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The “space dispersion,” i.e., the occurrence of the term k in the
dielectric constant e(w,k) can be attributed either to the Doppler
effect or to the magnitude of the term ak that may appear in the
formulation of the problem. (a is a characteristic distance such as
the Debye length.) Using an approach based on the Doppler effect,
the macroscopic parameters of a plasma have been represented in
the form of four-dimensional tensors of the fourth order (similar to
those introduced by Mandelstam and Tamm). The phenomeno-
logical description of plasma has also been formulated in a three-
dimensional space by means of two macroscopic parameters: the
electric susceptibility x. and the “proper magnetic susceptibility”
Xu/u. Expressions for these parameters have been given for the
general case of a plasma having an electron velocity distribution
f(v)dv and for a few typical specific cases. Both parameters are

INTRODUCTION

ONSIDERABLE attention has been given in the
past to the phenomenological description of plasma
as represented by its “dielectric constant” e(w,k). This
representation brings into evidence a distinctive prop-
erty of a plasma defined as “‘space dispersion” which is
characterized by the appearance of the term k in the
expression for the dielectric constant. Plasma does not
represent the only type of a space dispersive medium
since there are other, particularly molecular media, that
exhibit space dispersion. We shall evaluate critically the
concept €(w,k) in order to point out that the physical
factors that are responsible for space dispersion in a
plasma are essentially different from those that produce
space dispersion in molecular media.

The terminology that is currently applied to plasma
may possibly lead to a certain amount of confusion. In
describing the phenomenological properties of plasma it
is customary to use the term ‘“dielectric constant” and
to attribute to this term a meaning that is different from
the one conventionally used. In that connection a
comparison will be made between the “conventional”
macroscopic parameters that characterize any dispersive
medium and the “modified parameters” that have been
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functions of the frequency and of the wave vector. This formula-
tion brings into evidence the fact that a plasma is a magnetically
polarizable medium and the term x,/ux vanishes only if the electron
velocity distribution is isotropic. In the current literature on the
subject the existence of the term X,/u has not been taken into
account, since, by using a “modified representation” of the
dielectric constant, the magnetic properties of plasma have not
been brought into evidence. In the “modified representation” the
dielectric constant ey is defined by the relationship kXB
= — (w/c)exE, whereas in the conventional representation the
same relationship has the form kXB= — (w/c)eE+4r (x,/u)kXB
(where e=1-+4rx.). A general formalism has been developed for
deriving the electric and magnetic plasma parameters directly
from the Boltzmann-Vlasov equations.

specifically used to describe the properties of plasma.
The “conventional parameters” and the corresponding
“modified parameters” have the sameidentifying names,
although the meaning applied to these concepts is not
the same.

A phenomenological description of plasma will be
given in a four-dimensional covariant form and a
generalized “dielectric-magnetic tensor” for a plasma
shall be formulated. By reducing the four-dimensional
representation to the customary three-dimensional form,
we shall bring into evidence the “‘conventional” macro-
scopic parameters such as the electric and magnetic
susceptibility. The results are significant since they
point out the fact that an anisotropic plasma is a
magnetically polarizable medium and is space dispersive
both in its electric and magnetic properties.

A general discussion will point out certain charac-
teristic anisotropies in a plasma, that are not present in
other nonisotropic substances. Macroscopic parameters
of a plasma will be expressed in a very general form
derived from the Boltzmann-Vlasov equation.

I. GENERAL PROPERTIES OF SPACE-
DISPERSIVE MEDIA

A. Terminology

In dealing with dispersive media one often refers to
“frequency dispersion” which is usually associated with

Copyright © 1961 by the American Physical Society.



2 JACOB NEUFELD

the “difference between the indices of refraction of any
substance for any two wavelengths.”* The reference to
the “wavelengths” is anachronistic and possibly inap-
propriate since the frequency and not the wavelength is
the factor that directly determines the characteristics of
the medium. A frequency dispersive medium is defined
by a relationship

Da(w)z eaﬁ(w)Eﬂ(w)) (1)

where D(w) is the displacement, E(w) the electric field
strength, the tensor e.s(w) represents the dielectric
constant, and  is the frequency. At this point, and in
the rest of the paper, repeated indexes indicate summa-
tion. Greek letters represent the coordinates in three-
dimensional space, and italic letters represent the
coordinates in the space of four dimensions. A relation
analogous to (1) can also be expressed in the form?

Da(i)= f ¥ K os(t— 1) E5(¥). @)

The displacement and the electric field strength are
represented, respectively, by the functions D(#) and
E(#) varying with time ¢, and the tensor K.s(¢) defines
the characteristic properties of the medium. Using the
formulation (1) one can designate the medium as fre-
quency dispersive, and, similarly, on the basis of the
formulation (2) one can refer to the same medium as
“time dispersive.” Expression (2) states that there is no
“instantaneous” dependence between D(f) and E(¢),
i.e., the value D(¢) at any instant depends upon the
distribution in time or “time dispersion” of E(f).

A “time-dispersive” medium may be considered as a
particular case of a “time and space dispersive medium.”
This latter medium shall be abbreviated as “space
dispersive” or “spacially dispersive.” It is characterized
not only by the lack of the “instantaneous dependence”
as expressed by (2) but also by a nonlocal relationship
between the polarization and the electric field.® Thus if
E(r,) is the applied field strength, the corresponding
displacement D(r,t) is such that

D,x(l',t)= fdr,dt, Kaﬂ(r_ rly t_t,)Eﬁ(rlztl)y (3)

where K .5(r—1’) defines the characteristic properties of
the medium. Using Fourier spectrum representation,

1 See for instance (a) Handbook of Chemistry and Physics, edited
by C. D. Hodgman (Chemical Rubber Publishing Company,
Cleveland, Ohio, 1958-1959), 40th ed., p. 3085 or (b) American
Institute of Physics Handbook, edited by D. E. Gray (McGraw-
Hill Book Company, Inc., New York, 1957), 6-4.

