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Nucleon Polarizability Correction to High-Energy
Electron-Nucleon Scattering*
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The contribution of nucleon polarizability to ultrarelativistic electron-nucleon scattering cross sections is
estimated and found to be small for nonforward scattering angles at all energies.

I. INTRODUCTION quencies below resonance and large but negative above;
the required average is much smaller than the average
magnitude in this region. The approximate magnitude
of the polarizability corrections for electron energies &)1
Bev cannot be inferred to be negligible from such
calculations of its effect at the lower energies. The
nucleon is treated in a nonrelativistic way and in certain
approximations the Compton scattering amplitude is
extrapolated off the photon energy shell by assuming
that real and virtual photons of the same frequency
have the same scattering amplitude to terms in e'.' With
such approximations the relative contribution of the
nucleon polarizability was calculated' to become in-
creasingly more significant as the electron energy grows
above 1 Bev, but the approximations are clearly inap-
propriate in the ultrarelativistic region. The assumed
dependence of photo-nucleon scattering on frequency
alone is equivalent to neglecting the spatial "size" of the
nucleon for virtual photon scattering; for large mo-
mentum transfers of highly virtual photons this is even
qualitatively inadmissible.

In the forward direction the effect of nucleon polariza-
bility on electron-nucleon scattering can be estimated
fairly well. The imaginary part of this correction to
order e' is (k/4m) times the total cross section for
electron-nucleon inelastic scattering (meson produc-
tion); k is the electron momentum. This cross section
can be estimated in the KeizsKcker-Williams approxi-
mation from the measured photomeson production cross
section. In this way, it is seen that the imaginary part
of the e4 polarizability correction increases in the for-
ward direction like k 1nk, At one Bev it is about 4)& 10 "
cm; at 10' Bev it is about 2X10 "cm (center of mass).
The real part of the forward polarizability correction is
generated from the imaginary part by a dispersion rela-
tion. It is also monotonic and comparable in magnitude
to the imaginary part. These amplitudes may be com-
pared to the measured vie|;ty degree cross section for
electron proton scattering of 2X10—"cm'/sr at 900
Mev. ' Thus at 1 Bev the forward polarizability correc-
tion is already comparable to the observed amplitude
for large momentum transfer. At much higher energies

'HE charge and magnetic moment distributions of
nucleons are obtained by analyzing the observed

electron-nucleon scattering in Born approximation.
Among the higher order terms which are neglected,
radiative corrections for the electron scattering can be
computed in a straightforward way. Other corrections
to the Born approximation involve the exchange of
more than one photon between the electron and nucleon.
Part of this represents the correction for multiple
scattering of the electron by the static electric and mag-
netic fields of the nucleon. These would be included by
explicitly solving the Dirac equation for the electron
rather than using the Born approximation. The rest of
the many-photon exchange contribution depends upon
the dynamical structure of the nucleon charge and
moment distribution and cannot be calculated even if
the conventional form factors are known. But all of
these higher order corrections involve higher powers of
e'/hc and their inclusion would presumably give cor-
rections of order 1% to the nucleon form factors ob-
tained from the Born approximation analyses.

The dynamical contribution to the two-photon ex-
change depends upon the nucleon polarizability. Be-
cause this is anomalously large for photon frequencies
near the (—ss, ss) pion-nucleon resonance, the effect on
electron scattering of nucleon polarizability has been
explicitly estimated" for electron energies below about
one Bev to see if it could give an appreciable contribu-
tion to the observed cross section. Despite the fact that
the polarizability contributed to an exceptionally large
cross section for photonucleon scattering near the reso-
nance, it was found to give a negligible ( 1%%uq) correc-
tion to the electron scattering. In the latter case, a
virtual photon is scattered and it is necessary to average
over the frequency and wave number of this virtual
photon to calculate its effect on electron scattering. The
nucleon polarizability is large and positive for fre-
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it is expected to be much larger than the e2 niriety degree
amplitude. Therefore, to be able to neglect the polariza-
bility with confidence in large-angle ultrahigh-energy
electron-nucleon scattering it is necessary to estimate
how rapidly it decreases with angle as we move away
from the forward direction, but this depends upon the
unknown dynamic nucleon polarizability as a function
both of the wave number and the frequency separately.

