r;(r;) exp[ip E,(r;)]. (9)

E~ is the field corresponding to the interparticle
distance.

(b) In, the second term,

r=h

C2(p) = —nob dr{1—exp[ip E,(r)]}1/r, (17)

u= K, (r) = e2r/r') dr= —-'e2lu '"du

and we obtain with s= cos(p, u)
(10)r, (r~) =n(r)/X)„

and assuming E and EI, to be very large, one gets

A(p)=e e&»,

where

C(p) = dr{1—exp[ip K,(r)]}n(r).

e)/b) dn pi
C~(p) = 7) bnoe2 ——

~ de[1—exp(ipus)]. (19)
~ e)/h)

In the above integral we replace the upper limit by
infinity and the lower one by zero. The justification of
this procedure is as follows. The corrections to the
Holtsmark distribution that we take into account, are
of the first order in e', or in eo [in terms of the dimen-
sionless parameter eo which is defined by (34)]. Any
term of higher order in it can be omitted or added
according to convenience. The change in the upper

(12)

III. THE CHARACTERISTIC FUNCTION

The exact computation of C(p) unfortunately cannot
be performed. To overcome the complexities of the
integration we simplify matters by restricting ourselves

In (9), E;(r;) is the Geld of the ith particle situated at r b

the point r; with respect to the test particle. r;(r;)
governs the probability of occurrence of the ith particle we 'n ro uce t e ne vana e

at the point r;. Supposing that only statistical Quctu-
ations compatible with the average density n(r) given
by (7) occur,
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limit amounts to the neglect of the integral

du t'
prbrbpep — dzr 1 —exp(ipuz)]

LJ g2jbmN

du
=btboe —=b'top = ep' . (20)

~I ep/b2u

Now, it is easy to see that the foregoing considerations
used in changing the limits of the integral allow here
as well of the replacement of the upper limit by infinity,
but do not apply to the lower limit where the integral
exhibits a logarithmic divergence. Thus we integrate
with finite limits (corresponding to the Debye sphere).
E2 is carried through as a parameter, and we get

To see the value of the term added through the alter-
ation of the lower limit, we expand the integrand for
small values of I:

Co(y) = i(4/3) (+7r)sbpbepw yf4/3 —Ci(pEp)]
=i(Ei/3/pr)$4/3 —Ci(pEp)]w y. )

(31)

(1/u') L1—exp(ipuz)]
= (1/u') ( ipuz+ p—'u'z'+ ). (21)

where"

Ci(x) —= — dt cost/t

(les/b&

I= prbtboep P'du '

dz=btbpePh 'P'.
~0

(22)

For the sake of an order-of-magnitude estimate, we set

p=E '=eoh'/e, (23)

and obtain that I is indeed proportional to eo'.

Thus, we put
f

C, (y) = 2xbtbpe—p t 1—(sinPu/Pu)]du/u', (24)

and obtain

The first term vanishes in the s integration. Then we
are left with the integral is the cosine integral, which diverges logarithmically

for small values of x (large distance). This is due to the
polarization eftect and the accumulation of charges in
the wake of the moving test particle. In fact, the Debye
screening makes this contribution finite. Actually it
remains finite even if h —+ ~, if this limit is taken
properly considering that in this case both Ei and E2
vanish, and a weakening of the correlation accompanies
the increase of the Debye length.

To conclude this section, we write the characteristic
function combining the three terms,

3 (y) = exp{—E *p'*+ (pr/8)Eip
—i(1/3+sr)E, $4/3 —Ci(pEp)]w. y}. (32)

Cp(y) = —(7r'/2) beptbpp = —(7r/8)E, p, (25) IV. THE DISTRIBUTION FUNCTION
where

Ei——ei/h' (26)

Cp(y) = (2/gpr)bttp dr{1—expLiy E,(r)]}
r=b

)&w (r/r') (27)

Substituting (18) in (27), we have

is the field produced by the test particle on the surface
of the Debye sphere.

(c) The third term describing the dynamical corre-
lation can be treated along similar lines:

e —= /E„,

and similarly instead. of E1 and E2 we write

ei El/E (el/e2) 60

ep
=E0/E„= (15/4) '(1/2ir) (d/h)'
= 2 (15/4) b(tb'/hT) e'

Changing the variables of the integration:

(33)

To evaluate W(E), we substitute (32) into (8) and
carry out the integration. It is convenient to employ
dimensionless quantities. We define

x=E„p, dx=E„'dy,pu =e2/h2

Cp(p) = —(1/gpr) bmpep du/1 —exp(iy u)]
~ u =e2//b~

we obtain

)(w (u/ub). (28) ~(e)= (2~E ) ' dx{exp$—x'+(8/ir)(ei/ei)pox]

(35)

Choosing in u space the coordinate system so that
i(1/3+7—r)(ei/es)epf ; Ci(xeo)-]—w x—ix e) }. (36)

y= l,p, w= ut(1, cosrt+1, sing), (29)
We use

where g is the angle between w and p, we get with
Ep= ep/h' where

D(x) = e+ wg(x, ep), (37)

Cp(p) = —2+prlpbepw (y/p)
g(x, ep) = (1/3+m)(ei/ep)epLo —Ci(pox)] (38)

is a known function of x with eo as a parameter. Thus.
~ex/b' du

X '
— dzt1 —exP(bPuz)]z. (30) 0 E. Jahnke and F. Emde, Tables of Fttactt'ons (Dover Pnh-

Ja, up a, ].j.cg,tj.ons, Ngw Yak, j.9&5),
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with y=cos(x, D), (36) yields

W(e) = (1/4m'E„') dx exp[ —x:+(m/8) (e,/es) esx]
Up

&& dy exp[—sxD(x) Y]
4

= (1/2~'E„') dx x exp[ —x*+(m/8) (ei/es) esx]
kp

&& [sinxD(x)/D(x)]. (39)

It is convenient to write W(e) as

W(e) = (1/47rE 'e')G(e)
where

(4o)

G(e) = (2e/~) I dx x exp[ —x-*'+ (m-/8) (ei/es) esx]
p

&&(»n[exl (e/e)+(wa(x, es)/e)1]/

I (e/e)+(wc(x, o)/e)
I } (41)

is now the modified Holtsmark distribution.