2 See for instance L. D. Landau and E. M. Lifshitz, Elekiro-
dinamika Sploshnykh Sred (Gos. Izd. Tekhn-Teor Literatury,
Moscow, 1957), p. 315.

3 See, for instance, V. D. Shafranov, Zhur. Eksptl. i Teoret. Fiz.
34, 1475 (1958), and a paper on related subject by J. E. Drum-
mond, Phys. Rev. 110 293, 1958.

the relationship (3) is expressed as
Da (w,k) = €ap (w7k>Et3 (O),k), (4)

where the dielectric constant e.s(w,k) is an explicit
function of the frequency and the wave vector. This
formulation was applied to optically active substances,
and more recently to various “moving media” such as
plasma.

The term “plasma’ will be used in a generalized sense,
i.e., it will designate media comprising charged particles
in motion such as ionized gases, moving beams of
electrons or protons, etc. We shall exclude from our
definition the trivial case of the “stationary’’ plasma. In
the latter case the dielectric constant is represented by
the expression e=1—w¢/w? (wy is the Langmuir fre-
quency) and there is no space dispersion.

B. Unified Theory of Space Dispersive Media

Space dispersive media are essentially of two types:
“molecular media” and a “plasma.” Space dispersion in
molecular media has been investigated by Landau.* The
concepts introduced by Landau have been subsequently
broadened by Ginzburg® in the form of a unified theory
that covers all space dispersive media, both molecular
and plasma.

According to Landau, a molecular (or atomic) me-
dium can be either time dispersive or space dispersive,
and the character of the dispersion depends essentially
upon the factor a/A=ak, where a is the ‘“size” of the
molecule or atom and A is the wavelength of the applied
field. When ¢k<1 and can be neglected, the medium is
time dispersive and the relationship between D(w) and
E(w) is of the type given by the expression (1). On the
other hand, if ak is small but not negligible the relation-
ship between D (w) and E(w) has been formally expressed
by Landau in the form of a power series in £, i.e.,

D,= [:eag(w) —ikr;yaﬂ'r(w) —k'rkpéaﬂ’rp (w)'l_ U ]E57 (5)

where Yqp-(w), 8a8-,(w) are tensors of third and fourth
rank, respectively, and are functions of the frequency
only. The relationship (5) is of the type given by the
expression (4).

The generalization of Ginzburg is based on the ex-
tension of the meaning attributed to the fundamental
length @. In such a generalized interpretation the term
a designates not only the size of a molecule or an atom
but any other suitable “characteristic length’ applicable
to a material medium, such as the lattice spacing if the
substance is a solid, or the Debye constant in case of a
plasma. By using formal considerations similar to those
of Landau, Ginzburg presented a unified theory that
accounts for the occurrences of the vector k in the ex-
pression e(w,k) in such apparently different substances
as optically active media, crystalline structures, and
plasma.

4 Reference 2, p. 425.
5V. L. Ginzburg, Zhur. Eksptl. i Teoret. Fiz. 34, 1593 (1958).
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C. Diverse Theoriés of Space Dispersive Media

In contrast to the formal and unifying approach of
Ginzburg we shall base our discussion on more direct
physical factors that are responsible for the occurrence
of space dispersion in molecular media and in plasma.
The properties of these two media shall be considered
separately.

1. Space Dispersion in Molecular Media

The phenomenological description of matter involves
two fundamental lengths: the molecular radius @, and
the intermolecular distance a4. The term a,, is used for
defining various microscopic concepts, and the term aq4
serves to make a transition from the microscopic to the
macroscopic point of view. This transition is effective in
“smearing out” the granular structure of matter by
averaging the microscopic quantities over the “physi-
cally infinitesimal elements of volume.”® The term a.,
characterizes the Lorentz theory and is used because of
our lack of detailed knowledge regarding the structure
of matter within the molecule. Thus all the microscopic
concepts based on the Lorentz theory are subject to a
restrictive condition (@./A)<<1. By eliminating this
condition, a time dispersive medium becomes space
dispersive.

Assume that a perturbation

E=— (w/c) Re(iA), (6)

applied to a molecule induces transitions from an ini-
tially unperturbed state ¥ to excited states y;. The
vector potential A can be expressed in the form

A i=A0iei(wt—k.r)
= Aot (1 —ikaratdbokorars—---1 ()

Some of the microscopic quantities such as the mo-
lecular polarization Py ;.r or the electrical susceptibility
of the molecule (Xmier)es can be expressed by means of
the relation

Pmicr:e('ilpli):"micrE; 8)

where p= (ef/mw) grad. We consider only the diagonal
terms in the matrix (8) since these terms correspond to
the state ¥, having the same energy as the initial state
¥i0. The nondiagonal terms represent emission and ab-
sorption of light, and are excluded from our considera-
tions. The macroscopic formulation for the dielectric
constant can be directly determined from the expression

4w
Eaﬂ=1+— meicrdV; (9)
14

which represents the averaging of the microscopic
parameter kmier over a physically infinitesimal volume
of space V.

