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This differs from the Nsnal expression, which includes

the core interaction (st,gsl Uslg~rtv) as well T. his usual

result is obtained if, in the first term of Eq. (10) (which

we know to be identically zero), we replace X,t+& by its
Born approximation p . In this approximation, this
term is no longer zero, since rt, and P, are eigenfunctions
of different Hamiltonians. The result is just the extra
term found by perturbation techniques. It is clear that
this term should rot be present, and that only the
inadequacies of the perturbation approach have led to
its appearance. Some of the virtues of an approach in

which the exact expression is obtained before approxi-
mations are made can be seen from this example.

We may also observe that the so-called "post-prior"
discrepancy has evaporated. This discrepancy arises
when the ordinary (but incorrect) perturbation result
is used, since then either U or U& may enter the ex-
pression for M&~". While formally they give identical
results, that is (rt y&l U I@ st&)= (st y&l && ly Its); when

approximate bound-state wave functions are introduced
into these matrix elements, the equality no longer holds.
We now see that this term should not be present at all
and that no problem exists.
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It. is proved that a two-body reaction amplitude involving scalar particles and satisfying Mandelstam's
representation is bounded by expressions of the form Csin's at the forward and backward angles, and
Cs4 ln&s at any other fixed angle in the physical region, C being a constant, s being the total squared c.m.
energy. This corresponds to cross sections increasing at most like ln s. These restrictions limit the freedom
of choice of the subtraction terms to six arbitrary single spectral functions and one subtraction constant.

I. INTRODUCTION

S INCE the time Mandelstam' discovered his repre-
sentation for two-body reaction amplitudes, there

has been in general a little confusion about the question
of asymptotic behavior of the different quantities as
the energy variables go to infinity.

We shall point out in this paper a number of facts,
which, we hope, will help to clarify these questions.

In Sec. II, we derive, from the Mandelstam repre-
sentation and from a very weakened form of the uni-
tarity condition, an upper bound on the asymptotic
behavior of the amplitude in the physical regions.

In Sec. III, we show that these results cannot give
us any indication on the behavior of the double spectral
function.

In Sec. IV, we write down a general form for the sub-
tracted double dispersion relation, which will prove
convenient for the following.

In Sec. V, we investigate the question whether the
subtraction constants and the single spectral functions
can be determined from the asymptotic conditions
which we derived in Sec. II.
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II. ASYMPTOTIC PROPERTIES OF THE AMPLITUDE
IN THE PHYSICAL REGION

We consider a reaction of the type 4t+b —& c+d
among scalar particles. We denote by p, , p, ,

—p, , —p4
the momenta of the particles a, b, c, and d, respectively.
We introduce the notations s= (PI+Ps)'; t= (Ps+Ps)',
u= (Ps+PI)s. Then

s+ t+u =pie+ pss+ ps'+ p4'

We shall assume that all masses are equal to the unit
of mass as we deal only with asymptotic properties,
where the difference between the masses is negligible.
Then: s+t+u=4 We call ch.annel s the above reaction .

a+b ~ c+d, channel t the reaction b+c~ 44+2 and
channel u the reaction tt+c —+ b+d. In the channel s,
the momentum of one particle in the c.m. system is
given by q,s= (s—4)/4 and the reaction angle will be
defined by cosft, =1+(t/2q, s) The physical .region for
channel s will be given by

tl,s)0, l cosset, l
&1; or s)4, t&0, u&0.

We define the notations in the other channels by a
circular permutation among (s,t,u).

In order that the double dispersion integrals make
sense, we have to require that the double spectral func-
tions be tempered distributions, and similarly, we re-
quire that the single spectral functions be also tempered
distributions.
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Then the amplitude in the s channel is a distribution
in s, analytic in 3 in a domain including the physical
region. In order to simplify the language, we adopt the
following convention: We shall say that a distribution
T behaves at most like a function f at infinity if T/f
is bounded in the sense of distributions, or equivalently,
if every regularized of T is bounded by some multiple
of f in modulus. According to this convention, a tem-
pered distribution is a distribution which behaves at
most like some polynomial at in6nity.

