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Correlations between Cusys in Differential Cross Sections and in Polarizations
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Experiments have shown that partial waves with /)1 appear in x +p ~ A+E' at the ZE thresholds.
This necessitates a reconsideration of the criteria sufhcient to determine the ZA parity P (ZA) by the method
of cusps. In this paper we start from the usual assumption that contributions which show a cusp in either
the differential cross section or the polarization may be ignored beyond some optimal power in cosp. On this
sole basis, previously stated criteria are rendered inadequate due to the occurrence of Minami and other
ambiguities. It is shown that under suitable circumstances there exist unambiguous correlations between
certain properties of cross-section cusps and of polarization cusps. These correlations could possibly be of
use to determine P(ZA) and give information as to which states contribute significantly to the AE production
at ~900 Mev. The Gnite separation between Z'E' and Z E+ thresholds is taken into account. The results
are summarized in a table of cusp properties.

I. INTRODUCTION
' 'T was first observed by Wigner' that scattering and
~ ~ reaction cross sections may show cusps at the
threshold energies for competing channels. In the past
few years the importance of cusps for particle physics
has come to be increasingly realized. ' ' These days, the
attention mainly centers on the cusps in the reaction
z.—+p-+A+E' at the thresholds for ZE production.
The discussion of the present paper will be given with
these reactions as terms of reference, although the argu-
ments to be presented are quite general.

Experimental studies of the cusp in the AE reaction
are now in progress and preliminary results have been
published. 4 ' There are good indications that the cusp
phenomenon actually occurs. However, at the time of
writing it has not yet been found possible to reach the
principal goal of these experiments: the determination
of the relative ZA parity, P(ZA). A main stumbling
block lies in the fact, established by both the Berkeley
and the Columbia groups, that in the cusp region the
differential cross section for AE production contains
x= cos8 to powers higher than the second (0 is the c.m.
angle of production). Hence at these energies an analysis
in terms of 5 and I' waves only is inadequate.

In order to see the questions of interpretation which
arise, let us return for a moment to the assumption,
now shown to be fictitious, that we deal with a problem
in which the only contributing partial waves are 5;, I'.;,
and I';. Then by the well-known argument of Baz' and

' K. P. Wigner, Phys. Rev. 73, 1002 (1948).
~ R. K. Adair, Phys. Rev. 111, 632 (1958).' A. N. Baz' and L. B. Okun', J. Exptl. Theoret. Phys.

(U. S. S. R.) 55, 757, 1958. (Translation: Soviet Phys. —IETP 8,
526 (1959)$.A. N. Baz', Phil. Mag. Suppl. (Advances of Physics)
8, 349 (1959). Roger G. Newton, Phys. Rev. 114, 1611 (1959).
Luciano Fonda, "Inelastic collisions and threshold effects, " Insti-
tute for Advanced Study, 1961. This is a review article which
contains an up-to-date list of references.

4 M. Alston, J. Anderson, P. Burke, D. Carrnony, F. Crawford,
N. Schmitz, and S. Wolf, Proceedings of the 1960 Annual Inter-
national Conference on High-Energy Physics at Rochester (Inter-
science Publishers, New York, 1960), p. 378.' M. Schwartz, reference 4, p. 689.' M. Schwartz, Revs. Modern Phys. (to be published).

~ F. Crawford, Revs. Modern Phys. (to be published).

Okun', ' E(ZA) is odd if the terms x, x', and x' in
da/dQ show cusps; if only x' and x' show cusps the
parity is even. It should be noted that this assumption
about contributing states is a particular case where, for
given maximum J (namely -', ), there occurs only a
specific one of the two possible corresponding l values
(namely, 1 and not 2). Whenever this assumption can
be shown to be valid, the Baz'-Okun' argument is
sufficient to determine E(ZA), whatever J is. LFor
example, a cusp in x' means odd P(ZA) in the absence
of F waves. )

In the absence of further information it was certainly
natural to assume the presence of 5 and I' waves only.
The actual occurrence of higher partial waves compli-
cates the situation in a nontrivial way. Naturally, we
need to know which powers of cosg are significant. But
furthermore, as has been emphasized by Schwartz, ' this
knowledge in itself is insufficient to determine P(ZA).

The reason for this insufficiency is essentially the
Minami ambiguity' which was originally uncovered in
z-nucleon scattering, but which of course applies as well
to AK production. In the present context, the Minami
transformation implies that if we only know which
powers of cose in the cross section and polarization do
and which do not show a cusp, there exist alternative
sets of states which explain this limited information
equally well. One set would correspond to even, the other
to odd I'(ZA). In Sec. II. (A) we present a compact
formalism which is particularly suited to deal with this
ambiguity and its role in the E(ZA) question. There we
also discuss another potential source of ambiguity noted
by Schwartz, which arises when we compare a given
scattering amplitude with its complex conjugate.