SH. A. Lorentz, The Theory of Electrons (B. G. Teubner,
Leipzig, Germany, 1916), 2nd ed., p. 132,

The expression given in (9) may be either of the type
€«p(w) or of the type e.s(w,k), depending on the number
of terms that are retained in the series within the
brackets in the expression (7). If we limit ourselves to
the first term, we obtain time dispersion as represented
by (1). On the other hand, by including the successive
terms in this series, we obtain an expression that is
formally similar to the one postulated by Landau in the
form (5). Using the expressions (6)—(8) and averaging
the microscopic quantities over the physically infini-
tesimal volumes of space we can express various coeffi-
cients of Landau, such as €.s(w), Yasr (@), Sasro(w), as
functions of matrix elements of molecular transitions for
electric and magnetic moments. This procedure has been
applied to the term vqs,(w) in order to account for the
optical activity of various substances.” A similar pro-
cedure applied to the succeeding terms such as g, (w)
would give physical meaning to the corresponding terms
in the Landau expression (5). It would explain in terms
of molecular structure the space dispersion in such
media as cubic crystals.

2. Space Dispersion in Plasma®

The space dispersion in molecular media represents a
quantum mechanical refinement which takes into ac-
count the effect of a perturbing potential that varies
over distances comparable to the “molecular diameter.”
These considerations do not apply to plasma since there
is no “molecular diameter” in a plasma, and the space
dispersion results from classical (‘“‘orbital”) and not
“quantum” representation.

The concept of “plasma’ is associated with a macro-
scopically defined medium comprising charged particles
in motion. Therefore, in order to determine the response
of such a medium to an external harmonic force one has
to take into account the Doppler effect. Thus if o’
indicates a frequency in a system of coordinates .S’
moving with velocity v relative to S the corresponding
frequency in the system .S can be expressed as®

(10)

The appearance of the vector k in the expression (10) is
associated with space dispersion. The importance of the

o'=(w—kv)y, where y=(1—1/c?)%

7L. Rosenfeld, Z. Physik 52, 161 (1928).

8 The literature using the explicit formulation e(w,k) for the
dielectric constant in a plasma is quite extensive. A number of
papers have been published in addition to those given in references
3, 5, 10, 11, 14, and 15. Some of these are as follows: M. E.
Gertzenshtein, Zhur. Eksptl. i Teoret. Fiz. 23, 678 (1952); 27, 180
(1954). R. Z. Sagdeev and V. D. Shafranov, Proceedings of the
Second United Nations International Conference on the Peaceful
Uses of Atomic Energy, Geneva, 1958 (United Nations, Geneva,
1958), Vol. 31, pp. 118-124 (P/2215 U.S.S.R.); Zhur. Eksptl. i
Teoret. Fiz. 39, 180 (1960). A. G. Sitenko and K. N. Stepanov,
ibid. 31, 642 (1956). K. N. Stepanov, ibid. 34, 1292 (1958); 36,
1457 (1959). V. P. Silin, 4bid. 37, 273 (1959). Hans Wilhelmsson,
Fourth International Conference on Ionization Phenomena in Gases,
Uppsala, Sweden (North-Holland Publishing Company, Amster-
dam, 1960).

9 See for instance C. Moller, Tke Theory of Relativity (Clarendon
Press, Oxford, 1952).
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Doppler effect has been pointed out by Gertzenshtein®
in his derivation of the dielectric constant of a plasma
from the Boltzmann-Vlasov equation. In our derivation
as outlined in Sec. ITI, the Doppler effect will be intro-
duced more explicitly since our formulation takes
directly into account the effects of the motion of an
electron beam in the laboratory system.

3. General Remarks

It appears, therefore, that there are two very distinct
factors that are responsible for space dispersion: the
magnitude of the terms ak and the Doppler effect. These
factors occur independently and under different circum-
stances. However, in some dispersive media such as
partly ionized gases, the dispersion is of “mixed type,”
i.e., the appearance of k in the expression e(w,k) is due
to both factors and the contribution of each factor
should be considered separately. We wish to point out,
however, that an approach based on the distinction be-
tween these two factors may not always be fruitful and
in various instances the unifying point of view of
Ginzburg may be particularly desirable. Thus a similar
mathematical formalism when applied to very different
physical situations may reveal significant and valuable
analogies.

II. MACROSCOPIC PROPERTIES OF PLASMA
A. General Remarks

Consider the interaction of an electromagnetic field
with an assembly of particles having charges e; and
velocities V;(4=1, 2- - -x). The response of such an as-
sembly to an applied field can be described in terms of
an electric polarization P? and a magnetic polarization
MO which are as follows:

1
PO“—“—Z e;r;; Mo=- Z e;x; XV, (11)
i [

where r;is the radius vector connecting a particle having
charge ¢; and velocity v; with a certain arbitrary refer-
ence point, and the summation extends to all particles in
a unit of volume. In the presence of a perturbing electro-
magnetic field of the type expi(k:r—wt), both vectors
P° and M acquire small alternating components P and
M (assuming that a linear approximation is justified).
We use the customary relationships:

D=E+4xP= (1+4xX,)E=€E, (12)
X, 1

H=B—4rM= (1—47r——)B=—B, (13)
© u

where D is the displacement, E the electrical intensity,
B the magnetic induction, H the magnetic intensity, X.

1o M. E. Gertzenshtein, Zhur. Eksptl.