We have tried to make an estimate of the possible
contribution of the polarizability to large-angle scat-
tering in two ways. First, a relativistic Weizsacker-
Williams analysis of the electromeson production as a
function of impact parameter gives the imaginary part
of the electron-proton elastic scattering amplitude for
arbitrary incident angular momentum. A one-dimen-
sional dispersion relation yields the real part. These
contributions are appropriately summed to give an
angular distribution. Such a WKB approximation is
applicable only to small-angle scattering. Even here it
involves and unknown form factor (photoproduction of
mesons for very virtual photons) in a crucial way as
soon as the momentum transfer/c becomes larger than
a few meson masses. However, it appears that as long
as this form factor is not singular for infinite photon 4-
momentum, then the polarizability correction for non-
forward scattering remains negligible even at ultra-
relativistic energies.

Alternatively, the Horn approximation and polariza-
bility corrections have also been calculated in relativistic
perturbation theory for nucleons coupled to pseudoscalar
mesons. The polarizability correction is shown to be
negligible and, in this case, a decreasing function of
energy for sufficiently high-energy finite angle scat-
tering. Such a model is not expected to give a reliable
description of either the polarizability correction or the
form factors independently so the generality of the
small ratio is unclear. The significance of this and the
WKB result lies mainly in confirming that present
knowledge and calculations of nucleon structure do not
infer that Born approximation analyses of nucleon
electromagnetic form factors will be unreliable because
of the neglect of polarizability even at ultrahigh
energies.

ImF(e) = (k/4tr)gt at&"'Pt(cosH). (2)

The o-~(~) is the reaction cross section for the /th partial
wave. In the high-energy limit, we shall consider the
reaction cross section associated with a linear electron
trajectory of fixed impact parameter p=l/k. In this

II. WEB APPROXIMATION

The partial wave expansion of the electron-nucleon
scattering amplitude is

F(g) = (2ik) 'Qt(2l+1)[exp(2i5&) —1]Pt(cos8), (1)

where b~ is the complex phase shift, Since each 8~ is
small, we have

WKB approximation, '"

ImF(0) = (k/4tr) ~ a.&"'(p)Pk (cos8)dp. (2')

Since &&r~& (p) is invariant with respect to Lorentz trans-
formations along the trajectory, we may calculate it in
the rest system of the struck nucleon and substitute it
into Eq. (2'), with all other variables evaluated in the
c.m. system. The major part of the partial cross section
o-& "&(p) is the result of meson production by the elec-
tron's electromagnetic field; we estimate this in the
Weizsacker-Williams approximation. The canonical
form of this approximation gives for the effective Aux

of real photons incident on the nucleon, caused by an
electron with impact parameter p and energy of p rest
masses,

o& &op (&op )
Ã(p, ~)= —E,

l

—
l

2p&~ pc EpcJ
(3)

where A; is the incident electron momentum in the
laboratory system and a.„(&o) is the total pion photo-
production cross section for real photons of frequency ur

in this system.
The electromagnetic field of an ultrarelativistic elec-

tron is not equivalent to that of free photons when the
impact parameter is smaller than the nucleon "size."
Therefore, for such impact parameters, the combination
of Eqs. (3) and (4) must be appropriately altered.
Effectively this involves the cross section for pion pro-
duction by photons which are far off the energy shell„
CV2& k2.

The differential cross section for electromeson pro-
duction is proportional to

l $.(~ k)(~' —&') '(2P —&).l'/4P4(P —&)4 (~)

the $„(&o,k) is the matrix element for meson pro-
duction by a photon of 4-momentum (&o,k) and p is the
4-momentum of the electron. When the high-energy
electron, moving in the z direction, is negligibly devi-
ated, &QQ —k,' —&oa/y'. The cross section (5) can then be
somewhat simplified by gauge invariance requirements,
converted into a function of the transverse component
k„, and Fourier-transformed to exhibit its p dependence:

I

2

)I d'k exp(ik y)[(~/y)'+&p'j '~ 'kp g(&oak) (6))

"This approach has been previously considered by H. A. Bethe
and F. Rohrlich, Phys. Rev. 86, 10 (1952).

4 See, e g , W. Heitl.er., Qttarttttm Theory of Radhatt'om (Oxford
University Press, New York, 1954), 3rd ed. , appendix 6.

where E~ is the modified Hankel function of first order.
Also,

&r&"&(p)= " 2orpX(p, &o)a,.(&o)d&o,

Q
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If @(io,k) is independent of k, then
~
@(~o,~) ~' o ~ (~)

and the expression (6) gives just the result of combining
Eqs. (3) and (4), i.e., the usual Weizsacker-V, illiams
approximation. However, the expression (6) must be
integrated over all k, so that k,'+k.2 —~'-k„-' is not on
the energy shell. We approximate Q(~o,k) by

ak
I

"dp t." doe

(7) ImF (8)— —Jp(kpg) —o.
~ (o~)

2x'~p p J,@(o~,k) =@(oi,oi)f ((u' —k').