Detailed information on the amplitudes of these states
which actually participate at the energy in question
would remove all ambiguities. Hence, a way out of these
complications would present itself if by other dynamical
arguments one could determine for which J and 3 values

S. Minami, Progr. Theoret. Phys. (Kyoto) 11, 213 (1954);
S. Hayakawa, M. Kawaguchi, and S. Minami, ibid. 11,332 (1954};
12, 355 (1954); H. Bethe and F. de Hoffmann, Mesons and Fields
(Row, Peterson and Company, New York, 1955), Vol. 2, pp. 75
and 80.
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TABLE I. Cusp properties.

Case
No. f1+ fl- f(l—I)+ f(/-I)-

P(ZA) even
First Second
corr. corr.

Zt',Zs) odd
First Second Only nonvanishing amplitudes
corr. corr. "p'/o" for the example 1=2

1
2
3
4
5
6
7
8
9

10
11
12

None

[(1+1)/t]O
None
None

[(1+1)/GO
[(1+1)/GO
None
F
[(1+1)/GO

None
None
None

[l/(l —1)]O

[l/(1 —1)]0
F.
[1/(l —1)]O
Gap
Gap
Gap

1

1
1
1
x2

x
1
1
1
x2

1

0
0
0
0
0
None
0
0
0
0
None
0

0 x2

None x
0 x2

Gap x'
0 x2

None 1
None x
Gap x'
0 x'
Gap x2

None 1
Gap x'

D:
Dg
Dy Dg

Df

Dg Dg P; I';
Dg Eg I')

D4 I$ I)
Dg Dg I'y
D) Dg I'g

D$ Ig
D$ I$

Pk
I']

S)
S)
Sg
S)
S)
Sg
S)
S;
S)
Si
S)
Sg

the corresponding partial amplitudes contribute signifi-
cantly to AE production at 900 Mev. Thus it has been
surmised that the presence of higher partial waves in
the AE reaction can be linked to the properties of the
so-called third resonance in z-nucleon scattering which
occurs at practically the same energy as do the ZE
thresholds. A study of the reactive effects of this reso-
nance on the AK reaction may therefore produce the
desired information. Of course, it remains to be seen if
such an analysis is sufficiently free from theoretical
ambiguity to be decisive for the parity question.

In the face of these dilemmas we were led to reconsider
the question as to the amount of information that can be
extracted from a cusp experiment without recourse to
extraneous dynamical information. We have found that
not only a knowledge of the powers of x in which cusps
occur and do not occur in the differential cross section
and in the polarization constitutes useful information. In
addition, it turns out that in many instances there
exist correlations between the type and magnitude of
the cusp term in a certain power of x in the cross section
on the one hand, . and the type and magnitude of a
corresponding term for the polarization on the other.

Figure 1 shows the four types of cusps, denoted by
C& to C4, which may in principle occur either in the
differential cross section do/dQ or in the polarization
P(da/do). In the discussion given in Sec. II. (C) we
shaB see that, depending on the nature of the contribut-
ing states, there may exist very characteristic correla-
tions which one may call allowed cusp pairs: To a given
cusp type in do./d 0 there may occur only one particular
cusp type in P(do/dQ). Moreover, whenever this is the

case, the magnitude of the respective numerical co-
eKcients in these pairs of cusps satisfy very simple
relations. The results are summarized in Table I.
Section II. C contains a self-contained set of definitions
of all the symbols which occur in the table. In Sec. II. B
it is noted that these results are independent of the
parity of the A." relative to the hyperon-nucleon system.

The main idea of the paper is the following. We shall
start from the one assumption that the cusp in the
differential cross section and in the polarization can be
represented by a finite polynomial in cos9. In this way
we do not commit ourselves on what the participating
states are. We shall then inquire whether specific cusp
correlations could tell us what P(ZA) is. It will turn out
that there exist a considerable number of cases in which
not only P(Zh. ) can be determined by means of cusp
correlations, but where in addition the cusp experiment
itself may serve to reveal to a large extent the character-
istics of the states which contribute significantly to the
AE production at the energy under consideration.

A further comment concerning our assumption is in
order. It is of course physically inconceivable that the
cos0 series for the cusp in the differential cross section
rigorously terminates at some optimal power. All one
can hope for is a sharp drop beyond a certain power.
In Sec. II. C we shall show by example how one may
correct the answers correspondingly.

