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In this paper the analytic properties of a matrix element of a general operator between a bound state and a
scattering state are studied in the framework of Schrodinger theory. It is shown that the singularities of such
a matrix element are easily inferred from those of the Born approximation. Finally, using the fact that the
possible singularities which are not contained in the Born approximation are located far apart from those
included in the lowest approximation, a simple formula is derived which allows one to obtain the rescattering
correction to the Born approximation using the phase shifts explicitly.

I. INTRODUCTION

HE purpose of this paper is to point out some
properties of the transition matrix elements in

Schrodinger theory. These properties, which are the
consequence of the analyticity of the matrix element in
the energy variable of the final particles, may be
interesting in different respects. For example, from these
properties, relations can be deduced which display the
close connection between the matrix element for the
photodisintegration of a nucleus and the scattering of
the resulting particles. These relations also exhibit to
high degree the analogy between similar phenomena in
wave mechanics and in field theory. For example, the
equations for the photodisintegration of nuclei are
structurally very similar to the Chew-Low equations for
pion photoproduction. It is well known that the photo-
production amplitude has two branch cuts; one on the
real positive axis which is connected with the scattering,
and one on the negative axis which is connected to the
crossing symmetry. Analogously, the photodisintegra-
tion amplitude has similar cuts; but the cut due to the
crossing symmetry has to be replaced by cuts located in
other regions and due to the anomalous thresholds.

The locations of these singularities and their connec-
tions with the anomalous thresholds have been recently
studied for the model of the photodisintegration of a
scalar deuteron. ' We shall see that for every matrix
element of two-body disintegration, the singularities
due to final-state interaction can easily be factored out
and the remaining singularities can be foreseen by
simple inspection of the Born approximation.

'
Of course,

the type of such singularities, if they exist, depends upon
the particular matrix elements in question, but, and
this is a very important point, they consist in isolated
singularities contained in the Born approximation and
in lines of singularities of the same structure whose
threshold is beyond the isolated singularities by a
distance which is the inverse of the range of the nuclear
force. In the nuclear phenomena such a distance is

generally very large, and the lines of singularity dis-
cussed above are therefore usually far apart from the
region of interest; so one is led to the approximation
in which these singularities are neglected. In this ap-
proximation an integral equation can be obtained for
the matrix element in terms of the scattering of final
particles.

We further notice that in the case in which one is not
allowed to make such an approximation, also, the ap-
proach from the point of view of the dispersion relations
is very useful, since better approximations can be sug-
gested, as we shall discuss later,

II. DEFINITIONS AND GENERAL REMARKS

In this section we state the definition of the matrix
element with which we have to deal, and some observa-
tions from which our statement that the singularities
due to the final-state interaction factorized out will
follow at once. The matrix element we will consider is
defiiled as

M s'(q) = (+rr (r),O(k, r)+r'"'(q, r) ),

where err(r) is a bound-state wave function; O(k, r) is a
general operator; and +r'"'(q, r) is a two-body wave
function belonging to the continuum spectrum defined

by the asymptotic behavior

4'~'"'(q, r) sin(qr ——,'~l+8~) as r ~ ao, (2)

where 8 ~ is the scattering phase shift of the final particles
in the /th angular momentum state.

In definition (1) we have explicitly indicated the de-
pendence of k like a parameter since in the following we
will be interested in the q dependence only. The main
point to be noticed is that r%'r'"'(q, r) can be written as a
ratio of two functions which exhibit very simple analytic
properties':

(3)r+i'""(qr) = Lq'/f r( —q) 3~~(q'r),

2 In the literature this matrix element is sometimes defined in a
diferent way, i.e., 3I&'(q) =J'P, '"*(g,r), O(k, r)gz(r)rdr.

3 R. Newton, J. Math. Phys. 1, 319 (1960).
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where q &(q', r) is for every value of r an entire function of
q'=E, 'and f&(q) has the following properties' ':

(a) It is a regular analytic function when Imq(0.
(b) The only zeros it has are on the imaginary nega-

tive axis and correspond to the bound states.
(c) As q approaches infinity on the lower half plane

and on the real axis, f~(q) approaches one.

f
R~(k, q') = q' rdr + e(r)0(k, r) &pl(q', r).