For very large k, we replace the I.egendre function of
Eq. (9) by its asymptotic form Jo(kpg). This oscillates
rapidly for large kp8, and thus cuts off the Hankel func-
tion which can be replaced by its limit for small argu-
ment. Then, very approximately, we have

The form factor f„=1when k'=o~2, and corrects the
photomeson amplitude for virtual photons. It is easily
shown that this introduction of f„by Eq. (7) is exactly
equivalent to writing

1 G

A (p,o&)=-
Au) kr'

2

X "d'I' V-(8')E(g 8'—
where E is the I.ienard-Wiechert electric 6eld of an
electron moving in the direction g. If q(g')=8"'(8'),
Eq. (8) is the canonical expression for photon density,
and leads to Eq. (3); instead here q(g') is the two-
dimensional Fourier transform of f (k,'). We may
interpret this, in any frame moving parallel to the s axis,
in terms of an effective cylindrical density of the nucleon
for photomeson production. The combination of Eqs.
(2'), (4), and (8) gives, after straightforward calculation,

We explicitly assume that f„—+ 0 as p ~ 0; otherwise
the lower limit of the p integration must be cut off
at 1/k.

If the form factor f„is replaced by unity, the p cutoff
must be introduced, and in the forward direction we

obtain the familiar

ak t." d(u (ImF(0)— ~
—ln( ~o~ (o~).

2il ~ p co (oip ' j (10)

When this is compared to the Rosenbluth' anomalous
magnetic moment scattering amplitude in the ultra-
relativistic limit,

F (g)—(a/2 *'M)KF, (q') cot. (8/2-),

with E the anomalous moment, Ii2 is form factor, and
q= (2E/M) sin(g/2), it is apparent that in the forward
direction, ImF(0) increases like k ink, while Fs(g) for
any fixing nonvanishing 8 decreases with increasing k.
The neglect of ImF(g) next to Fs(g) thus depends
critically upon the angular distribution calculated from

Fq (9)

' M. Rosenbluth, Phys. Rev. 79, 615 (1950).

ak [ dp 8 l4 GDp (Mpg
ImF (8)= PI, I, (cosg) ———Ki

~

—
~

2~'&o p ~0 ~ v &v&

~00 -2

Xo„(~) du J,(N)f„(e'/p') . (9)
J

goo
-2

X
~

du Ji(N) f„(u'/p') . (12)

The form factor f (k') refers to a four-point vertex,
but it might be expected to have a behavior which is not
qualitatively dissimilar from the familiar electromag-
netic three-point form factor. Therefore we assume
f„(k') 1 for k'(v', after which there is a rapid de-
crease, e.g. ,

(k2) g vn(22v+. k2) ng— (13)

with the v, of the order of a few pion masses. Then from
Eq. (12), we find that for a typical term in Eq. (13)
with C„=1,

ak
I

"do~
ImF (8)— —o,.(oi)

27I' o M

1-"dx fxq "K.(x) ' (kg yx
x &2j r(~) & ~ j

The IrnF(g) predicted by Eq. (14) decreases for in-
creasing e or k8. Even for v= —,', for which the virtual
photons are much more effective in photoproduction of
mesons than would be estimated from any physical
model, the x integral in Eq. (14) gives

t

v

+2» —+ 1+I —
I

kg &kg j
2v /2 )v2

ln + 1+II
(kgj

(v)'
»-" (kgj

For e= 2, the high-momentum transfer limit is (v/kg)',
when m increases, the limit continues to decrease, but
depends upon e less sensitively. Thus in contrast to its
contribution to forward scattering, the effect of the
polarizability on the large momentum transfer electron
scattering is a very rapidly decreasing function of mo-
mentum. For n&1, ImF(g) k(v/kg)'. Clearly a non-
singular behavior for the meson photoproduction form
factor leads to a polarizability correction which is
negligible next to the Born term if the conventional form
factors are combinations of Yukawa functions.

We next turn to the evaluation of the contribution of
the polarizability to the real part of the scattering
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By considering the total cross section to be an integral
over impact parameters of the separate cross sections of
each tube individually, for small p, the following
identification can be made

pic—2 Re(exp[iit, (k)]—1}= 1V(&o,p)o, (oo)d&o. (15)

In addition, E~(oo) =E,*(—oo) (electrons and positrons
produce identical scattering); we then try a no-subtrac-
tion dispersion relation for ReF(8):