To get an intuitive idea why the amplitude is bounded
in the physical region, let us consider a classical prob-
lem: Two particles interact by means of an absorptive
Yukawa potential ge ""/r. If a is the impact parameter,
the total interaction seen by a particle for large a is
likely to be approximately ge ".If this is small com-
pared to one, there will be practically no scattering. If
~ge

—
gg~ is large compared to one, there will be practi-

cally complete scattering, so that the cross section will

be essentially determined by the value a= (1/s) incog~

where ~ge "'~ =1. It is a=(»r/s') in'~g~. If we now

assume that g is a function of the energy, and increases
like a power of the energy, then a- will vary at most like
the squared logarithm of the energy.

In the Mandelstam representation the modulus of the
spectral function is somehow equivalent to some

strength of potential, and it varies at most like some

power of the energy. Thus it is natural to expect that
this behavior of the total cross section will be also an

upper limit for the reactions which satisfy the double
dispersion relation. To prove it, let us consider a dis-

persion relation at fixed s.

1 t." p(s, x)dx
A(s, cosH, )=—(cosH, )N,

~ gt x (x cosHg)

p'(s, x)dx
+—(cosH, )N

~ g, s xN (x+cosH, )

1 X—1

+—P p„cos&0,.

wave amplitudes:

gs
A (s, cosH, ) = P «(s) (2l+1)Pi(COSH, ),

X'g8 &~

vrq
I

+'
gi($) = A ($» cosH )Pgi(cosH )dg(cosH )g»

2+s~ i

g
a(($) = d cosHg Pi(c osH )g

2+sJ

t
" cosN8 p(s, x) q'(s, x)

X ' + dx
~ xp xN x—cosH x+ cosH

N—i
+ P p„cos~H

If we interchange the order of integration, which is
permissible if S is large enough, we find, for / &Ã:

q
«(s) = Q~(x)Lp(s, x)+(—1)'p'(s, x)]d* (1)

gs~zp

We want to 6nd here again the exponential decrease
of a~ for large values of l. To do that, we use a little
trick in order to get rid of the Legendre function of the
second kind Q~.

We use the generating function of the Qq's. '

QO S—S
P s'Q~(x) = (1—2sx+s') ' arc cosh
l=o (x' —1)I I

QO

(1-2fx+V)-:
0 ~(,2, )& $ s—

From this, we can deduce

QO
QO

2 "Q~(x) =SN (1 4x+P-)
I=N J ~(g2 y)~ r 0 —)

We have thus, from (1):

p(s,x), p'(s, x) are the absorptive parts in the crossed
channels, for values of t (or u) = 2q'(1+x). Accordingly
xi ——1+(tp/2q'), tp being the threshold of the absorptive
part in the t channel, and xp ——1+(ttp/2q'), Np being the
threshold in the st channel. We put xp ——min(xi, xs) and
write xp= 1+(s'/2q'), where s' is a given constant. This
equation has in general to be understood as regularized
over a small interval of values of s, as p(s, x) and
p'(s, x) are distributions. Let us compute the partial

L Schwartz, Theoric des distributions (Hermann R Cie, Paris,
1951), Vol. II, Theoreme XXV 2P, p. 57, case P = g»».

dfLa(s, l )+ ( 1)'a'($8)—]
a s», — SN

»=N Qs 3 gp+(gp» i)i (f—s)l
(2)

P E. T. Whittaker and G. N. Watson, Mo»terl ANatysts (Cam-
bridge University Press, New York, 1952), p. 321. The (s' —1)& in
this reference has a determination such that (s' —1)&js ~ —1 as
s —+ ~. We have taken the other one as being more natural,

QO g
Q «s'= SN dx df

gs "*p & ~(.' i)'
1

XLp(, )+(—1)"'(,*)](1—2r +r')-:
&0 —)

We can interchange the order of integration, and we get
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p 2 (0+&/ 0)

(,f)= p(s, x)
(1 2—ix+1')-:

we see that it behaves at most like a polynomial at
infinity, just like p(s, x).