Teoret. Fiz. 22, 303
(1952).

the electric susceptibility, X, the magnetic suscepti-
bility, e the dielectric “constant,” and x the magnetic
permeability. Although B represents the mean intensity
of the microscopic magnetic field, we shall continue to
designate it as magnetic “induction” so as to comply
faithfully with the anachronistic formulation that is
currently used. The relationships (12) and (13) are
represented in a somewhat asymmetric form in order to
maintain the distinction between the macroscopic values
D, and H, and the corresponding microscopic values E,
and B. Since B and not H is the mean intensity of the
microscopic field, the coefficient X,,/u appearing in (13)
has a more direct physical meaning than the coefficient
X,.. The term X,/u (and not X,) is the magnetic equiva-
lent to the electric susceptibility of the medium. Un-
fortunately, the present terminology has not provided a
specific name identifying the term X,/p. In order to
facilitate our further discussion we shall designate this
term as the “proper magnetic susceptibility” of the
medium so as to differentiate it from the “magnetic
susceptibility” that is designated as X,.

The expressions (11)-(13) describe conventional mag-
netizable media. We shall apply a similar formulation to
a plasma and use these expressions as a basis for defining
various macroscopic parameters that describe the
phenomenological behavior of a plasma.

B. Conventional and Modified
Macroscopic Parameters

Various terms such as the ‘“dielectric constant,” the
“electric displacement,” etc., are often used to describe
the macroscopic behavior of plasma. In various in-
stances, however, the same terms designate entirely
different concepts when applied to a plasma and when
applied to other media. In order to be consistent in our
presentation, we shall refer to the usually adopted defi-
nitions of the macroscopic parameters as expressed by
(11)-(13) as the “conventional” definitions and we shall
continue to designate the corresponding symbols such as
¢, D, etc. without any subscripts. On the other hand, the
new “modified plasma parameters” that are still identi-
fied as “dielectric constant” or “displacement,” etc.
(although their meaning is different) will be designated
by the subscript M such as eu, Da, etc.

The “modified representation” does not bring into
evidence the fact that a plasma is a magnetically
polarizable medium. In the published literature on this
subject there appears to be no discussion on magnetic
polarization and its dependence on the structural
characteristics of a plasma. It is believed, however, that
the magnetic susceptibility is a very significant and im-
portant parameter characterizing nonisotropic electron
velocity distributions. It will be shown in subsequent
paragraphs that plasma is nonmagnetic only if the
velocity distribution is isotropic. Therefore in a strict
sense the ‘“modified representation” cannot be con-
sidered as applicable to a nonisotropic plasma. The re-
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strictive condition regarding the applicability of the
modified representation was apparently not formulated
in the literature. These conditions should be kept in
mind, however, in those instances in which the “modi-
fied” macroscopic parameters have been specifically
used to describe a nonisotropic plasma.

In order to compare the conventional and modified
representation we shall point out the difference in the
formulation of Maxwell’s equation in both cases. One of
these equations is represented in the conventional nota-
tion as follows:

kXB= ——eE+4rkX
4

Xy
—B, (14)
"

whereas the same equation in the modified representa-
tion appears as

kXB=— (w/c)euE. (15)

The propagation of an electromagnetic wave through
plasma is represented in the conventional form by the
expression

1 9D oM
grad divE—V2E4+— —+47 curl—=0, (16)
¢t ot at
whereas the corresponding modified expression is
1 Dy
grad divE4V2E+4— . )
¢t o

In some instances the forms (15) and (17) may be more
convenient. However, there is no physical equivalence
between these two formulations. The “modified electric
displacement defined by (17) is not an entirely electrical
concept, since it is related to both electric and magnetic
properties of the medium.

III. FOUR-DIMENSIONAL COVARIANT
FORMULATION

A. General Remarks

We shall treat the problem relativistically and express
the macroscopic parameters of a plasma in a form that
is invariant under Lorentz transformation.

Following the procedure used by Neufeld and
Ritchie,* we consider a plasma, characterized by an
electron velocity distribution f(v)dv, as an assembly of
‘“component beams.” In order to form this assembly,
the velocity space is subdivided into equal volume ele-
ments Av; (=1, 2, 3, ---). A vector v; connecting the
origin of coordinates with any point within a cell Av;
represents the velocity of an extended and uniform elec-
tron beam having density f(v)Av;and the density of the
entire assembly is 3, f(v;)Av,. The continuous distribu-
tion represents a limit when each volume element Av;
tends to zero.

We shall determine the macroscopic parameters for a

11 T, Neufeld and R. H. Ritchie, Phys. Rev. 98, 1631 (1955).

single “component beam” having velocity v and then
generalize our results to cover any distribution of the
type f(v)dv. The parameters for a single component
beam will be obtained in two steps. In the first step we
formulate the properties of the beam in four-dimensional
space for the case of =0 in the laboratory system. Such
a beam appears, therefore, as a stationary electron gas.
In the second step we apply the Lorentz transformation
for an observer moving with the velocity v with respect
to the laboratory system, and we determine the macro-
scopic parameters of the beam with respect to the
moving observer. Theresult displays a certain symmetry
with respect to both systems. Therefore, changing v
into —v we obtain for the laboratory system the
macroscopic parameters of a beam moving with the
velocity v.