While in Sec. II we treat the case of a single cusp,
Sec. III deals with the more realistic problem where the
finite separation between the Z'E' and Z E+ thresholds
is taken into account. In the 72-in. bubble chamber
experiment this separation has already been e8ected
clearly. ~ It is pointed out that Table I applies also to
the double cusp.

II. SINGLE CUSP

A. Pseudoscalar EC'

C) C3

FIG. 1. The four types of cusps for a single threshold.

Let Mzs denote the transition amplitude of m +p ~
h.+K' in the center-of-mass system for pseudoscalar
Eo (the A-nucleon parity is even, by convention). We
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write MJ q as'

~ps f+——g(o".k')(rr k). (1)

where f+' are the transition amplitudes for orbital
angular momentum / with total angular momentum
j=l&—'„" and I'& are the Legendre polynomials. The
differential cross sections and the polarization are then
given by

~~/~Q=
I
fl'+

I g j'+» Re(f*g),

I'((Io/dQ) = 2(1—x') l Im(f*g),

where P=Pn is the polarization vector and

(1—g') ln= k Xk'.

(5)

The Minami ambiguity amounts to the statement
that if for a given J we interchange the amplitudes for
/=1+-', and l=J——',, that is,

fl+~ f(l+I) and —fl ~ f(l I)+—
then the differential cross section remains unchanged
while the polarization changes sign. This can be easily
verified by noticing that as a consequence of the Minami
transformation we have

f~g and g~ f.

This simple and useful form of the Minami transforma-
tion is the main reason for choosing the representation
for 3f given in Eq. (1).

We note that the transformation of complex
conjugation,

fl+ ~ fI+0

aRects do/dQ and (I' do/dQ) in the same way as does
the Minami transformation, namely, (Eo/dQ is again
unchanged upon application of Eq. (8) while (I' do./dQ)
again changes sign. Hence, the product of a Minami
transformation and a complex conjugation:

Note that in this representation (f+gx) and s—(1 x—') rg

correspond to the conventional non-spin-Qip and spin-

Rip amplitudes, respectively; x=k'-h, where k and k'

are unit vectors along the incident and final momenta,
respectively. The amplitudes f and g are given by

f=Z Lf" '" f'""—3(~I'I/«), ( )

a= 2 Lf' f"3—(&I'I/«), (3)

It will be one of our main tasks to study the inhuence
of the transformation (6) and (8) on the question of
what one may hope to learn from cusps. In that context
one must be careful to state what complex conjugation
means, as we shall presently see.

Consider now the AE' production in the region close
to a ZE threshold; for definiteness we take Z'E'. Denote
all AE' production amplitudes at the Z'E' threshold
with the subscript t. From unitarity and the threshold
analytic properties of the s matrix, we have'

J'(zA) even: f'+= fl'++I', qn, (a)

P(ZA) odd: f' = fit +sq(r, (a)

(11)

(12)

where q is the c.m. momentum in the Z'E' channel
above threshold, and n is equal to the product of the
transition amplitudes of m +p —+ Z +I ' and of
Z'+E' —+ A'+If' at the Z'E' threshold. The notation
(a) will always mean that the equation refers to the
small region above threshold where an expression up to
terms linear in q is adequate. Similarly, (b) shall refer
to the region just below threshold, where Eqs. (11) and
(12) have to be subjected to the well-known analytic
continuation, '

(do/d Q) —(do/o'Q), = 2p,

(I do/dQ) —(I do'/dQ)l= 2(1—as)*() (15)

and denote by p, (ps) aIld 8, (8()) the cusp part of the
differential cross section and polarization, respectively,
for even (odd) ZA parity. Then from Eqs. (2) to (5)
and (11) and (12) we see that

p =qImL~*(f+~g)3, (~)

p = —Iql«j ~*(f+*a)3, (&); (16)

().= —
q Rej n*g,],

"o,= —jqlImj (r*g,),
(o)

8)
p =qIml *(a+~f)j, (~)

p = —jqjReL&*(al+&fl)g, (&);

(a) (b)

All amplitudes other than those occurring in Eqs. (11)
or (12) are to be replaced by their threshold values.

Define

fl+ ~ f(l+1)—a fl ~ f(l—I)+sc

or, correspondingly,

(9) (),=q Rej (r*f&j (~)

(&). (19)

f g* g f'
leaves both do/dQ and P (do/dQ) unchanged.

(10)

9 See, e.g., G. Chew, M. Goldberger, F. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).

' The amplitudes f'~ are related to the elements of the unitary
S matrix by f'+=S'+/2l'k, where k is the magnitude of the in-
cident momentum.