2o.
I

"dp k t." kdk'
ReF (8)=— —Pi„(cos8)—

x &p p 4m~p k"—k'

t'&' d&o o&p (oip)
X ——E,

~

—I,.( )
~o oi -7 ~V~-

(ZL )
du Ji(N)f„i —

i
. (16)J, "Ep& j

Again we may use the small argument expansion for E&
si ice large p is cut off by P»(cos8) for finite 8. Then

pk'
dpi M 0'7~(oi)

ReF (8) 2 t
" kdk'

p
ImI&'(8) n J o k"—k'

dc' cd o'~„(co)
p

The real and imaginary parts of the polarizability
amplitude Ii have the same angular dependence in this
approximation. Moreover, the bracket is experimentally
close to zero when k and k', the laboratory wave num-
bers, are both much larger than the nucleon isobar
frequency. If most of the o ~ (o&) comes from an isobar
resonance at k~, then we have

ReF (8)/ImF (8)-2k,/~k, (18)

amplitude. This is most easily obtained as a dispersion
transform of the imaginary part, a relation which in this
semiclassical case can be justified on the basis of
causality alone. The model of a high-energy electron
traversing a straight-line path of fixed impact parameter,
such as was considered above, may equivalently be re-
garded as a wave packet traveling down a long narrow
tube, and analyzed into one-dimensional plane waves. If
there is an input e'"' at one end, then the transmitted
wave at the other end is exp(i[oit+r1, (&o)]},where g, is
the complex phase shift. But since the two ends of the
tube must be causal with respect to each other, the
frequency response function E,(oi) = exp(ip, ) must, by
a well-known argument, obey a Kramers-Kronig re-
lation:

1
ImE, (oi) = P~ —R—eE, (oo') d&u'.

Then ReF(8) is much smaller than ImF(8) at high
energies and nonforward angles. The indication, then, is
that the nucleon polarizability makes a negligible
contribution to the scattering amplitude in comparison
to the Born term for all energies and scattering angles
for which the WKB approximation is qualitatively
valid.

III. FIELD-THEORETIC MODEL

The previous results, obtained through semiclassical
arguments, may be qualitatively confirmed for a par-
ticular model in relativistic perturbation theory. In an
expansion of the S matrix in powers of the electromag-
netic coupling, e,

S=1+iP„e~T&~&.

the nucleon polarizability effect is associated with the
term T&" involving two-photon exchange. ' The unitarity
of S, along with time reversal invariance implies a rela-
tion between T&4' and T&@:

Im(fl T"' I') =
o &e(fl T"'

I &)(& I
T"'

I
o» (»)

where the states f and i are real two-particle states con-
taining one electron and one physical nucleon, and the
states P contain the electron and any combination of
particles which couple strongly to the nucleon.

The intermediate state P of just one nucleon and one
electron, without any mesons, can be disposed of
quickly. It would occur (and, in fact, be the only term)
in a calculation of electron-nucleon scattering, even in
the absence of a meson field; the presence of the meson
coupling merely modifies the static nucleon charge and
moment by insertion of form factors dependent on the
momentum transfer. This type of correction term can
easily be calculated, and with inclusion of extrapolations
of experimentally measured form factors, will pre-
sumably be small for all energies and scattering angles
relative to the one photon exchange terms.

The remaining terms, in which the P contain one or
more mesons and/or baryon, pairs, and which represent
the polarizability effect to be investigated, cannot be
completely evaluated with available analytic techniques.
One approximation, however, would be a simple one-
meson model, calculated in lowest order perturbation
theory; it would be natural, then, to compare the re-
sulting expression for Tf;"' with the Born approxima-
tion, T~;(2), in which the unknown form factors are also
obtained for the same perturbation theory model. Al-
though this calculation is certainly not reliable in either
application, it is possible that the ratio T~;(4) to T~,(2',

each estimated in this way, may be indicative of the
true momentum transfer dependence; the calculated
ratio is independent of the meson-nucleon coupling
constant.

In the particular case of the neutron, the relevant
Feynman diagrams for application of the model to
(P ~

T&'&
~
i) are given in Fig. 1; they involve electromeson

production from a bare neutron. Their contribution,
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(a)

FIG. 1. Diagrams used in model taken to represent
amplitude (22ee.

~

T&'&
~
22e).

(c}

Fio. 2. Diagrams representing pole contributions to amplitude
(Ne3.

