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The conventional Born approximation formula for rearrangement collisions is used extensively in both
atomic and nuclear physics. This formula contains a direct contribution from the heavy-particle or "core"
interaction. A straightforward demonstration shows that for the usual case of a massive core this contribu-

tion does not appear, so that the only effect of this interaction is to distort the incident and outgoing waves.

Such problems as the "post-prior" discrepancy are clarified.

1. INTRODUCTION

~ 'HE conventional Born approximation formula for
rearrangement collisions is used extensively in

both atomic and nuclear physics. ' This approximation
contains a direct contribution from the heavy-particle
or "core" interaction about which there has been much
controversy. ' %e shall show, by a simple application
of the two-potential approach of Gell-Mann and Gold-
berger, ' that the offending term vanishes identically
when the core (usually the nucleus in atomic problems
or the closed shell nucleons in nuclear problems) is
infinitely heavy. The "post-prior" discrepancy, which
arises when this term is evaluated using approximate
wave functions, is thereby completely eliminated. Pre-
vious work on this problem has not su%ciently em-

phasized the vanishing of the core contribution, so that
Born approximation calculations which include it con-
tinue to appear. 4

The exact result for the transition amplitude, given

by Eq. (11)of the following section, lends itself directly
to numerical calculations in which the distorting effects
of the core interactions in both the initial and final

states may be included. These calculations may be
readily performed using modern computing techniques,
so that great improvements in the older calculations
are now possible.

u+ (b,c) ~ b+ (a,c). (R)

2. THE TRANSITION AMPLITUDE

As a simple example of the distorted-wave approach,
let us consider an exchange or knock-out process in
which a projectile a is incident upon a target composed
of a particle h bound to a core c which we suppose to be
infinitely heavy. In the final state we suppose that a is
bound to c while b is free. Then we have the reaction
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A recent example is that of R. A. Mann and M. E. Rose,
Phys. Rev. 121, 293 (1961).These authors consider the depolariza-
tion of p, mesons during their capture by atoms (carbon) and the
subsequent de-excitation of the mesic atoms. Thus, the 6rst part
of the paper is devoted to a calculation of the relative capture
probabilities of the meson into various atomic states with the
ejection of an atomic electron. For this, the usual Born approxi-
mation to Eq. (10) is used; consequently, incorrect results are
obtained. In particular, the results expressed in their Fig. 2 (in
which it appears that the muon is preferentially captured into a
low orbit, n 8) are in error. The results of Fig. 2 arise from the
tendency of the core term to ignore the requirement of maximum
overlap of initial free meson and bound electron wave functions
demanded by the muon-electron interaction term. It is essentially
this overlap which forces the meson into the electron's orbit
(i.e., n 15), as has been demonstrated for pion capture in
hydrogen by direct calculation using Eq. (13) LG. A. Baker, Jr
Phys. Rev, 117, 1130 (1960)j.

The following discussion will emphasize this process,
but pickup or stripping reactions may be discussed in
a quite similar way.

The transition amplitude for process R may be
written in either the "post" or the "prior" form":

(ia)

(ib)

Uy is the sum of the interaction between b and the core,
denoted by U&, and the interaction between a and b,
denoted by V &,

' V; is similarly defined. Thus,

Vy=Us+V s

V;= U.+V, s.

(2a)

(2b)

P, and res are plane-wave functions describing the mo-

tion of a and b while g~ and g are the bound-state wave
functions for the initial and final states. They are
solutions of

( e. E. U,)rf.=O—, — —

(—es—Es—Us) sf s——0,

(3a)

(3b)

where, for instance, E, is the kinetic energy operator
for particle u and e& is the binding energy of the target.
Finally if,'+& is the outgoing-wave solution for the total

e B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950);
E. Gerjuoy, Ann. Phys. 5, 58 (1958),
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Hamiltonian and is given by Using Eqs. (3b) and (5), one finds

p, f+l ~ »+ (U +V bg, .t+l (4) p +'=X.'+'rib+ V. bp,
&+' (Sa)