V. NUMERICAL CALCULATION OF 1"(e)

The modified Holtsmark distribution G(e) has been
calculated numerically on the WEGEMATIC of the
Weizmann Institute of Science, Rehovoth, using (41)
with the following choice of parameters:

(1) The test particle and the field particle charges
are equal: e~=e2.

(2) The test particle velocity takes four values:
z =o.&m=0, 0.1, 0.3, 0.5.

(3) The field points parallel, antiparallel, or per-
pendicular to the velocity v; with 8 (the angle between
e and v) being, respectively, t) =0, (~/2), ir.

I i 6(f)-H(E)

0.03

O.OP

It is interesting to compare qualitatively this result
with the well-known Holtsmark function [see reference
3, Eq. (553)]

(42)

1.0 +.4l~ ~ 40 .~ 50

G(e) and H(e) are identical either in the trivial case
ei=0 (no charge on the test particle) or when es ——0,
which is equivalent to no screening or infinite tem-
perature. The departure of G(e) from H(e) originates
from three distinct reasons:

(i) The field particle —field particle correlation which
brings about the screening and the finite range of the
electric field. The main effect of this correlation is
absent in our treatment, but it appears in the cutoff
we applied in the calculations of the velocity-dependent
term.

(ii) The static correlation between the charged test
particle and the field particles (Boltzmann factor). This
correlation is borne out by the exponential term,
exp[(rr/8)(ei/es)epx], in the integrand of G(e). This
point has been discussed by a number of authors. "
We remark only that in the case of ion-ion correlations,
a case that mostly pertains to experimental interest, it
results in the increase at smaller e values.

(iii) The dynamic velocity-dependent correlation
between the test particle and the field particles, as
reflected by the expression

I (r/e)+(wg(x)/e)I. This
represents the main effect from the point of view of the
present work. It gives rise to the anisotropy of G(e), a
direction distinguished by w being given in the dis-
tribution function. Again for ion-ion correlations small
fields parallel to the motion of the test ion have an
increased probability, while for antiparallel fields the
probability for large fields becomes greater,

0,02
(a)

|.(e)-H(c) 6= 0.02

Q.006

0.004

-0-002

"-0.QH

FrG. 1(a) Deviations from the Holtsmark distribution H(c)
due to the static and dynamic correlations between the test
particle and the plasma particle. The cutoff parameter ~0, as
dined be Eq. (34), is taken to be 0.1. Curves are given for
w=n&v=0, 0.1, 0.3, 0.5 and angles 8=0, (m/2), ~. The curves
corresponding to 8=m./2 for the above velocity values coincide
with the w=0 curve (pure static effect). ('b) The same as (a),
with et) =0,()2,
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(4) The cutoB parameter [Eq. (34)] takes the values:
ep=0.02, 0.05, 0.1.

The results are given in Figs. 1(a), 1(b), 2, and 3.

VI. DISCUSSION OF RESULTS

In this paper the modification due to the velocity-
dependent correlation between a test ion and the sur-
rounding plasma particles in the distribution fu,nction
of the field acting upon the ion has been considered. First-
order corrections in e' [or in es ——(m*/kT)e'] have been
retained, but the more or less familiar field particle-Geld
particle correlations have not been included explicitly.
The numerical calculations are correct for test-particle
velocities smaller than the thermal velocity. An
expected drift in the Holtsmark distribution results,
but apart from that there is a novel effect of a direction
and a ~etocity dependence in the probability distribu-
tion. One may speculate about the experimental rami-
fication of these results. The quasi-static Stark broad-
ening of spectral lines emitted by the ion moving in a
plasma will follow the shape of the distribution, after
a directional average is performed. If the emitting ions
are in thermal equilibrium, the final broadening appears
as the weighted sum over the velocity distribution of
the lines calculated for a particular velocity. One can
roughly estimate whether there is a difference between
this eBect and the broadening calculated through the

~

e(&)- H(~)

"0.03

03 QS

static correlation. To do this we write

A(p, v) =exp[ Co(P) —AC(p, v)]
= exp( —Co(P) }L1—~C(» v)]
=A, (p) —aA (p, v),

where with the aid of (7)

DC(p, v) =ass I dr(1 —exp[ip K,(r)]}

(43)

X (&/r) [1—C'(~'v (r/r))]

&&exp( —nv'[1 —(v. r/vr)']}. (44)

FIG. 3. The probability of obtaining a held ~ for eo
——0 |H(e) g

and for op=0. 1. Test particle velocity m =0&v=0.5; 8 =0, m..

Then calculating both (A (p, v)) and d,A (p,0) by aver-
aging over a Maxwell distribution for v, we obtain,
independently of the temperature, that

&A(p v))=(~/2)A(p0).

Thus one shouM expect that this additional broadening
would become detectable under suitable circumstances.

KO PO 3.0
~e

4.0 5.0

Fro. 2. Deviation from the Holtsmark distribution H(s) due
to the dynamic correlations, for vv=0. 5, 8 =w, and co=0.02, 0.05,
0.1.
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