Now, it is easy to calculate rr~ from (2) for l & 1V:

dt.[~(s,f)P (—1)'~'(sg)]
Ql= (3)

Qs" *o+ (*o'—i) ' f t+i

where g(s, f') is a function bounded by unity, and M a
suf5ciently large fixed integer. o.'(s, l ) can have a similar
expression, and 6nally:

qB(s) t. gM
V+~

l g(i) I

Qs "*o+(*o'—i)i gf M f(+r

qB(s) 1

Qs(l —Ã) xo+(xo' —1)i

l—N

This is the exponential behavior we are looking for,
and B(s) is the analog of the g of the classical model.

Now everything becomes straightforward: To calcu-
late an upper bound on the forward amplitude, we
write

gs ~
A(s, 1)= P a~(s)(2l+1).

Xq, l=o

Let us call I. a value of l for which the upper bound (4)
is less than unity. Then, for I&L,

l a&l is bounded by
one, al being an element of a unitary matrix, and for
l &L, we can use the upper bound (4). Consequently

S L—1

IA(s, 1)l & 2 (»+1)

gs ~ qB(s)
l

1

mq, t=r Qs(l —1V) l xo+ (xps —1)'*

l—N

The last series is bounded term by term by

then

xp+ (xo —1)' 1—xp+ (xp' —1)
'

lA(s, 1) l
( L'+

prq. 1—xp+ (xp' —1)&

This allows us to put a bound on the behavior of al,'
o (s,i ) can be written' as

gM

~(s,f) =-
1 "+~g(f)B(s),

2@M

I, can be chosen as tinB(s)/lnLxo+ (xo' —1)ij}+X.
1(2 -( rs)s

xp+ (xoP —1)i= 1y—+
l

1+—
l

—1
2q' E 2q'I

a (1q=1+-+ol —I,
q (q')

so that we finally get

l
A (s,1) l

& (q'/~') ln'B (s).

B(s) behaves at most like a polynomial in s, because all
functions involved do so, and we get the following
result: At forward or backward angles, the modulus of
the amplitude behaves at most like s ln's, as s goes to
infinity. We can use the optical theorem to derive that
the total cross sections behave at most like ln's, as s
goes to inanity. At nonforward angles, we may proceed
along similar lines, but, in this case, the Legendre
polynomial P&(cos8) behaves like f(e)/Ql. Using our
upper bound, we 6nd that at angles different from 0
or m-, the amplitude behaves at most like s'1n&s, as s
goes to infinity.

III. ASYMPTOTIC BEHAVIOR OF THE DOUBI E
SPECTRAL FUNCTIONS

We want to emphasize in this section that there is
little hope that the preceding results could give any
hint on the asymptotic behavior of the double spectral
functions. Let a function f(z) of one complex variable
z be analytic in a plane cut from 0 to + ~. Is there a
relationship between the asymptotic behavior of the
jump over the cut (the spectral function) and the
asymptotic behavior of the function on the negative
real axis? A simple counterexample will show that it
is not the case:

Consider the function z~ expl —(—z) '*$. This function
goes to zero faster than any power of 1/z, in any direc-
tion not parallel to the positive real axis. Nevertheless
the dispersion relation requires X subtractions, as the
spectral function is x~ sin(gx). Another example will
show that in general, the asymptotic behavior in dif-
ferent directions of the complex plane may be different.
Consider the function f=e p(xln'sz). If we go to in-
finity along a line z= pe', n fixed, the modulus of f is
p ', the asymptotic behavior depends upon the direc-
tion n.

Let us remark that this phenomenon can only occur
if the spectral function undergoes an inanite number of
oscillations, ' as in both examples above.

In the case of several variables, examples of this
kind are even easier to find, e.g. , (tp —t) ('), where n(s)
is a function analytic in the s plane cut from so to
infinity. If n(s) &0 for values of —oo &s(0, and takes
a finite range of values, this function satisfies a Mandel-
stam representation with a number of subtractions
determined by the value of max Rem, although it stays

This was proved by S. Weinberg (private communication).
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bounded at infinity in every physical region. Of course
it again oscillates an infinite number of times. This
example seems to have some connection with the prob-
lem of potential scattering, and this may indicate the
plausibility of such a phenomenon even in the rela-
tivistic problem.