All information about cusps is contained in p and 8.
We now examine how these quantities behave under the
transformations (6) and (8) and their product (9). In
particular, we must ask the following question. Suppose
that E(ZA) is even and that among all f'+ and f' a
specific set of amplitudes participates. Now apply either
the transformation (6) or (8), or both. This transforms
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pe ~ po) po~ pep (a) and (b); (20)

b. -+ —b., h. -+ -b., (a,) aiid (b). (21)

Next, we apply complex conjugation Eq. (8) above
threshold and find

the set into another set. Is this new set with P(ZA) odd
distinguishable from the old set with P(ZA) even?

First consider the Minami transformation. According
to Eqs. (7) and (16)—(19) we have

in the face of the ambiguities implied by Eq. (8). Here
we are precisely at the root of the physical results we
shall obtain. We shall show that upon expansion in x of p
and of b th'e ratios of their leading terms p(a)/8(b)
and p(b)/8(a) exhibit characteristic differences for the
two parity choices. These diRerences are precisely due
to the fact that the ratios mentioned in Eq. (29) do
change sign when we compare even with odd P(ZA),
as follows from Eqs. (20) and (21).

We now discuss these expansions. Substituting Eqs.
(2)—(3) in Eqs. (16)—(19), we obtain

p. (a) ~ p. (a), p. (a) ~ p. (a);

b,, (a) ~ 8,(a),—b.(a) -+ —b, (a).

(22)

(23)

in accordance with Eq. (13).The complex conjugate of
these expressions is

Hence, above threshold the product transformation
(9) merely interchanges p, and p„and also b, and b,.
Thus we have proved the following: It is impossible to
determine P (ZA) from cusp information above threshold
alone, unless we have additional information on the
participating set of states.

Consider now the situation below threshold. It is here
that we must be cautious with the transformation (8).
It is instructive to do it first the wrong w'ay. Take for
example Eq. (11) and its analytic continuation

f0+= f,'++iqn (a); f'+= fi'+
l qln (—b), (24)

pe=

pp=

Here

q Imo.*
Z L(i+1)fi"+if ' jPi,—

lq f
Ren*

(30)

—
q Ren*

P(2l+1)Lfi fi'+1 ht]Pi—i, (31)—
l q f

Imn*

&&LE'++fi"+"+—fi" " —&i+~jPi (33)

j'ii —Q fi(&'+2)— f (t'+2)+

g

, EL(i+1)fi'"" +if'" "+3'i (32)—
I ql Ren*

q Rea*
1 P(2i+1)

p. (b) ~ -p. (b), p. (b) ~ -p. (b),

b, (b) ~ b.(b), b. (b) ~ b.(b).

(27)

Below threshold, the product transformation (9) now
interchanges p, with —p, and also 5, with —8,. Equa-
tions (23) and (27) imply that for either P(ZA) the
absolute signs of b(a) and of p(b) are irrelevant, always
in the absence of extraneous information. Note, how-
ever, that for either P(ZA) the ratios

p(a)/~(b) and p(b)/b(a) (29)

do rot change under the properly defined complex con-
jugation so that these two ratios are meaningful even

f'+~ f~'+* iqn* (a) —f~~ f~'+* lqln* (b)— (25)

If we should use Eq. (25) below threshold we would
obtain results similar to Eqs. (22) and (23), with cor-
responding consequences. However, Eq. (25) is the
incorrect analytic continuation, namely, q ~ i

l ql. —
The correct procedure is clearly the following. We

must first apply Eq. (8) to f'+ above threshold and
thereupon analytically continue it. Instead of Eq. (25)
we then get

f'+~f'+* iqn* (a)—; f~~fi'+*+lqln* (b) (26)

Applying Eq. (26) to Eqs. (16)—(19), we get

and the summation goes over 1'= l, l+2,
At this point it may be instructive to recall the trend

of the Baz'-Okun' argument. ' I.et us suppose that the
only states which contribute are 5;, J';, and P;. Keeping
only the highest power in x we have, according to
Eqs. (2) and (3):f x, g 1, hence p, x, b, 1, while
p, x2, 6, x. Because a prescribed set of states is in-
volved which is not invariant under the transformation
(6), the determination of P(ZA) is therefore free of
Minami ambiguity. Had we also included D~ this would
no longer have been true. Thus, in general, the sole
knowledge of the highest power of x in p or 6 does not
constitute sufhcient information for the determination
of P(ZA).