~

7&2& ~23e); (a), (b), and (c) give nucleon, pion, and photon
poles, respectively.

according to the usual rules and Eq. (19), is'

Z(fl2'"IP)(&I2'"'I )

n2g23Pm2

( 1+P2 1 2)
42r4(EiE2E&'E21) &

I
d'P3d'P4d'P3&'(P3+P4+P3 Pi P2)

X
E4 E3 (p2 p4)'(p2-' p4)'-

P3+v (Pi P3+P3)v
Xw(Pi') +

-(Pi'-P3)' —~' (Pi' —P3)'—~'-

VvP3 (Pl P3+P3) v

Xi1 (P,)
"

+
"

w(Pi)-(p-p)-~ (p-p.)-"

complex energy and momentum transfer variables, only
poles were retained; this corresponds to calculating only
to lowest order in renormalized meson-nucleon coupling
constant. There are three poles (Fig. 2): two, in the
unphysical region, represent the possibility of a single
nucleon or meson intermediate state, while the third is a
photon pole on the edge of the physical region. In the
high-energy limit, furthermore, all the singularities
which lie outside move in towards the edges and have an
increasingly significant inQuence on the amplitude inside
the region. ' The mathematical approximation to Eq.
(20), described above, corresponds to replacing the
second order amplitude by the most singular terms in
its Laurent expansion about the poles.

Returning to Eq. (20), it is seen that factors in the
denominator nearly vanish for the four cases

Xw(P2')p&A+(P4)y "w(p2). (20) 4= 2& 5= 1 & 4= 2& 3= 1 & (21a)
Even in this simplified model, expression (20) is too

ponderous to integrate directly. However, since an
order of magnitude estimate at the high-momentum-
transfer limit is all that is required, a crude approxima-
tion technique is employed. . The basis of this scheme lies
in noting that most of the dependence of the integrand
on the integration variables is in the propagator de-
nominators; these propagators become many orders
larger at certain points in the range of the variables, for
very high energies. Furthermore, the half-widths of
these spikes, although very narrow, are sufhcient that
most of the contribution to an integration of them
against a slowly varying function comes from these
neighborhoods. The numerator does display dips at the
points in question, but not severe enough to oGset the
peaking of the denominator. Hence a possible approxi-
mation is to evaluate the numerator at the dominant
points, and take it outside the integration.

An alternative explanation of the procedure is in
terms of the singularities of the S matrix. The unitarity
condition has related (fl T&4&

l 2) to a bilinear sum over
states p of (fl T"&lp) and (pl T'&2&l2). The first simpli-
fication of the model chosen was to truncate this sum by
restricting P to contain only one pion besides the nucleon
and electron. Next, of the singularities of the physical
amplitude (2M2rl T&'&l2M) considered as a function 'of

P3 ~ P»= L»—2iiI) (P—i 2~)P&3, —
P3 —+ p3i—=LM,07,

P4~ P4i=LE2 2K (P2—2~)P—27

(22)

where the factor (Pi—P3)'—M2 occurs in the denomi-
nator, and

P3~ p»—=L~07, P3~P»=L&i—2~) (Pi—2~)pi7,
(23)P4~ p42=LE2 2P (P2—2&«)P27—

where (pi —p3)' —p2 occurs in the denominator.
Furthermore, if the net momentum transfer in the

scattering is large, so that pi is not approximately equal
to pi', then the peaks from the pair of points (21a) are
widely separated from, and nearly nonoverlapping with,
those of the pair (21b). Thus it is also legitimate to treat
the noneffective denominator factors in any particular
region as slowly varying, too, just like the numerator.
The extent of validity of this procedure can be illus-
trated by the following simplified typical example, which
can be analyzed in detail.

and

(P =P' P =P'—) (P =—P' P =Pi'—) (21—b)

In the center-of-mass frame, the first pair leads to the
substitutions into the numerator

' The notation follows the conventions of S. Schweber, H. Bethe, The prominence of the poles at high energies has been use d
and F. de Hoffmann, Mesons and Fields (Row, Peterson and Com- recently in a different context by S. D. Drell, Phys. Rev. Letters 5,
pany, Evanston, Illinois, 1956), Vol. I. 278, 342 (1960).
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Consider the integral particle Dirac equation, the numerator can be reduced:

w(PJ )P17+—(P31)7vplw(Pl)w(P2 )7 ~+(P2)7 w(P2)
(24)I= —da, (a—p j)—'(a—p'. j)—',

M
w(pl') {(m —20„„P2")L(1+74)M—2E,j

2ns
+2P1„(1+74)P2 2E2—7„M)over all directions of j, with a&1. An exact evaluation

yields
Xw(P1)w(P2 )7"w(P2), (29)

3E
w(P')l»E "P "+2P.(1+7)p j

2m
2 sin( —', 8)[a2—cos'(-', 8)]'

Xw(pl)w(p ')7"w(P2), (30)sin (28)+ fa2 —cos'(-,'8) ]'*

, , (»)—sin (-', 8)+(482 —cos'(-', 8) j** when masses are neglected compared to energies. In a
similar manner, one obtains for the other term,