B. Stationary Electron Gas

We shall formulate a four-dimensional generalization
of Egs. (12) and (13) as applied to a stationary electron
gas. The usual vectors defining various field quantities
shall be replaced by antisymmetric field tensors, F,;
M1, and H% defined as follows:

B=(Fy,F13,F21); E=(Fu,Fa,Fu);
(1/)M= (M*=2,M3M*); P=(Mu,Ms,Ms);
(1/o)H=(E>H%H"); D= (H"H*H®).
There are two different formulations of equations of

electrodynamics of moving matter: the commonly used
formulation by Minkowski? and a relatively less used
formulation by Mandelstam and Tamm.® Minkowski

expressed the relationship between the field values and
the corresponding macroscopic quantities in the form

and Hip*ur= (1/p)F ix*ur

(18)

H = el sxus,

(where %, is the velocity four-vector and F;,*, H ;1™ are
pseudotensors dual to F,, and H;z). It is noted that
these expressions did not retain the same form as (12),
(13) since they contain the velocity terms #; and no
corresponding velocity terms appear in (12) and (13).
It is, however, our objective to obtain an expression that
is formally analogous to the relationships as expressed
in (12), (13). It should be kept in mind that we wish not
only to obtain a relativistically invariant formulation
but to derive relativistically covariant concepts that
may be considered as the generalization of the macro-
scopic plasma parameters such as e and x. Such concepts
have been introduced by Mandelstam and Tamm and
expressed in the form of a four-dimensional tensor of the
fourth order identified by the symbol e'™%*, This tensor
is defined by the relationship H'm=e™*F;, and is
designated as D-M, i.e., “dielectric-magnetic” tensor.
We shall use a similar formulation and express the rela-

12 H. Minkowski and M. Born, Math. Ann. 68, 526 (1910).
( 13 %) E. Mandelstam and I. E. Tamm, Math. Ann. 95, 154
1925).
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tion between M and F;; in the form
Mlm:xlmikFik, (19)

where x'™* will be designated as the “D-M suscepti-
bility tensor.”

ks« We shall consider the expression (19) in the frame-
work of two observers designated as A4 and B. For the
observer A the electron gas is stationary and various
physical quantities relating to the system A4 shall be
designated by a subscript 4. The observer B moves
with respect to 4 with velocity —v and the corre-
sponding physical quantities shall be designated by a
subscript B. The tensor x!™* has a particularly simple
form in the system A. In this system it is so formulated
that the relationship (19) reduces to the form P=x,E;
M= (x,/u)B. It can be shown that out of 256 compo-
nents of the tensor X 4'™%* only 12 components are dif-
ferent from zero, and these are as follows:

I=1i=4; m=k=1,2,3;
XAl"“;k'—:Xe, when{ .

m=k=4; I=1i=1,2,3;

I=i=0; m=k=2,3; (20)
XAlmzk—;—z-%, wheny/=i=2; m=k=3,1;
l=i=3; m=k=1,2.

The magnetic polarization produced by a perturbing
electric field is in a stationary gas by an order of magni-
tude smaller than the electric polarization. Therefore

X,./u=0. (21a)
Furthermore we have
Xe= - (wo)A2/wA2.

(21b)

The term w4 represents the frequency (in the system A4)
and the term (wo)4 represents the Langmuir frequency
which is defined as

(wo) 4= (4wma€?/m)},

where 74 is the electron density in the reference
system 4.

(22)

C. Beam Moving with Velocity v

We shall describe the beam in the framework of an
observer moving with the beam. In this case the moving
reference system is labeled as 4 since the beam appears
in this system as a stationary electron gas. We have

(23)

where X 4% is defined by (20), (21a;b), and (22). Our
problem consists in representing the relationship (23) in
the laboratory system, i.e., in the framework of the
observer B. This representation is expressed symboli-
cally as

M A =X AU 4

MBlm=XBZMikFik,B-

(24)

In making the transformation from the system 4 to
the system B, the following two conditions should be
taken into account: (1) The expression X4!™* repre-
sents a tensor. (2) Various components of this tensor
contain the expression X, given by (21b) which is not
relativistically invariant.

One of the terms contained in X, is the frequency w4
that transforms in accordance with (10). The other term
is the Langmuir frequency which in the system B
is represented as (wo)s= (dwnpe®/m):. Therefore the
Langmuir frequency is transformed from the system 4
to the system B as the square root of electron density.
Since ng=mn4vy, we have:

(wo) 5= (wo) av*. (25)

Consequently, the transformation from the system 4
to the system B is effected in two steps. In the first step
we apply the covariant properties of the tensor X ,4'mi*
and in the second step we take into account the trans-
formation properties of the terms w and wp as given by
(10) and (25), respectively. Therefore

(wo) 8

X)p=——"—.
( )A (wB—'ka)2’Y3

(26)

In order to represent symbolically these two steps we
shall introduce a term X;,i/™¢* representing an ‘‘inter-
mediate state.” Thus the first step leads from X 4™ to
Xing™* and the second step leads from Xi,s'™i* to
Xptmik, More specifically, in the first step the sus-
ceptibility tensor is transformed as

X intprstz leQmTQisttXAZMik, (27)

where the (s represent the parameters of the Lorentz
transformation.’
The second step is represented symbolically as

Xp?"t= (Xins?"*!) 4B.

(28)

This transformation exhibits the Doppler effect and it
accounts for the occurrence of the vector k in the ex-
pression for Xg'™*. Thus the medium that was fre-
quency dispersive in the system A became space
dispersive in the system B.

D. Continuous Velocity Distribution

The expression (28) represents the D-M susceptibility
tensor for a beam having velocity v in dv and density
f(v)dv. Our further description will be in the laboratory
system, i.e., in the framework of the observer B.
Therefore, the subscript B shall no longer be necessary.
In order to show explicitly the dependence of this tensor

on the velocity of the beam we shall write
XBPTStEvaT”dV.