We now start the more general discussion, which is
exclusively based on the assumption that we may neglect
cusp effects in p beyond some fixed optimal power. As
we shall presently see, our assumption is equivalent
to putting

f'+= 0 for all l') l,

where / is now the optimal power in question. It may
directly be noted that this includes both alternatives of
Minami invariant situations

l
f'+=0, provided further

that f" ')+&0) and of noninvariant ones (f'+40).
Writing out the series in Eqs. (30)—(33) in decreasing

order of the I egendre polynomials we obtain, starting
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with the highest l,

Pe=
q

L(1+1)f4"+1f4' jp1—
lql Ren*

pp=

l
-q Ren*

(21+1)l f4' —f4'+jP4 i
I
—

I ql Imn*

+(21 3)l f (&—i)— f (l i)+]P—i

+ (21—5)Lf4&'
—»——f4&i

—~&+

+fi' f4'+]p—i 3+
q Imn*

, l (1+1)f-]P„,+Df, —.»,—
lql Ren*

(35)

+Df ' +(~ 1)f" "—+jpi-i+ . , (36)

t q Ren*
o
——' (21+.1)f,'+Pi+ (21—1)f4&'

—'&Pp

l ql Imn*

+ (21 3)[f (Z—2)++fil+ fii 5P4 &+. .—. ,

~s=~ps(n. k), (38)

where M~q is the transition amplitude for pseudoscalar
E' given in Eq. (1).The operator (4r k) is rotationally
invariant and of odd parity. Substituting Eq. (1) in
Eq. (28), we obtain

3JIs f(4r k)+g——(n k') (»)
Since (4r. k) operating on an initial state changes only

its orbital parity, f and g are still expressed in the form
given by Eqs. (2)—(3), but now the superscript/ in f'+
refers to the orbital angular momentum of the final
state only, as we stated earlier. The angular distribution
and the polarization obtained from Mg as well as the
dependence on q of f~ and f' near the Z'E' threshold
for P(ZA) even and odd, respectively, are the same as
for pseudoscalar E' Lsee Eqs. (4)—(12)j. It follows that
the remaining discussion and equations in Sec. II.A also

"An alternatively simple form is given by 3f =(e Ir')BE+8
=g(o"k}+f(o'.k'). In this case the / value in f'+ refers to the
orbital angular momentum in the initial mX state. The expressions
for the cross section and the polarization obtained from 3E~ are
still given by Eqs. (4) and (5) except for an additional minus
sign in the polarization Fq. (5').

B. Scalar ECp

Our foregoing discussion for pseudoscalar E' is also
valid for scalar E' provided we interpret the value of / in
the transition amplitudes f'+ as the orbital angular
momentum of the final AE' state. The corresponding
initial xS state has orbital angular momentum l'= l~1
while both states, of course, have the same total angular
momentum J=l&-,'=l'~-,'. To prove this assertion we
note that the transition amplitude for scalar E' can
be written in the form"

apply equally well for scalar E'." In particular, the
implications of Eqs. (34)—(37) hold true for either
EP-parity.

C. The Table of Cusp Properties

In order to distinguish the various possibilities to
which Eqs. (34)—(37) give rise, it is necessary to focus
attention first of all on which of the four quantities
f4"+' f4&" f &' '&+, and f" " vanish and which do
not. This is indicated in the first four columns where a
zero means that the quantity in question vanishes;
otherwise the f's are supposed to be nonzero and for
the rest, arbitrary. Of course f"&+ and f"& cannot
simultaneously be zero.

The columns marked "first correlation" refer to the
relation between the cusp in the leading power of x in p
and the cusp in the leading power of x in 8. Similarly,
the columns marked "second correlation" refer to the
relation between the cusp of the next-to-leading power
of x in p and the cusp in the next-to-leading power of
@in 8.

In order to explain in some detail the meaning of the
erst and second correlations, we first define the following
four symbols:

ci(p~)=(plql vq),

c (p,~)=(plql, -vq),
c3(p,v)=(—plql, vq),

c (P,v)=(-Plql, -~q),
where p, p) 0. These:symbols describe the four corre-
sponding pictures in Fig. 1, with one added specification:
The first (second) argument of C, denotes the slope of
the cusp below (above) threshold. Next we define the
16 correlation symbols

(C'C)=LC'(Py) C (yP)$

where the first C in the bracket always refers to p and
the second C to b. The symbols E and 0 which appear in
the table each denote four possible choices of correlation
symbols, namely

P.= either (Ci,C,), (C2,Ci), (CE,C4), or (C4,Ci), (40)

0=either (Ci C2), (C2,C4), (Ca Ci), or (C4,Ci). (41)

Example: If E enters under "first correlation, " then
(Ci,C3) means that if the highest power of x in p has a
cusp C, (P,y), then the highest power in 8 has a cusp
C.(p,~).