Xln

where cos8=p p'. If a—1«1, then the integrand of /
(p )(p /

p +p ) Z (p )(p p +p ) (p )is very similar to the one at hand, Eq. (20). If in addi-
tion, a2 —1«sin'( —,'8), then Eq. (25) reduces to x (P')7&,(P)7" (P)

1—cos8I— ln
1—cose a—1

(26)
3p Eg

w(P1') (74+ & pl) w(pl) w(P2 )74w(P2).
SMm

But the further condition just states that the two peaks
of the integrand (when j~~p, and j(~p') are well separated
in comparison to their half-widths. Thus if the peaks are
assumed to be strictly nonoverlapping, and the non-
dominant factor to be slowly varying, then

2 r dQ, 4x 2
ln

a—p p'~ a—p j 1—cos8 a—1
(2&)

P (f ~
T"'IP)(PI 2'"'ll)

2n2g2M2m2 8'(pl'+ p2' —pl —p2)

The two results are su%ciently similar, so that the ap-
proximation procedure is pertinent; the ratio of the
arguments of the logarithm, sin'(-', 8), will be of im-
portance later, however.

Applying these techniques, Eq. (20) becomes

mw(p' {')w(p,{)= 5E sin(-,'8),
288w(P', t')74w(P, {.)= 5E cos(-,'8),
288w(p', {')7w(p, {)= E(p—+p' 8{p X—p')

X (1+P.P')—' cos(-,'8),
w(p', {')77 (p,{-)= E(p p'+'t-P—Xp)

X(1—P P') ' sin(-'8)

~ (wp', {') w(p, f)=.-{-E'(p p'+2{pXp)-
X(1—p p') ' sin(-,'8).

(32)

Here cos8:—p p, while l is a spin polarization index as-
suming values +1 such that {=w(p, t)83 pw(p{). It
further proves convenient to define 5= —,'(1+{.{'),
5=2(1 f{—') Su—bstitu. ting formulas (32) into Eq. (30)
yields

A further reduction can be achieved by using the
formulas for spinor matrix elements, referring to ultra-
relativistic particles in the center-of-mass frame:

4n-4EgEg (P2' —P2)'
2E1'E2'228 '$251 cos(-,'8)+51 sin(-,'8)752 cos(-,'8); (33)

t dip, dlp4 dlp5 y(P8+ p4+p, p, p,)——

E8 E4 E5 (p2 p4)

the same substitution into Eq. (31) yields

314'E8'(8M288') —'5251 cos (-', 8) sin
—
(-,'8). (34)

P17v~ (P81)7~pl—
+cross terms

-L(P1'—Pl)' —M'lL(P1 —P5)' —M'j

(pl p82+p52) pA —(p82) (pl p32+p52) v

L(P1'—Pl)'-~ ')L(pl-P3)'-/ '1

Xw(pl)w(p2')7 "A+(P2)7 "w(p2). (28)

Using the commutation relations for the gamma matrices
and the fact that w(p) is an eigenspinor of the free-

It can now be seen that for high energies, the second
of these two expressions is much smaller than the first.
Since they are coefficients of terms in Eq. (28), the
second term can be neglected; it will be shown later
that the integrals of the denominators of these two
terms do not differ significantly in magnitude. The
cross-terms may similarly be neglected. These ap-
proximations correspond to retaining only Feynman
diagrams in which the photon is attached to the bare
nucleon, not the meson; or equivalently to discarding
the meson pole of Fig. 2.
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After these reductions, Eq. (28) reads

2 (f I

2'"'
I &&(& I

T'"
I

2&

(X g K M ElE2[254 cos(2'9)+ pl sin(2'9) j
(Pl +P2 Pl P2)

)( 52 COS(28)
(Pl' —Pl)'-M' (P2'-P2)'

~ d'p2 dpp4 d'p5 &4(P2+p4+p5 pl —P2)—

Ep E4 E5 (P2—P4)'L(Pl —P5)' —M'3

The integration over momenta has now been reduced
to a manageable form. The delta-function is used to
integrate the four variables p~ and 045, where the latter

is determined by conservation of energy-momentum:

2p4 p5 —=2P4P5 cos045 ——(El+E2)'—2(El+E2) (E4+E5)
+2E4E5+@2+m'—M'. (36)

Thus with spherical coordinates chosen in the center of
mass,

t' d P8 d P4 d P5 ~ (Pp+P4+P5 Pl P2)
I—=

E2 E4 E5 (P2—P4)'L(Pl —P5)' —M'3

1
1

dE4dE5d04d$45
(37)