(29)

The generalized susceptibility of a plasma considered as
a limiting case of an assembly of component beams can,
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therefore, be represented as

Xplasmalm“c= va"’”'kdv. (30)

IV. THREE-DIMENSIONAL FORMULATION

For practical applications it may be appropriate to
replace the covariant four-dimensional representation
by an equivalent description in three dimensions. We
shall, therefore, reformulate our expressions in a rela-
tivistic three-dimensional representation and derive the
macroscopic parameters for two typical cases: a beam
having velocity v and an assembly of beams having a
spherically symmetrical velocity distribution f(v)dv.

A. Beam Having Velocity v

We shall designate as P™dv and M™dy the electric
and magnetic polarization produced in a beam moving
with velocity v. The relationship between the polariza-
tion and the corresponding field quantities can be ex-
pressed as follows:

Pa(v)z (Xe(v))aﬂEﬁa (31)
Mo = (X,/11) ap™ Bs. (32)

Thus the electric susceptibility of the beam is (X,)5Vdv
and the “proper magnetic susceptibility” is (X,/u) o5 dv.

We shall rewrite the expression (24) in three-dimen-
sional space. Instead of field tensors M'™ and F,, we
shall use the corresponding field vectors P, M and E, B.
Taking into account (20), (23), (24), and (27)-(29), the
relationship as expressed by (24) can be represented in
the following form:

PO (1-)+6(3-PC)

w?(1—6%)%
=—— " TE B
41r(w-ck-§)2[ +8XB], (33)
M (1-6)+8(8-M™)
woz(l—ﬂz)%

—47r(w—-ck~ 8)?

where 3=v/c. .

By using instead of B its equivalent expression
(¢/w)k X E and substituting this expression in (33), (34)
we obtain a formulation in which the electric and mag-
netic polarizations appear as explicit functions of the
electrical force. Thus the expression (33) assumes a
form (31) and the expression (34) assumes a form

Ma(v) = (Xen) rxﬂ(v)Eﬁ- (35)

The tensor (X.u).s shall be designated as the “electro-
magnetic susceptibility tensor.” Using «, v, z coordinates
and assuming k,=k,=0; k.,=k; v,=vsinf; v,=0;
v,=vcosf, we can express the terms (Xo)qs” and
(Xeu)as™ as follows;

oL _x
drylw(w— kv cosf) ¢ (w— kv cos)? ’
(X = we® 12 sinf cosf )
o —41rc2'y (w—Fko C050)2’
oo 1
47y w(w— kv cosh) (36)
(X = _i(i[ kv sinf 3 2 sinf cosd '
e Arylw(w—Fko cosf)?  c2(w—kv cos@)z]’
we? 1 7% cos?
(Xg)33M= ——[ - ];
4yl (w—kv cosf)?  c2(w— kv cosh)?
(Xe)12M = (X)21M = (X) 23V = (X,) 55V =03
?;ld) o iooi’ v cosf B k1? cos? -
W 47r'y[ ¢(w— kv cosh)? wc(w~kvcos€)2]’
(X )ar( = we? ko? v cosf .
e —E[wc(w—kv cose)2_c(w—kvcosf))2]’
wo? v sinf 37)

(Kep)2s V= —— ———————;
47y c(w— kv cosh)?

KoM= Xew)1s"= (Xe#)22v= Kew)n"= (Xen)ss™=0;

(X we? [ k22 sinf cosf 2 sinf ]

Xeop)se!V=—— - .
g 4yl we(w—kvcosh)?  c(w— kvcosh)?

The dispersion equation for a beam can be expressed
in the relativistic formulation as follows:

|@ap—ex™ | =0, (38)
where
a11=022= 62k2/w2 ; (39)

12=013=U21=Q23=A31= A32=a33=0,
and €™ is the “modified dielectric constant” expressed
as follows:
wo? wo?k2v? sin%g
(emu¥V=1—————
w¥y ¥y (w— kv cosh)?

wo?? sin%f

e (w— kv cosh)? ’

wo?k sinf
(e3) 15 = (en)srW = ————
yw(w— kv cosh)?

w0202 sinf cosd (40)
\ Y2 (w— kv cosh)? ’
w
(e3) P =1——;
wy
we? wo?v? cos?d
(ex)ssW=1— 4

T 5
v(w—kv cosh)? ¥y (w— kv cosh)?

(312 = (ea) 21" = (em) 25" = (ear) 32" =0.
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The expression (40) is known in the literature and is
referred to as the ‘“dielectric constant.” There are also
analogous expressions published in the literature that
describe a plasma having different “longitudinal” and
“transverse” températures and these expressions are
also referred to as “dielectric” constants. Furthermore,
one can find expressions of the type D= eE, where €is as
defined in (40) and D is referred to as the “electric
displacement.” We wish to emphasize that these ex-
pressions are inappropriate since they do not represent
the physical reality.