IV. GENERAL SUBTRACTED FORM

We want here to write down an explicit formula for
the subtracted double dispersion relation, allowing any
number of subtractions, in a way suitable for the analy-
sis of the next section.

Given an amplitude A ( st, )zz, behaving at most like
some polynomial in ~s~ and ~t~ at infinity, its double
spectral functions are determined by

p(s', t') = ——,'(A (s'+ic, t'+ze, I'—2ze)

+A'(s' ze, t'—z~, I'+—2ie)
A(s—'+i e, t' —ze) I') —A (s' zc, —t'+ze, I')}

in the limit e —+0, and by the circular permutations
among ( ts, )z.z

Once the double spectral functions are known, we
choose E large enough to ensure the convergence of

V. LIMITATIONS ON THE NUMBER OF ARBITRARY
SUBTRACTION TERMS

We will assume that the double spectral functions
are given. Suppose that one amplitude derived from
them satisfies the asymptotic requirements found in
Sec. II. We want to look for the possible changes in
the subtraction terms which do not contradict these
asymptotic requirements. That is to say that we
have two diferent amplitudes A&') and A(" both
satisfying our asymptotic conditions and admitting the
same double spectral functions. Then, the difference
2 "&—2&'& satisfies also the asymptotic conditions, and
by virtue of the representation (5), we can write

1 t Ap„„(s')ds'
A &'~ —A &'& —=hA =Q t& sM ~—

n~ zr " (s' —s)s™
L

+P,i„+Q t&sqAp„,q. (6)

Assume, as is usually done, that all spectral functions
are real. Then, in the physical region of the s channel:

ImhA =Q t&Ap~, , (s)s~P t. p(s', t')ds'dt'
f(s,t, )z=z

zr' & s'~t'~(s' s) (t' —t)—PSht ~

Consider iV+1 fixed angles 8; all different, put cos8;
=1—2X;, then t=(4—s)X;,P,~„denotes the two terms which are deduced from the

first by two circular permutations among s, t, and N.

Then A (s,t,l) —f(s,t, )zzhas a vanishing double spectral
function. The jump over the s cut, say, is an entire
function in t, and is thus a polynomial, due to the
limitations to the increase of A at infinity.

We can then write down explicitly the single spectral
functions, which are the coefficients of this polynomial,
in terms of the jump of A f. We subtra—ct the single
dispersion terms from A f, and we get—an entire func-
tion in s and t which is again a polynomial; so that we
finally get

ImAA(0;) =Q (4—s)6, ,z'Ap„„(s).

One can solve for each term, as the determinant of
this system is

g;(, (X;—'A, )40

and we find that (4—s)~Dp„,,(s) behaves at most like
ImhA (8,), that is, at most like s* ln&s, according to the
results of Sec. 2. This can be repeated in each channel,
and allows us to undo the subtractions which are
present in the expression (6), except for p=0, by
dropping the factors of sM/s™and changing the values
of the coefficients Ap„,, of the residual polynomial. One
can still go farther than that in order to exhibit more
clearly the asymptotic behavior of the terms in the
expression (6); namely, for p) 2,

1 t t p(s', t')ds'dt'
A(s, t,g) = s~t~ i ' — +P,i„" " s'~t'"(s' s)(t' t)——

1 t' p, ,(s')ds'

+Py sM ~ +P
(s'—s)s™

L

+ Z t's'p. ,' (~)

z 21 pDp, „(s')s"ds' 1 t h—p, , , (s')s'z 'ds' '

+s~ s~' s' —s

z &A„„,, 1 1 t hp„„(s')s'—z 'ds'
+

a=o S~+' x S2 ' S —S

1
t

Ap, , ,(s')ds'
Remember that &P„mea snthe two terms deduced by
a circglar permutation among (s,t,l), from the term
standing just before it. It is clear that any amplitude
satisfying Mandelstam's conditions can be represented
in this form by taking X,"M, 1. su%ciently large, and
even a finite number of amplitudes can have the same
(N,M,L) set, provided that each N, M, and L is
su%ciently large.
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It is easily deduced from Eq. (7) that this last term
behaves at most like s' & ln&s at infinity. We make the
same manipulation on each term of (6) and get

M p—2

DA=Q Q A, , o+P,i„+Q Ap, ,
os&t'

u=i v=o S~+l u, a=o

+other terms.