' '

It is characteristic for each correlation symbol which
appears in E or 0 that the ratio of the magnitude of the
slope in p above (below) the threshold and the magni-
tude of the slope in 8 below (above) the threshold is
equal to unity. The factor ( +11)/1 or 1/(/ 1) which—
multiplies 0 at certain places in the table means that

~2In order to distinguish scalar and pseudoscalar E in this
reaction, it is necessary to use polarized targets.
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these ratios should instead be (/+1)/l or l(/ —1),
respectively.

An entry "none" means that under the stated con-
ditions on the f's there is no prescribed correlation (of
the first and/or the second kind).

An entry "gap" under "second correlation" means
that the power of x which is one less than the leading
one is missing in both p and b.

The entries in the column "p'/o" mean the following.
If the leading term in p is x and the leading power in
(da/dQ)i is x", then the entry is x'

In the last column we have written out for the ex-
ample 1=2 the states for which the amplitudes are in
general nonvanishing. As we go down the table, more
and more gaps develop in the set of states until in the
last two cases rather peculiar combinations occur. We
would not have bothered with cases 1I and 12, for
example, if it were not for the fact that the significant
occurrence of partial waves with l) 1 in AE production
is in itself a somewhat peculiar phenomenon at the
relatively low lab energy of 900 Mev. Thus it may
actually be true that some gaps do exist of a kind found
in the table. It should further be noted that in principle
there may be further correlations, provided that the
set of nonvanishing amplitudes shows even wider gaps.
It seems to us to be reasonable to ignore such possibilities
for the present.

Next we make the following comments on what one

may hope to learn from experiment with the help of this
table.

(1) The bothersome cases are those which have
"none" entries for both the first and the second correla-
tions. The reason is, of course, that a "none" case in a
given column may by accident fake the result in another
place in the same column which has a prescribed correla-
tion. It should be noted, though, that a "double ac-
cident" is necessary for this to happen. Indeed, the real
and the imaginary parts, separately, of certain linear
combinations of at least two scattering amplitudes must
have just the right values before a fake result can take
place which satisfies all the specifications mentioned
above. Thus, if any particular correlation prescribed by
the table is actually found we cannot say with certainty
that P(ZA) has been determined, but it seems fair to us

to say that such an experimental finding would carry a
strong presumption.

(2) The cases "none" both in the first and second
correlation always have a "p'/o" value equal to 1. If
"p'/o" can be found experimentally, it is therefore only
possible to have a fake result for cases with "p'/o"= 1.

(3) The case "none" both in the first and second
correlation occurs for even as well as for odd P(ZA).
However, for odd P(ZA) there must be characteristic

gaps in the set of contributing states if this case is to
obtain.

(4) Only case 2 is fully Minami invariant. For this

p(b) B[1+'r cosPj+A X—' rsing— —

~+1
8(a) —B[1——',r cosP) —A )& ', r sinp-

for r —+0,

A = Im[n*f"& j, BRe[n*f" l~.

(42)

The limit values of these two ratios are just equivalent
to the statement that for D; absent we are in class E.
Consider some numerical values as examples. For & =0,
r= —,'0, we get deviations from the r=0 values which
are 0.25 in magnitude. As another limiting case take

case, the first correlation is sufficient to resolve all
ambiguities.

(5) The sets of correlation symbols in E and 0 are
disjoint. Thus, barring the above-mentioned accidents,
which can occur only when "p'/o" = 1, the table contains
14 mutually exclusive instances of prescribed correla-
tions which could possibly fix P(ZA). Only the cases
(0,0,x') (0, none, x) and (0, gap, x') each occur more
than once, but always for odd P(ZA) only.

(6) If experiment should tell us that we are cot in
any of the cases with prescribed correlations, then we
are necessarily in the none-none situation. In that case
the table tells us what is sufhcient additional informa-
tion to determine P(ZA); namely, we have to know if
there are gaps in the set of states.

(7) As a general rule, if the leading power in p is x",
then the leading power in 6 is x" '. The only exception
can come about by a fortuitous cancelation for those
cases where the first correlation is of the "none" type.

(8) In practice, one will compare the cross-section
cusp with the polarization cusp at energies above and
below threshold for which q=

~ q~.
(9) It has been customary to ask the question: Given

the participating states, what are the cusp properties?
The table shows that circumstances may arise where
(always barring the double accidents mentioned above)
it may be possible to turn the problem around and derive
information about contributing states from the correla-
tions between cusps in p and b.

Finally, we would like to show by one example the
e8ects of corrections due to the fact that an "absent"
state is never truly absent but has a relatively small
amplitude. Take the case of even P(ZA), D,* present,
D; absent. The first correlation is then of type E.
Now introduce a D; amplitude which is small compared
to D;:

f&'i+ = re'&f ~'&
~

r
~
&&1, 0 &g &2m.