In order to illustrate our point, we may consider the
accuracy of the following statement: “A static electric
charge produces an electromagnetic field.”” Such a state-
ment is obviously untrue since it conflicts with the
meaning of the well-defined concepts of electrostatic and
electromagnetic fields. Similarly such concepts as the
“electric displacement” and ‘“‘dielectric constant” as

wokv cosd

X, (§2)
(:) 1n _41r'y (w— kv cosh) (w2 —wo?/v) ’

currently applied to an anisotropic plasma are in conflict
with these concepts as defined by Maxwell and Lorentz,
respectively. The ‘“electrical displacement” as used in
the literature is actually intrinsically related to magnetic
properties of plasma. Therefore it does not designate an
entity that is entirely electrical. A similar situation
applies to the term ‘“dielectric constant.” There is,
therefore, a certain amount of confusion in the macro-
scopic description of plasma. This confusion can be
clarified by recognizing that anisotropic plasma is a
magnetizable medium and introducing the macroscopic
concepts as expressed by (36) and (37).

Using the formulation (15) we can express E as a
function of B in the form E= — (¢/w)ex 1 (kXB). Sub-
stituting this expression in (35), we obtain a relationship
of the type (32) in which the magnetic polarization is ex-
pressed as an explicit function of B. Various terms ex-
pressing the proper magnetic susceptibility are as follows:

(x,‘) v —wo*kv sinf
/s Ar(w—FEo cost) (P—wd/v)y

k2 sin%

w0 cosf(c2— v2)]

41rw2ytw—-kv cosf (w—Fkv cos)? Py (w— kv cosh)?

wok [‘ v cosf
).
2

B. Spherically Symmetrical Distribution

A general expression for the macroscopic parameters
of a plasma having any velocity distribution f(v)dv can
be easily obtained. The polarization vectors in such a
plasma can be expressed as P= /" PMdv, M= S'M™dy
and consequently the electric and magnetic suscepti-
bilities are as follows:

_ ; (41)
22 (1 wo2) (1 w(2—1? c0520)) wo?t? sin% (62k2—-w2+w02/'y),
w¥y v (w— kv cos)2/ v (w—kv cosh)? c2w?
C).-().-C).-().-(). ().
=) =(—=) =(—=) =(—) =(—) =(—) =o
M 12 12 13 1 21 M 23 1 32 M 33
and
we? f(w)dv we?
(Xe)11= (Xg)oo= —— t
drw v (w—Fkv cosf)y 4dwkc?
F(v)v cosf
X f —dy;
(w— kv cosf)y
we? f()dv wo? (44)
(Xe)ss=—— f
dr J  (w—Fkvcost)?y 4duwc?

(as= [ RasPdv; Kuoa= [ Ceadasar
2)

(Xu/#)aﬁ=f(x,‘/ﬂ)a,s(")dv.

A particularly interesting case is represented by a
spherically symmetrical velocity distribution, i.e., when
f(v)=f(2). Substituting (36), (37) and (41) in (42), we
obtain the following expression for various macroscopic
parameters (assuming ko=Fk; k.=%,=0):

(43)

(Xew)ap=0; (Xu/1)ap=0;

()2 cos?d
X f —————v;
(w— kv cosh)2y

(Xe) 2= (X&) 13= (Xe)21= (X&) 2s= (X&) 51= (X)32=0.

There are two particularly significant features of an
isotropic plasma: (a) the absence of magnetic polariza-
tion and (b) the diagonal form of the electric sus-
ceptibility tensor.

C. Anisotropy

The functional dependence between the polarization
vectors and the field intensities is represented in form
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of tensors and, therefore, there is an anisotropy that
characterizes the electromagnetic behavior of a plasma.
There are certain distinctive features exhibited in the
anisotropies of a plasma and these are not present in
other nonisotropic media such as crystals. In order to
clarify these distinctions we shall classify various non-
isotropic media as belonging to type 4, type B, and
type C.

Type A designates the usual anisotropy occurring in
crystals. It is expressed by an explicit and unique de-
pendence between the relationship P= f(E) and a fixed
direction in space. The fixed direction in space is the
orientation of one of the principal axes of a crystal.

In the anisotropy of type B there are no fixed “refer-
ence” orientations such as the optical axes in a crystal.
The substances exhibiting this anisotropy are struc-
turally isotropic and their anisotropy is expressed by an
explicit and unique dependence between the relationship
P=f(E) and the direction of the propagation of the
wave. Such a dependence exists in the spherically
symmetrical plasma discussed above. This plasma is
structurally isotropic and thus there is no preferred
orientation. However, the relationship between P and E
as expressed by the susceptibility tensor is of a direc-
tional nature and depends upon the direction k. We have
here two different values of the electric susceptibility
depending upon the direction of E with reference to the
direction of k. Thus if E|k, the susceptibility is de-
termined by (X.)11 as given by (44) and defined as the
“longitudinal susceptibility.”” On the other hand if
E1 k the susceptibility is determined by (X.)11= (X,)22
as given by (44) and defined as the “transverse sus-
ceptibility.”

The anisotropy of type C occurs in a plasma having a
structural cylindrical symmetry. Such a plasma is
characterized by a certain “fixed reference orientation”
which may be the direction of the velocity vector v as
in the case of the “one-beam medium” described by
(36), (37), and (41). In such a medium there is a unique
dependence between the relationship P= f(E) and two
directions. One of these is the direction of the vector k
and the other is the “reference orientation.”