E E,—Eb—Ub—+is E E,—E'b—U,——Ub+t', s

=X,f+ltib+—
E E, —Eb —U, ——Ub V—,b+ie

&& V,bX &+'rfb. (Sb)

fr& l is defined in an analogous manner.
We shall use the "post" form Eq. (1a) although

exactly the same results are obtained if the "prior"
form is used Lnote the symmetry of Eq. (11)j. If
scattering by the core represents a solvable problem, If E f6' .

d M b
it is advantageous to use the two-potential formula of
Gell-Mann and Goldberger to express Eq. (1a) in terms ~z —

&rf,yb I
Ub+ V',

I p,.(+l)
of the solutions of this problem. The outgoing wave
solution for the scattering of a by the core is =

&~ &bl Ubl&'"'&+&~.7fb' 'I V.bill'"'&

X (+l —y,+ U q4,E. E. U—,+t'e—
Qa b ~b

1
V'

b P, (+) (9)
Ii b Kb U—b+se—

where E, is the kinetic energy of a: E,=E+sb. Simi-
larly, the ingoing wave solution describing scattering
of b in the final state is given by

Xb 4b+ Ubkb
+b +b Ub zE

(6)

F. E Ub+is E—K—U, —Ub—+ie—

The total wave function f,t+1 may be expressed in
terms of X,&+1 if one introduces into Eq. (4) the identity
(Wltll K=EN+Kb)

Since Ub commutes with E,+U„we can use Eq (3a.)
to replace the Green's function in the last term by
(E E, Eb U—,—U—b+i—s) ' The .resulting term may
then be combined with the first term of Eq. (9) using
Eq. (Sa), so that we obtain

~a= «A b I Ubl X.'+'vb&+&a. &b' 'I V.b lit "+'&. (1o)

Since rf, and x, '+l are eigenfunctions of E,+U, having
different eigenvalues, they are orthogonal, and the first
term vanishes identically. It is reasonable on physical
grounds that the ejection of particle b cannot proceed
unless its interaction with the incident projectile is
included: This interaction is present only in the second
term of Eq. (10). Thus, our final result is' r

~,=&„.qbf-ll V.big, f+l)

V (7)
E E U, —Ub+t—s E—E Ub+ss— —

The symmetry of this result may be seen by intro-
ducing Eq. (Sb) to give

MIr, = ri.7fb' ' Vsb+Veb
~

~X, +g
E E. Kb U.—U—b —V,—b+i e—

(12)

The quantity in the bracket is just the effective
interaction, or t matrix, representing scattering of g
by b in the presence of the core. If the second
term is neglected, one obtains the so-called distorted-
wave Born approximation:

=&tf Xbl—ll V, bIX, &+&gb&. (13)

The interaction between a and b is treated to first order,
while the interactions with the core in both the initial
and Anal states are treated exactly. The distorted wave
functions p(+) and y( ) may be found using standard
methods. In problems that are more general than the
example treated here, Eq. (13) may be used whenever
the effect of the core may be represented by a single-
particle potential.

If all distorting effects are neglected, so that the
scattering functions are replaced by their lowest Born

approximations, Eq. (11) becomes

~~'"=&n.eb I
V.b I y.gb& (14)

If the core is not in6nitely massive, the derivation of Eq. (10)
breaks down. Center-of-mass motion, corresponding to the fact
that particle b may be shaken off by the recoil of the core under
the impact of a, prevents the division of the total kinetic energy
operator into parts J and ICf, which commute with Uq and U„
respectively. Equation (11) may still be used if U in Eq. (5) is
replaced by a potential U; which is so chosen that it depends on
the distance to the center of mass of the target rather than to the
position of the core. This can be done, for instance, by defining
U; as the average of Vs over the internal coordinates of the bound-
state wave function gb. Ur in Eq. (6) can be similarly chosen. If V,b

in Eq. (8) is replaced by V;—U, , while V,f, appearing explicitly
in Eq. (11) is replaced by Ur —Ur, then Eq. (11) applies to all
rearrangement collisions.