Denote by p(o) (p(b)) the coefficient of P2 in p above
(below) threshold for this case, and introduce likewise

5(e) (b(b)). We have

p(a) A[1+2r cosP]+B)&23r sing

8(b) —A [1—~3r cosP)+B&(23r sing

for r —&0,
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&=m./2. Now the corrections depend as well on the rela-
tive magnitudes of A and B.For A =8 we get practically
the same numerical results as were quoted just before.
If A and 8 differ considerably in magnitude, the correc-
tions get much smaller for one, much larger for the
other ratio. Thus for A))B the value of p(~)/h(P) stays
quite close to the limit value —1, while the other ratio
may undergo drastic changes. For increasing r we move
toward the cases D;, D, , ~ which have "none" as
first correlation. Our example for even P(ZA) was
actually a less favorable one; it is readily verified that
there is relatively less disturbance for odd P (ZA). These
orienting remarks may at least suKce until detailed
experimental information becomes available.

P(~~) even' f'p'+=f"+ —2lq+lo'

f(+P+= fP++iqon;

P(&~) ()dd: f~o' =f~' 2I q+In-,
——

f(y = ft +$qp()(.

(45)

(46)

'3 Dr. Frank Crawford has pointed out that a direct way of
obtaining P{E+,E0) is to measure the cross section for the process
m +p~Z0+E0 near the Z E+ threshold. Since the Z E and
Z E+ thresholds are very close, one expects only S waves in the
Z'E0 channel at the Z E+ threshold, and therefore the presence
(absence) of a cusp indicates P(K+,E ) even (odd). In the AE
channel this cusp is a "cusp within a cusp" which is a nonlinear
eRect.

14 J. Sucher, G. A. Snow, and T. B. Day, Phys. Rev. 122, |.645
(1961l.

III. DOUBLE CUSP

In this section we discuss the problem of the 6nite
separation of the 2'E' and 2 E+ thresholds due to the
observed Z'Z and E'K+ mass differences. ' We confine
ourselves to the case of even relative (E+E') parity"
a,nd retain those relations between transition amplitudes
obtained from charge independence, neglecting mass
differences. Furthermore, we assume that these thresh-
olds are sufficiently close so that the approximation of
keeping only terms linear in momentum in either of the
ZE channels is valid in an interval containing both
threshoMs. In this case we obtain, by a simple extension
of the single cusp arguments, ' '4

P(ZA) even: f'+= f,'++ifqp+2q+)0(, (43)

P(ZA) odd: f' = ft) +i$qp+2q+ )()(, (44)

where qo and q+ are the respective c.m. momenta in the
ZpEo and Z E+ channels, -to be replaced by il qpl and
i

I q+ I
below their respective thresholds. n is the product

of the transition amplitudes 7r+X ~2+E and
Z+E —+ A+E for total isotopic spin —,'. The factor 2 in
Eqs. (29) and (30) is the relative probability of Z E+ to
Z'E' in a ZIC state of isotopic spin —,. The amplitudes
f(, + and f,' are constants, but unlike the single cusp
case these do not correspond to threshold amplitudes.
Instead, we have to satisfy the following relations for
the amplitudes f(po+ (f(p' ) and f(+P+ (fi+' ) at the Z'EP
(subscript tp) and Z E+ (subscript t~) thresholds:

If we substitute Eqs. (43) and (44) in Eqs. (4) and (5)
we obtain again Eqs. (16)-(19),where now q and lql
are given by

q
=qo+2q+ (a)

lqi = lqol +2lq+I
(47)

and where the notation (a) and (b) now means

(a) =above both Z'E' and Z E+ threshold,

(b) =below both Z'E' and Z E+ threshold.
(48)

For practical evaluations of Eqs. (16)—(19) the relations
(45) and (46) should be used with the understanding
that terms of higher order than the first in qp and/or

q+ should be dropped, consistent with the linear
approximation to these quantities which we have used
throughout.

In addition, however, there exists now, also, a third
region which we denote by (ab):

(ab) =above Z'E' but below Z+E+ threshold,

where

t = —
I qolReL~*(f~+&g~))+2q+ Iml ~*(f~+&g~)),

(49)
b.= —

I qpl ImLn*g() —2q+ Rel n*g&),

to= I qp I ReLn*(gt+xf&)7+2q+ ImLa*(gt+xf&)),
(50)

8,= lqplIml n*f~)+2q+ Rel n*f~).