D. Determination of the Macroscopic Parameters
from Boltzmann-Vlasov Equations

In previous paragraphs we considered the form
f(V)dv as a limiting case of an assembly of discrete
electron beams and the macroscopic parameters of a
plasma were expressed as a superposition of the parame-
ters relating to the component beams. We shall apply
now a somewhat different procedure and derive the
macroscopic parameters directly from the Boltzmann-
Vlasov equations. This procedure introduced by Gertz-
enshtein!® and Lindhard“ was subsequently used by

1 J. Lindhard, Kgl. Danske Videnskab Selskab, Mat-fys. Medd.
28, No. 8 (1954).

Shafranov'® to obtain a general expression for the “modi-
fied”” dielectric constant ey. By integrating the Boltz-
mann-Vlasov equations along the ‘“trajectories” [in
Lagrangian coordinates of particles 7() and p(¢)],
Shafranov expressed the perturbing term f; for the
distribution function f, as follows:

= —ef_;{ E(r(t’),t')n%V(t’) XH(r(t’),t.’)}

dfo
X———l', (45)
ap(¥)
and obtained ey from the following relationship:
.(EM)T_‘SW R .
i—————pr=jf= f]‘r(P)dpy (46)

where j, represents the total current density, and 7,(®dp
represents the portion of the current density produced
by particles in the volume element dp of the momentum
space. The term 7P can be represented as

iw
jf<p)=v7f1= —_KTIIEM (47)
47
where
47!'1’!62 ¢ kV el 0 Up afo
K,,= f’v,(t){(l——— i-f-—k—-]
w Jo w/0p, w Jp

Xexp{ —i[wt-—k f t v(l’)dt'] ]dt. 48)

We shall now derive the expressions representing the
electric and magnetic properties of a plasma in the “con-
ventional” representation. Let P(®dp represent the
polarization associated with the particles within the ele-
ment dp, i.e., P=_/P®dp. The current j*» contains
the following parts: (a) the current caused by the rate
of change of the polarization and the motion of the
polarized medium, i.e.,

DP® gP®
= + (v-grad)P®, (49)
Dt at
and, (b) the convective current;
—v divP®, (50)
Consequently
(w—k-v)P®O4y(k-P®)=j®, (51)
The equations (47) and (51) give
1w
P, ®=m,,j,®= _mepKr?Eb (52)
T

1Y, D. Shafranov, Fizika Plazmy i Problema Upraviiaemykh
Termoiaderhykh Reaktsis (Academy of Sciences of U.S.S.R.,
Moscow, 1958), Vol. IV, p. 416.
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where
w— ka'vg

Mep=—— for a=p,

w(w—kv)

(53)
kﬁ‘l)a

Map= for a#p.

w(w—kv)

Consequently, the electric susceptibility can be ex-
pressed as

iw
(Xe)vs= _f; fmvaKaBdP- (54)

In order to obtain the magnetic polarization, we put
M=/ M®dp. The term M® can be determined from

(11) and represented in the form

1
M =—(Psg®y,— P, ®yp), (55)
c

where a, 8, v are in a cyclic succession.

Substituting (52) in (55) and utilizing the relationship
M o= (Xou)asEg, we can express the “electromagnetic
susceptibility’’ as follows:

T
(Xen)aﬁ=—z f VymgsK s,—vmysKs,)dp,  (56)
T

where «a, 8, v are in a cyclic succession.
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The transport property of an ion in a dilute Bose-Einstein gas subject to an external electric field is
investigated by means of the Boltzmann equation. The interaction Hamiltonian which describes the ion-
phonon scattering processes is obtained by the use of the Bogoliubov transformation and the cross section
for the scattering of the ion by phonons is calculated. The solution of the Boltzmann equation is obtained
by applying a variation principle and the temperature dependence of the ion mobility is shown to be 7—*
at very low temperatures. A comparison of the results with the experimental data in liquid helium and the
Khalatnikov and Zharkov theory is given and also the ion mobility in a Fermi system is briefly discussed.

1. INTRODUCTION

HE purpose of this paper is to study the mobility

of an ion in a dilute Bose gas in connection with

the recent experiments in which ions in liquid helium
are used as microscopic probe particles to investigate
the properties of the superfluid.'™* Because of the
superfluid property, one expects that the ions move
through liquid helium without encountering any re-
sistance in its ground state at the absolute zero. On
the other hand, at finite temperatures the ions suffer
the scattering processes which arise from the thermal
excitations present in the fluid. Thus, one may expect
that by studying the motion of ions, useful information
can be deduced about the nature of the elementary
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1 On leave of absence from Rikkyo University, Tokyo, Japan;
supported by the National Science Foundation.
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excitations and possible interactions between a particle
and the underlying quantum fluid.

The simplest experimental situation is to apply an
electric field £ and to measure the drift velocity # of
the ion. If £ is kept sufficiently small, # is expected to
be proportional to E and one may define the field-
independent mobility p=wu/E. In fact, Meyer and Reif!
have shown experimentally that u is independent of E
when E<1 volt/cm and that its temperature depend-
ence is of the form p=puo exp(A/kT) in the range below
the A point down to 0.8°K. A possible interpretation
of this behavior was proposed by Meyer and Reif! based
on the scattering of the ion by rotons. At temperatures
below 0.6°K, they obtained a temperature dependence
of the form po T*%, where k=3.34-0.3 for a positive
ion and k=2.44-0.4 for a negative ion, and they pointed
out that this behavior disagrees with the prediction by
Khalatnikov and Zharkov® obtained on the basis of
ion-phonon interactions derived from quantum hydro-
dynamics. So it is of considerable interest to re-examine
the temperature dependence of the ion mobility due to
phonon excitations from first principles.

®I. M. Khalatnikov and V. N. Zharkov, J. Exptl. Theoret.

Phys. (U.S.S.R.) 32, 1108 (1957) [translation: Soviet Phys.—
JETP 5, 905 (1957)].