0

(7)

III. SINGULARITIES OF R&(k,q)

In this section we analyze what kind of singularities,
if any, are associated with the tunctions E&(k,q). We
recall that from (1) and (3) R~ is defined:

It is also very important at this point to express q &(q',r)
by means oi the post functions':From Eq. 3 and the properties of p& and & we can

immediately see that if we write

R'(k q)
MI, '(q) =

f~(—q)

f~(q) = If ~(q) I exp~&~(q)

From (4) and (5) it follows that

M~'(q) =p(k, q')e"«&), (6)

where p(k, q) is a real function of the two variables k
and q'. Equation (6) is still valid under the more general
condition that the operator O(k, r) is only invariant
under time reversal. The proof is given in Appendix A.
Equation (6) is the expression for the matrix element
Mq'(q) of the so-called "final state theorem".

It is worthwhile to observe that in Schrodinger theory
this is a rigorous statement, while in second quantization
due to the possibility of creation of new particles, its
validity is limited to the energies for which such a
creation is impossible.

4 Our system of units is such that %=M = 1.' R. Jost and W. Kohn, Kgl. Danske Videnskab. Selskab, Mat. -
fys. Medd. 27, 9 (1953).' See for example reference 3. Indeed, the weakest assumption
one can make for such existence is that the first and second
moments of the potential exist.' See for example reference 3.

all the singularities which are due to the 6nal-state
interactions (for example, poles due to bound states in
the final-state system) are completely included in f&( q)—
since the function y& which determines R'(k, q) is an
entire function. We wish, however, to emphasize that by
no means can one assert that the function R'(k, q) is an
analytic function of q' in the complete plane; the point is
that if R'(k, q) has singularities, they come from phe-
nomena which are different from the final-state inter-
action. We also will notice that very weak assumptions
are needed on the potential in order that the functions
p~ and f~(q) with the stated properties exist. ' We will
see in the next section that we have a direct method of
analyzing the function E'(k, q) only if we restrict our-
selves to a particular class of potentials. Finally, there
is a very important remark to be made. Usually R'(k, q)
is real, since, as we shall see in the next section, q ~ is real,
and also O(k, r) is generally real. On the other hand

v ~(q r) =k'q-'—

X[f~(—q)fi(q, r) —(—)'f~(q)fi( —
q, r) j, (&)

where f&(+q, r) are solutions of the Schrodinger equa-
tions defined by the boundary conditions:

lime" '"f (q,r)
'= i', (9)

and
y((q, r)

f&(q) =lim(qr)'
(2/ —1)!!

P((k; q)= rdr Pe(r)O(k; r) f~(q,r), (10)

since from (7) and (8) we have

z

R&(k,q') =-q-'[ j&(—q)F &(k; q)
2 —(—)'fi(q)~i(k, —q)3 (11)

It is possible to analyze F&(k; q) if we limit ourselves to
the case in which the potential which generates the
scattering is a continuous superposition of exponential
functions:

V(r) = t p(n)e 'dn, p(u) =0, n(p.
~o

In such a case, which is a very important one from the
physical point of view, a method which was first de-
scribed by Martin' for the continuum spectrum, and for
the bound states by Bertocchi et al. ' can be usefully
applied. For the sake of completeness we recall here
brieRy the Martin method and its extension to the
bound-state wave function. For simplicity we limit
ourselves to the S wave.

Let us consider the function fo(q, r); it is a solution of
the scattering equation

fo"(q,r)+q'fo(qr) = I'(r)fo(q;),

and satisfies the boundary condition

lime'&"fo(q, r) = 1.
+~00

(13)

(14)

8 A. Martin, Nuovo cnnento 14, 403 (1959).
~ L. Bertocchi, C. Ceolin, and M. Tonin, Nuovo cimento 18, 770

(1960).