'We would like to emphasize that this result is essentially
contained in earlier work, e.g., R. H. Bassel and E. Gerjuoy,
Phys. Rev. 117, 749 (1960) and references contained therein.
However, its general validity does not seem to be very widely
recognized.
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This differs from the Nsnal expression, which includes

the core interaction (st,gsl Uslg~rtv) as well T. his usual

result is obtained if, in the first term of Eq. (10) (which

we know to be identically zero), we replace X,t+& by its
Born approximation p . In this approximation, this
term is no longer zero, since rt, and P, are eigenfunctions
of different Hamiltonians. The result is just the extra
term found by perturbation techniques. It is clear that
this term should rot be present, and that only the
inadequacies of the perturbation approach have led to
its appearance. Some of the virtues of an approach in

which the exact expression is obtained before approxi-
mations are made can be seen from this example.

We may also observe that the so-called "post-prior"
discrepancy has evaporated. This discrepancy arises
when the ordinary (but incorrect) perturbation result
is used, since then either U or U& may enter the ex-
pression for M&~". While formally they give identical
results, that is (rt y&l U I@ st&)= (st y&l && ly Its); when

approximate bound-state wave functions are introduced
into these matrix elements, the equality no longer holds.
We now see that this term should not be present at all
and that no problem exists.
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It. is proved that a two-body reaction amplitude involving scalar particles and satisfying Mandelstam's
representation is bounded by expressions of the form Csin's at the forward and backward angles, and
Cs4 ln&s at any other fixed angle in the physical region, C being a constant, s being the total squared c.m.
energy. This corresponds to cross sections increasing at most like ln s. These restrictions limit the freedom
of choice of the subtraction terms to six arbitrary single spectral functions and one subtraction constant.

I. INTRODUCTION

S INCE the time Mandelstam' discovered his repre-
sentation for two-body reaction amplitudes, there

has been in general a little confusion about the question
of asymptotic behavior of the different quantities as
the energy variables go to infinity.

We shall point out in this paper a number of facts,
which, we hope, will help to clarify these questions.

In Sec. II, we derive, from the Mandelstam repre-
sentation and from a very weakened form of the uni-
tarity condition, an upper bound on the asymptotic
behavior of the amplitude in the physical regions.

In Sec. III, we show that these results cannot give
us any indication on the behavior of the double spectral
function.

In Sec. IV, we write down a general form for the sub-
tracted double dispersion relation, which will prove
convenient for the following.

In Sec. V, we investigate the question whether the
subtraction constants and the single spectral functions
can be determined from the asymptotic conditions
which we derived in Sec. II.

*This work was supported by the U. S. Air Force under con-
tract and monitored by the Air Force Office of Scientific Research
of the Air Research and Development Command.

t On leave of absence from C. E.N. Saclay, B.P. 2 Gif s/Yvette,
(Seine et Oise), France.

' S. Mandelstam, Phys. Rev. 112, 1344 (1958}.

II. ASYMPTOTIC PROPERTIES OF THE AMPLITUDE
IN THE PHYSICAL REGION

We consider a reaction of the type 4t+b —& c+d
among scalar particles. We denote by p, , p, ,

—p, , —p4
the momenta of the particles a, b, c, and d, respectively.
We introduce the notations s= (PI+Ps)'; t= (Ps+Ps)',
u= (Ps+PI)s. Then

s+ t+u =pie+ pss+ ps'+ p4'

We shall assume that all masses are equal to the unit
of mass as we deal only with asymptotic properties,
where the difference between the masses is negligible.
Then: s+t+u=4 We call ch.annel s the above reaction .

a+b ~ c+d, channel t the reaction b+c~ 44+2 and
channel u the reaction tt+c —+ b+d. In the channel s,
the momentum of one particle in the c.m. system is
given by q,s= (s—4)/4 and the reaction angle will be
defined by cosft, =1+(t/2q, s) The physical .region for
channel s will be given by

tl,s)0, l cosset, l
&1; or s)4, t&0, u&0.

We define the notations in the other channels by a
circular permutation among (s,t,u).

In order that the double dispersion integrals make
sense, we have to require that the double spectral func-
tions be tempered distributions, and similarly, we re-
quire that the single spectral functions be also tempered
distributions.