Substituting in Eqs. (49)—(50) the expansions of f~ and

g, in angular momentum amplitudes Eqs. (2)—(3) and
assuming as before that f"+=0 for all t')l, we obtain

p,= {—I q()l Re()(*+2q+ Imn*}l (3+1)fg'++tfg' )P)
+Dft" "++(&—1)ft" ")Pl-1+. , (51)

b, = {—I qp I
Ime* —2q+ Rea*}
x (2t—1)I.f«-—f.)+)P~(
+(2t 3)l f, ((—()——f()—&)+)P& p

y (2[ 5)Lf, ((—&)— f, ((—&)+

+f ' f '+)P( +—-(52)

p.= {—I qo I
Rm*+2q+ 1m~*}

xL(t+1)f«"»~+Df«-) )P
+Df~' + (&

—1)f~" "+)P(—i+, (53)

b.= {I
qolIm~*+2q+ Re~*}

xL(2t+1)f~'+)P(+I (2t—1)f" "+)P) (

+(2t 3)Lf" "++f'+ —f' )P - +(p. . —(54).
It is clear that above and below both ZE thresholds

our discussion of the single cusp case applies here as well,

provided we identify q in terms of qo, and q+ by the
expressions given in Eq. (47). In particular, the table
of cusp properties can be used without further modi6ca-
tions. As in the single cusp, one will again compare the
cross-section cusp at an energy in the region a (or b)
with the polarization cusp in at an energy in the region
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b (or a), where the two energies are chosen to satisfy
v= lvl

The region (ab) has, of course, no parallel in the
single-cusp problem and has been included here only
for the sake of completeness. No simple cusp correlation
properties in this region have been found.

The finite separation of the two ZE thresholds, is, of
course, an eGect which violates charge independence.
It may therefore be asked if it is justified to assign the
above value 2 to the Z E+/Z'E' ratio. Small deviations
from the value 2 can be easily incorporated in our con-
siderations; however, large departures from 2 (including

the possiblity of complex numbers) would lead to a
much more intricate situation.
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There are known cases of symmetry laws valid for one kind of interaction but broken by another. Each
symmetry is then supposed to be exact for bare masses and coupling constants but only approximate for the
renormalized quantities, like neutron and proton masses. We ask how the equality of unrenormalized con-
stants can be rephrased as a statement about measurable quantities. This question is particularly important
in connection with proposed strong-interaction symmetries that are supposed to be badly broken. The
answer appears to involve the limits of ratios of experimental quantities at very high momenta. We discuss
first. the connection between wave-function renormalizations and weak and electromagnetic form factors.
Then we take up the measurement of strong-interaction vertex renormalization factors by the study of scat-
tering amplitudes at energies and momentum transfers large compared to all masses. The last part of the
work is based in part on indications from the perturbation development of pseudoscalar meson theory, but
we hope it will point the way to similar results in a better theory.

I. INTRODUCTION

HERE is no question that broken symmetries are
of the highest importance in particle physics. We

are familiar with the conservation of the isotopic spin
current, which is violated by electromagnetism, and the
conservation of the strangeness or hypercharge current,
which is violated by the v eak interactions. In both of
these cases, the violations are small.

Recently it has been suggested that there may
be other conservation laws that are badly broken
but nevertheless correct in some limit. Some examples
of proposed "partially-conserved currents" are the
following:

(a) The axial vector currents in the weak inter-
actions. ' ' Here, the conservation law is broken by the
masses of some particles if by nothing else.

*Research supported in part by the U. S. Atomic Energy
Commission and the Alfred P. Sloan Foundation.' M. Gell-Mann and M. Levy, Nuovo cimento 16, 705 (1960).

M. Gell-Mann, Proceedings of the 1960 Annlal International
Conference on High-Energy Physics at Rochester (Interscience
Publishers, Inc. , New York, 1960).

J. Bernstein, S. Fubini, M. Gell-Mann, and W. Thirring,
Nuovo cimento 17, 757 (1960).

(b) Strangeness-changing vector currents. ' Partial
conservation has been suggested in this case not only
for the weak interactions, but also as a manifestation
of a symmetry of the strong interactions higher than
charge independence. The violation takes place through
the mass differences of the various baryons and of the
various mesons and perhaps through some strong inter-
actions as well. (In the global symmetry scheme, the
culprit was supposed to be the IC-meson coupling. )

Such proposals of partially-conserved currents are
incomplete without some statement of how, in principle,
the limit of exact conservation can be explored experi-
mentally. The same is true, really, of the conservation
of isotopic spin and strangeness, although in those cases
the smallness of the violation makes it clear that there
is some sense to the conservation law, even without a
precise statement of the limit in which the conservation
is exact.

The conservation of isotopic spin is usually stated
as follows: The bare masses of neutron and proton, say,

4 M. Gell-Mann, Phys. Rev. 106, 1296 (1957).
s J. Schwinger, Ann. Phys. 2, 407 (1957).' M. Gell-Mann (to be published).