We are therefore led to study the analytic properties of
the function
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Let us write

f&(q,r) =h. (q,r)e '".

B. BOS CO

define

(15)
A "(n, q) = expL —(n+iq)r]0(k; r)dr, (24)

Then (14) implies:

limb. (q,r) = 1.
y—woo

(16) it follows from Eqs. (10), (19), and (23)

From the ansatz (15) one gets for A(q, r):
A" (q,r) —2iqA'(q, r) = V (r)A (q,r), (17)

F (k; q) =NA ~(x, q)+N g(q; p)A~(p; q)dz

where V(r) now has expression (12).
We now try to find a solution of (17) of the form:

G(rI)A "(g; q)dg

(18)

00

+ do G(o) g(q, rl)A ~(g+o", q)drl. (25)

By substitution of (18) into (17) and after identification
of the terms, we get

g(q, o)t o' —2iqo]= do. g(q, n)p(o- —n), (19)
0

or

g(q, ~) =~(o)+
1 ~ 0 P

g(q, n) p(o —n)dn, (20)
a(a 2iq) —Ja

the constant which multiplies the 8 function having been
determined by the boundary condition (16).We will not
discuss such a solution in further detail; what is im-
portant to notice is that the support of the function g
is the point 0-=0 and the continuum 0-~&p, . The bound
state can be handled in a similar way. Let us suppose it
is an 8 bound state; then rgb(r) is a solution of the
Schrodinger equation:

ii(r))"—x'Lrgii(r) j= U(r)LV&(r)), (21)

where z' is the binding energy of the bound state. We
suppose that the potential is again given by (12)." If
we attempt a solution of the form

r4 (r)=~" G(n)e ""dn,
0

(22)

we get for G(g) the equation

G(v) =N~(n x)+ ' —dPG(P) p(~ P) (23)—

Again we note that the support of the function G(g) is
the point g =x and the continuum g& x+y. This brief
analysis is sufFicient for discussing the analytic properties
of the function Fa(k; q). From Eq. (10) we see that if we

' We wish to remark here that there is neither obligation nor
need that the potential which generates the bound state be the
same as that which generates the scattering. The only reason we
choose the same potential in both phenomena is for more
simplicity.

(n+g)+iq= r„(k), (26')

with $ running from p. to oo.
We wish to remark here that the singularities due to

the spectral function g and G are of quite different origin
from those which are contained in A "(n;.q), since the
latter depends explicitly on the form of the operator
O(k,r). Going back to Eq. (11) we see that Ro(k; q) is
dehned by means of a function which is regular and
analytic in the whole plane (&p& is an entire function).
Therefore, the singularities due to the spectral function
cannot be present in Ra(k; q). Therefore we can say that
the singularities in the Born approximation determine
completely the singularities of the exact matrix element.
Furthermore, we see from (11) that, given the singu-
larities of the type discussed above, similar ones exist
which can, be obtained from Eqs. (26) and (26') by
changing q to —q. We proved our results only in thy

This equation contains all we need in order to locate the
singularities of Fo(k; q). Fa(k; q) will contain two kinds
of singularitie's: those which are in the spectral functions
g and G, and those which came from A ~(n, q). Since the
integrals involving G start at y+p, from (23) we see
that there are no singularities coming from this spectral
function. Equation (20) tells us that g has a cut which
starts at q=ip/2 and goes to i ~. This is a well-known
singularity of the function fo(q, r) As far. as the singu-
larities of A "(n; q) are concerned, we can deduce from
(25) the following rules (a) to compute explicitly
A "(n; q), that is, Fa(k, q), using the zero-range ap-
proximation for the bound-state wave function and the
Born approximation for the continuum wave function
fa(q, r), and (b) to analyze the possible singularities of
A "(n, q).