Ap~„.(s') =0 for p & 2. We get our final result, which is

s t.Dpo, , (s')ds'
hA =— +P,i„

s'(s'-s)

t pApi„(s')ds'
+— +&,~.+&poo. (&)

X' S —$

Consider again this expression at a number of fixed
angles 0;, t= (4—s)'A, , N= (4—s) (1—X,). We first notice
that all the terms which we did not write behave at
most like s' ln&s, so that we have written explicitly all
the leading terms in the asymptotic expansion, down to
terms linear in s. Proceeding downwards from 2L or
M, whichever is greater, we will prove that all terms
of a given degree m vanish, by taking a number of
values of ) and solving, just as above. We have only to
make sure that, at each step, the determinant is non-
zero. The coeKcients for the terms of degree m are X,~,

(1—X.)"/X'+' and 1/(1 —X)'+' where m+1&p&M,
p =m+a+1, for the A„,terms, and X, 0 &ad &m for
the Dp„,, terms, so that we have in general 3M—2m+1
terms and 3M—2m+1 values of X. The determinant
never vanishes, being equal to

~=II (~'-»)/II L~'(1-li') j

If we keep s fixed at some negative value, and let t go
to infinity, 8& goes to x and the only terms which will

violate the conditions of Sec. II at backward angle are

t&
r
ap„,, (s')s's 'ds'

x=2 s~l" S —S

Thus for each negative value of s this polynomial in ]
vanishes identically, and

1 (Ap, , , (s')s'i 'ds'

sy-l J S —S
=0 for p &2.

This analytic function vanishes for an interval of
values of s, therefore it vanishes everywhere and

This was the case for L& m, M&m. For any other case,
the determinant is a subdeterminant of this one, and
thus one can pick up a set of ); for which it does not
vanish. We thus find that all A „,, vanish, as well as all
terms of the residual polynomial, except hp«. We can
write (6) as

1 ~ V' ~Ap„,(s')s'& 'ds'—
aA=- P +~.~ +~poo

lg s —s

The single spectral functions, moreover, are bound to
behave at most like s'ln:s for Ap, , o and s 'ln:s for
Ap, , &, and similarly by circular permutation.

One could summarize the preceding results by saying
that, given a double spectral function, the s- and p-wave
subtractions only are free.

VI. CONCLUSIONS

The net result of this work is the obtaining of a
limit upon the growth at infinity of an amplitude satis-
fying Mandelstam's hypothesis, and the consequence
that a relatively small number of subtractions are free.
However, we would like to stress a number of points
which may be interesting for applications. First, if one
believes that there is no reason why there should be
such a large forward or backward peak in inelastic re-
actions, and if one arbitrarily sets a limit like s' ' on
the forward behavior of the amplitude, it is then
possible to reduce further the number of subtractions,
by suppressing the freedom of choice of some p-wave
subtractions.

Second, we would like to emphasize that the problem
of finding an amplitude having the right asymptotic
behavior from a given double spectral function is not a
simple one. In general it has no solution, but if it has
one, it would be possible to find it by following the
lines of thought of our proof. However, this involves at
a point an analytic continuation, which appears in our
proof when we deduce that Ap„,,=o from the fact that
1'Ap„,, (s')ds'/(s' —s) =0; it would be very dificult in
general.

Finally, we would like to remark that, although we
only considered here the case of scalar particles, it
does not seem that any essential difficulty could arise
in applying our method to the case of particles with
spin. However, a general study for particles with arbi-
trary spins seems to be dificult, as, to the knowledge
of the author, there does not exist any systematical
way of specifying the invariant amplitudes which
satisfy the Mandelstam representation.
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