4 ~ (E2E4 m2 p—p4) (—ElE5—-'2p2 —p p5)

The angular integrations can be performed exactly,
with the result

E E24 m2 —pp4 (E,E4 m'+PP—4)1 +& pp4(El—E5 ~»2 pp, cos—845)
I=z' dE4dE~ 5 ' ln

F2E4 m'+ pp—, (E,E, m' pp—4)1'+—~ pp, (E,E—5 ,'142+pp—5 —cose,)

where

62= P2P4 2L( ElE—5 —ipi42)2 —pp5 sin2045]+ p2P52(E2E4 —m')'

+2 (FlE5——2'y2) P'P4P5 cos045 (F2F4 m'), —
(3g)

and

—I'~= (E,E, l»')—p'p4p, cos04, p'p —(5E2E24 m')—

Furthermore, in this limit

E;+—F., Eg —E—E4 E4+—E
h 2~m2 (E—F4)'/2E'E42

E4 —0;

652 $M2E52+I42E (—E—E5)j/2E'E52;

p4p, (1+cos845)=2 (E—E4) (E—E,);

(43)

The upper and lower limits on the E5 integration for
fixed E4, which correspond to the situations y5 anti-
parallel to both y3 and p4, and p3 antiparallel to both p4
and p5, respectively, are given by

E5+= ( (E~l+E2 E4)[(E'i+E2 E4)—' P4'+I2' M'—]- —
~P4L((E1+E2 E4)'—p4'+@2—M')'

4442((El+E2 E4)2 P42)]$)/
2L(El+E2—E4)'—p4'j. (39)

The lower limit on the E4 integration is E4 =m; the
upper limit is

E4+=
I (El+E2) +m —(M+p)2j/2(El+E2), (40)

corresponding to the situation p4 antiparallel to both y3
and ps.

In order to make further progress, the high-energy
limit of I must be taken; that is, Pl and P2 are to be the
four-momenta of ultrarelativistic particles. Setting

842=—(E2E4 m' pp4)/pp4, — —

and where E= (El+E2)/2. —
Inside the region of integration, the denominator

factor becomes smaller with increasing E4 and E5, but
does not vanish entirely; at the corner E4——E5——E, it has
a minimum value M'/2. The logarithm factor does not
vary dramatically in the region of integration, except
near the minimum corner of the denominator, where it
becomes infinite as ln(E —E4). Thus the dominant
contribution to the integral comes from the region E4
and E5 E, and a number of alterations based on this
behavior may be made to allow evaluations in closed
form; these are consistent with the previous treatment
of the numerator of Eq. (20).

P4P5(1+cos&45+ h42+ h5') —+ 2(E—E4) (E—E5)+2M'

P4P5 8485 ~ mM (E E4)/2E, —

dE5 —+
) dE5.

0

2~2 ~z (8 1I— dE4 dES
E' & p "p 2(E—E4)(E—E,)+-'M'

After these compromises,
the 8's are seen to be (&1 in the high-energy limit for
almost all E4 and E5. Thus keeping only terms of lowest
order in the h's,

I~2m'p ' I dE4dE5I p4P5(1+cost145+h42+h5') j '
aJ

)&ln(1+costt45+ 842+ 852)/8485. (42)

2(E E4) (E E,)+ lM2
Xln (45)

mM (E—E4)/2E
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The change of variable

x=M'/L4 (E—E4) (E—Eo)+M'j,

y =M'/f4 (E E4—)'+M'),

transforms the integral to

(46)

diagrams leads to the parametric expression'

g'M' t' /' x' (1—x)'
KFo(q') = ——I 2*dx I dy —+

16m' "o "o
where

(50)

Az ———/4'(1 —x) —M'x'+ q'x'y (1—y),
2 n = —/4'x —M'(1 —x)'+q'x'y(1 —y).

~2 p
1 Qy pl Qz 4+2y

I—— —ln (4&)
E I/ iM/2z)2 y(1 —y) "„x .mMx(1 —y)

g2M2 pl III
KF, (qo) —

I 2xdx (51)
16'' "o ~ o

—M'+q'x'y(1 —y)
1 1 4E'yl

I=—I dy ln— —ln
E' (~(2z)2 y y mM The y integration is easily performed; for large mo-

mentum transfers, the resulting x integration may be
(4g) approximated in a manner similar to that used above

for the fourth-order amplitude. The result is

1 1 4E'y'
+ —ln +ln

1—yy 1—y mM

For q'))M', the neighborhood of @=0is strongly empha-

and after performing the x integration and some sized, and a valid aPProximation to this integral is

rearrangement,

The terms in square brackets would lead to a finite
integral even if the lower limit of integration were ex-
tended to zero, whereas the remaining term would
diverge. Thus in the high-energy limit, the latter term
is the dominant contribution to I:

By inserting Eq. (49) into Eq. (35), the absorptive
part of the fourth-order amplitude in the high energy
limit can now be exhibited explicitly. Before comparison
can be made with the second-order amplitude, Eq. (9),
however, the magnetic form factor must be evaluated
in the same perturbation theoretic model just used for
the fourth-order amplitude. This calculation has already
been investigated for small momentum transfers by
Rosenbluth' (proton) and Friedo (neutron). The rele-
vant Feynman diagrams in the case of the neutron are
given in Fig. 3; application of the usual rules for these

o~

\

hrvvu
1

I
4/'

(a) (b)

FIG. 3. Diagrams used in one-meson model to represent neutron
form factors.

8 B. D. Fried, Phys. Rev. 88, 1142 (1952).

dy 1 4E'y'
I— —ln- ln

E' ~ (~(&z) y y mM

or'2
t

2Eq' - I/2E~'t 2Ey-
ln

I
ln

I II I (49)E'3( M) (ml kMJ

g2 ~2- q2
-2

KFo (q') —ln, q'))M'.
16~' q' 3P

(52)

Note that in this model, F~ falls off with increasing q,
but quite slowly.

Now if the lesson of the simple integration example,
Eqs. (26) and (27), is taken seriously, an additional
factor sin' —', 8 should be supplied in the argument of the
squared logarithm in Eq. (49); when this is done, the
expression (52) for the magnetic form factor can be
recognized in the resulting fourth-order amplitude.
After this substitution is made,

Im(fI T&4&I ~)

=444'KFo(q')L2o~ cos(-,'0)+o4 sin(-,'8)]oo cos(2t/)

X&'(p&'+po' —
p&

—po) (q' M') '—
'2E (2E) -'*

Xln
I I

. (53)
m &M&

Employing this result, the ratio of the imaginary part
of the fourth order amplitude to the second order
amplitude is seen to vary roughly as n(M/E) ln(E/M),
a decreasing function of energy. For an electron center-
of-mass energy of 10 Bev, the ratio is about 5%; it is
below 1% for energies in excess of 50 Bev.

For estimating the real part of the fourth order
amplitude from the imaginary part, two lines of argu-
ment are possible. The first is to exploit the similarity
with the semiclassical imaginary part in order simply to
claim that the real parts should correspond as well. The
other line of argument is to proceed boldly with an
application of a conventional relativistic energy dis-
persion relation, despite the difhculty of the substantial
unphysical integration region, arising from the require-
ment of large momentum transfers. A fixed-momentum-
transfer, no-subtraction dispersion relation for the
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Re(f i

T(4) i')

Im(f i
T« ti) 3 ln(2Z/~*)'

(56)

fourth-order amplitude Eq. (53) (excluding kinematic
factors) predicts

Re(fl T'" |i)
1 p ( 1 1

=Im(fi T«) i')-~ dei
&z' —z eye)

XDn(2&'/~*) j/Dn(2&/~*)], (54)

where (m*)'=—nP3I. If the integration is carried out by
just discarding the unphysical region, that is, setting the
lower limit at E;„'=E sin( —',8), then

Re(f i
T&@

i i) g in(2E sin(~8) j/m*=—sin(-,'8) (55)
Im(f i

T&4i
i i) 3m. 1n(2E/m*)

if the analytic expression (53) is used even in the
unphysical region where strictly speaking it is not valid,
that is, setting E;„'=3f, then the ratio is

In neither case does the real part decrease with energy
less rapidly than the imaginary part.

If the effect of highly virtual photons is examined in
more detail we see that the relation between the two
may be expressed by Eqs. (17) and (13) with e= 1. In
the WEB approximation the imaginary part of F(8) is
then expected to fall off with a rate between (k8) ' and
(k8) 4. From Eqs. (52) and (53) we see that, for small
finiteanglesandk~ ~, Im(fi T'"ii) (k8) 'ln'(k8) ink,
in qualitative. agreement with the previous estimate. The
ratio of real to imaginary parts as given by Eq. (56),
approximately 1/ink, is in agreement with Eq. (17) in
that it has no angular dependence and is a decreasing
function of k. Since the field-theoretic model does not
reproduce the dominance of the resonance at low k in
r~, the ratio is not expected to fall off as rapidly as the
estimate of Eq. (18).

The explicit model calculations thus confirm the more
general estimates of the WEB approximation and again
raise no hint that the polarizability corrections will be
significant for finite-angle electron scattering at very
high energies.