Suppose A "(o.; q) has n singular points. Since A "(n,' q)
is a function of only the two arguments n+iq and k,
these singular points g, will be given by the n relations:

e+iq.= r. (k), v= 1, 2 n. (26)

Then Eq. (25) tells us that Fa(k; q) will have, in addi-
tion, lines of the same singularities which are given by
the equations:
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case of 5 waves. However, these results can be gener-
alized to any angular momentum. "

IV. DISPERSION RELATION FOR THE
MATRIX ELEMENT

The results derived in the previous section enable us
to write down immediately the dispersion relation,
using the Cauchy theorem. I.et us call Bk'(q) the Born
approximation, i.e. , lim, „Ml, '(q). The function Mi'(q)—8&'(q) will be regular and an.alytic in the upper half
plane if we exclude the points on the imaginary axis for
which fo( in, )=0 and we cut the plane along the lines
iLy+ $—r.j with $ running from p to ~. The points for
which fo(—io.,)=0 represent the poles due to bound
states of the final particles. Ke can therefore apply the
Cauchy theorem to the path of Fig. 1 and we obtain

Mi'(q) —Bi, '(q)

Mi, '(q')dq'1

2mz ~ ~ ='~p
q

—
q

1 r Mi, '(q') —Bi, '(q')
dq'

2vri " ~c, q
—

q

1 (
"Mg'(q') —Bi'(q')

dq', (27)
2zz ~ q

—
q
—z6

since Bi,'(q') has no poles due to the final-particie bound
states and therefore does not contribute to the first
integral in the right-hand side. Furthermore, BI, (q) is
real, and for q real we also have

ANE

I P.
qlX

FIG. 1. Path for application of Cauchy theorem.

be used in an approximate way as we will see in the next
section.

V. RESCATTERING CORRECTIONS TO
THE BORN APPROXIMATION

The results obtained so far may be useful for practical
purposes. Indeed, we have learned that if singularities
of the matrix element exist, they consist of the points
q,+=&iLX—r„(k)j and of the lines q„+&i) with
running from p, to ~ where p, , we recall, is the inverse of
the range of the force which generates the scattering. In
many problems such a range is very short, and so the
lines of singularities start far from the singular points.
In these cases we are naturally led to the approximation
of neglecting such lines of singularities as far apart from
the physical region of interest. In such an approximation
Eq. (29) becomes an integral equation for the matrix
element. Indeed, the discontinuity across the positive
real axis can be evaluated using the property stated by
Eq. (6). One finds:

(28)MI, '*(—q) =Mi, '(q)( —) '.
ImMi'(q) =p'(q, k) sinai=Mi'(q)hi*(q), (30)

If L is even,
where

1
Mi, '(q) =Bi,'(q)+Im —Q

P q'= iap q q

hi(q) = expLibi(q)j sinai(q),

and therefore one obtains for Mi'(q) the singular
integral equation (we limit ourselves to i even and no
final bound state; obvious changes are needed if / is odd;
if bound states are present, one has to add the pole
terms to the Born term).

1 I""+'"
t
Ml. '(q') —81,'(q'))dq'

+Im —P
~ "~a+'p, q

—
q

1 p" ImM i, '(q')dq"

m~o 1 q" M '(q')h*(q')dq"
M~'(q) =B~'(q)+- )

Q

q
—

q zk

(31)
q

—z6

whose solution reads':

1
MI, '(E) = BI,'(E) cosh'(E)+ —e~&~'E

p" Bi,'(E') sinai(E')e —&~ii'&dE'

x t

If / is odd, one gets a similar equation, the only change
being that in the last integral dg" has to be changed to
lqdq'. In this equation q„=iLx—r„(k)j and $M&'(q')
—8&'(q') j means the discontinuity of M k'(q') 8 i,'(q')—
across the line of integration. The contour integrals
around the poles can be expressed by means of the
bound-state wave functions of the final system. This
will be shown in Appendix B. Relation (29) as it stands
may be of very little use since we have no way of
knowing the discontinuity of M& (q). However, it may

"It is only necessary to use the more complicated presentation
derived in (1) for higher angular momenta.

&(expLi5, (E)], (32)
"R.OInnes, Nuovo cimento 8, 316 (1958).
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where E= g )

1 p" bi(E')
p(E) = P — dE'.

jv' jv

The meaning of this solution is evident. It takes into
account the rescattering of the particles emerging in the
disintegration. The validity of such a formula is of
course limited to those processes for which the un-
physical cuts are not very important.

VI. CONCLUSIONS

We have studied the analytic properties of the transi-
tion matrix elements between a bound state and the
continuum for a general operator, and from these
analytic properties we have derived an expression for
the rescattering corrections to Born approximations. In
order to derive such an expression we were obliged to
neglect certain cuts on which we were unable to de-
termine the discontinuity of the matrix element. For-
tunately, we found that the cuts we neglect start at a
distance p from the nearest singularities, p being the
inverse of the range of the force which generates the
scattering, and so in the problems involving nuclear
forces they start quite apart from the physical region.
We wish to point out, however, that also in the case in
which one cannot neglect the unphysical cuts, Eq. (29)
may be very useful in suggesting other kinds of ap-
proximations: For example, one can introduce some
phenomenological constants in the problem, repre-
senting the cuts by means of one or more poles. Finally,
it is worthwhile to illustrate what kinds of phenomena
the unphysical cuts represent. It is clear that such a
specific aspect can only be reached through specific
examples. The particular model of a scalar two-body
photodisintegration was studied in some detail from
such a point of view. ' The result is that the unphysical
cuts are connected with the anomalous thresholds. Since
the argument used in this investigation can be applied
to any operator representing a physical interaction, we
can conclude that the connection between unphysical
cuts in the transition matrix element and anomalous
thresholds is quite general.

ACKNOWLEDGMENTS

It is a pleasure for the author to thank Professor L. I.
Schiff for the warm hospitality extended to him in his
Institute and for useful criticism and kind interest in
this work. The author is also deeply indebted to Dr. J.
Bjorken, Professor S. Drell, and Professor S. Fubini for
very enlightening discussions and kind criticism, and
Professor R. Hofstadter for his very kind interest.
Finally, he acknowledges a grant from the Comitato
Nazionale per le Ricerche Nucleari of Rome, Italy, and
a Fulbright travel grant.

APPENDIX A

We will give here the proof that in the case the
operator O(k, r) is invariant under time reversal, the
function Ri(k, q) defined by Eq. (7) is a real function. In
fact, recalling that by definition (8) ip& is only a function
of q') we have

Rie(k, q') =q' rdr Pii*(r)0*(k,r) pi*(q', r).
al 0

Now if U is a unitary transformation such that":

then

since

UO*(k,r) U '=O(k, r),

Ri*(k,q) =Ri(k, q),

~W& (q ")=O'i" (q «) = 0'&(q «)

&4s*(«)=Ps" («) =4~(r).

APPENDIX B

We wish to outline briefly here how to express the
circular integrals around poles due to bound states of the
final particles as expectation values of the operator
O(k, r) between the initial and final bound-state wave
functions.

Let us recall that

1 M i'(q')dq'

OPS

2R ( (k,ix p)
(B 2)

ix,—q fi(—ix,)

in which use has been made of the relation

fi(-~x.) =0,

and of the notation:
dfi(q)

f (—'x,)=
- a=-~xp

We use now the well-known relation'4:

fi(~x )/fi( &x.)=r&i, ,—', '

where

(B 3)

(B.4)

From Eqs. (7), (8), and (B.3) it follows that

Ri(k, ix,)=
2 (—) '1Vi, , Pii(r), O(k,r)P„,'(r)rdr.f(-'x, )
'

' See, for example, J. Slatt and V. Weisskopf, Theoretical
ÃNclear Physics (John Wiley R Sons, New York, 1952), p. 525.' This relation can be obtained, for example, using Kqs. (4.20)
and (4.21'l of reference 3.

Mk'(q) = Pii(«), O(k,r)fi'"'(q, r)rd«=Ri(k, q)/fi( q). —

(B 1)

Since Ri(k, q) is regular in the point q= ix, with x, real
and positive in which a bound state exists, we have:


