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correct if the crossed cuts in the S's were given func-
tions. It is interesting to note that, depending on the
coupling constants c and d, the inelastic contribution
to %22 can have a very large effect on the position of a
resonance, even if it has an energy considerably below
the inelastic threshold. Another amusing point is the
possibility of a bound state in the (M' —M') system
of mass Mo which should yield a two-particle cut in
Mss starting at (Ms+tt)'. Continuing analytically in
the coupling constant a, one sees that this cut arises
from the Is(s) terms in Mrs(s). The procedure f'or
performing this continuation has been described else-
where. "The essential point is that since all develops

"R. Blankenbecler, M. Goldberger, S. MacDowell, and S.
Treiman (to be published). For a preliminary account see R.
Blankenbecler, Proceedings of the 1960 Annual International

a zero at the bound-state mass, the s' integral in I4
must be deformed to avoid the resulting singularity
of the integrand. This procedure then yields an "anom-
alous threshold" beginning at the point (Ms+tt)'. By
picking out the residue at Mo in the variable m, one
can calculate the processes (Mo+tt —+ Mo+ p) and
(M+M —& tt+Mo) from M» and M», respectively.

One final observation concerns the possibility of a
three-particle bound state. This occurs when the
denominator in M22 develops a zero below the point
4M'. The bound-state pole is also seen to be present
in 3f~s and M33 due to the general structure of the
solutions.

Conference on High Pner-gy Physics at Rochester (Interscience
. Publishers, New York, 1960).

PHYSICAL REVIEW VOLUME 122, NUMBER 3 MA Y 1, 1961

Self-Consistent Field Theory of Nuclear Shapes*

MICHEL BARANGER

Carnegie Institute of Technology, Pittsburgh, Pennsylvania

(Received December 27, 1960)

The Hartree-Fock equations are generalized to include pairing eGects on the same footing with Geld-

producing effects. In addition to the Hartree potential, there enters a pairing potential. When applied to a
spherically symmetric shell-model Hamiltonian, these equations may possess deformed solutions. Appli-
cation is made to pairing plus quadrupole forces, with results identical to those of Belyaev and Kisslinger
and Sorensen. The spherical shape becomes unstable when some collective vibration of the spherical nucleus
reaches zero frequency.

1. INTRODUCTION

HE question to be considered here is the calcu-
lation of nuclear shapes starting from a spheri-

cally symmetric Hamiltonian. In a Hartree-Pock type
of theory, all nuclei are deformed except at closed shells.
It is well known that residual interactions tend to keep
nuclei spherical for a while as one goes away from closed
shells. Since a prominent effect of residual interactions
is to produce pairing correlations, one might think that
the inclusion of pairing' effects together with the
Hartree-Fock field would be able to give realistic
estimates of shapes.

This problem has been treated by Belyaev, ' who
gave it an approximate solution for the case where the
single-particle levels are degenerate and the two-body
force is a combination of pairing force and quadrupole
force. In this paper, we would like to consider the more
practical case of nondegenerate single-particle levels
and also to develop a formalism which can be used with

*This work was supported by the OKce of Naval Research.' J. Bardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Rev.
108, 1175 (1957), referred to in the following as BCS; A. Bohr,
B, R. Mottelson, and D. Pines, Phys. Rev. 110, 936 (1958).'S. T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 31, No. 11 (1959). Some of Belyaev's results were derived
in a diferent way by A. Kerman, Ann. Phys. 12, 300 (1961).

any two-body interaction. The inclusion of a general
two-body interaction was also considered by Belyaev
at the beginning of his paper, but his solution involves
three successive canonical transformations, which
makes it of limited practical value. In the present work,
a single transformation is made, the generalized
Bogolyubov transformation. ' It differs from the more
familiar Bogolyubov-Valatin transformation in the
following way. In the latter, a speci6c assumption is
made about the bound state (the Cooper pair) into
which pairs of particles are allowed to condense; for
instance, in the application to spherical nuclei, ' ' the
two particles are assumed to have opposite angular
momenta. On the other hand, in the generalized trans-
formation, the bound-state wave function is left com-
pletely arbitrary and is determined by minimizing the

' N. N. Bogolyubov, Uspekhi Fiz. Nauk 67, 549 (1959) /trans-
lation: Soviet Phys. —Uspekhi 67(2), 236 (1959)). See also Y.
Nambu, Phys. Rev. 117, 648 (1960).

4N. N. Bogolyubov, Nuovo cimento 7, 794 (1958); J. G.
Valatin, Nuovo cimento 7, 843 (1958).

5 I.. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 32, No. 9 (1960).

'M. Baranger, Phys. Rev. 120, 957 (1960). We follow many
of the notations of this paper. See also R. Arvieu and M. Vendroni,
Compt. rend. 250, 992, 2155 (1960);T. Marumori, Progr. Theoret.
Phys. (Kyoto) 24, 331 (1960); G. E. Brown, J. A. Evans, and
D. J. Thouless (to be published).



SELF —CONSISTENT FIELD THEORY OF NUCLEAR SHAPES 993

energy or by a self-consistency requirement. There
results a set of equations (Sec. 2) which we call the
Hartree-Bogolyubov equations and which generalize
the Hartree-Fock equations. Although these equations
arise naturally in the consideration of the general
self-consistent 6eld problem including pairing eGects, v

they do not seem to have been written down previously
in their full generality. They contain two potentials,
the usual Hartree-Fock potential and another which
describes pairing correlations and which we shall call
the "pairing potential. "Thus, these equations describe
in a self-consistent manner what Bohr and Mottelson'
have called the two main eGects of nuclear forces, the
field-producing eGect and the pairing eGect. Other, less
important eGects are left in the residual interaction.

Although these equations always have a spherically
symmetric solution, they also often possess in addition
one or several deformed solutions. It is the solution
with the lowest total energy which provides the stable
shape of the nucleus. Hence, one is in possession of a
framework which can allow one, "in principle, " to
answer such dificult questions as which nuclei are
spherical, which are deformed, and whether the de-
formed ones are axially symmetric. The reader is re-
ferred to Belyaev's paper' for some very interesting
qualitative discussions of these points. The answer that
one expects is that nuclei are spherical at both ends of
a shell, but strongly deformed in the middle.

In Sec. 3, we apply our formalism to nuclear forces
consisting of a pairing force and a quadrupole force.
The usefulness of this combination of interactions has
been demonstrated in the recent work of Kisslinger and
Sorensen. ' We find that our method, for this particular
choice of forces, is identical to theirs and to Belyaev s.
The deformations are quadrupolar, although not
necessarily axially symmetric. We also investigate the
stability of the spherically symmetric solution against
small deformations. As a shell is being filled, the tran-
sition from spherical to deformed shape occurs exactly
at the stage where the collective vibrations of the
spherical nucleus, as calculated by the method of
linearized equations of motion, ' reach zero frequency.
Actually, this result is not dependent on the special
forces assumed and we prove it in general. It is of
interest in connection with the general theory of the
stability of many-body systems. Unfortunately, nuclei
are so small that nonlinear eGects and zero-point motion
are very important. Hence, it is expected that the
vibrational frequencies computed on the spherical side
and the deformations computed on the deformed side

' For instance, the solution of this problem by the method of
reference 3 is actually equivalent to solving the Hartree-
Bogolyubov equations, but the latter yield some additional
information, namely, the single-particle excitations.

A Bohr, invited talk at the 1960 Spring meeting of the American
Physical Society (unpublished); B. Mottelson, I'roceedings of the
International Conference on lVuclear Stricture, Kingston, Canada,
1960 (University of Toronto Press, Toronto, 1960), p. 525.

will both be rather bad approximations near the
transition.

(e~ X)c~ c~+ Q U~pp)c~ cp cgcp
CX uPy5

The c's and c*'s are a set of fermion creation and
annihilation operators. We assume that the potential
'U is sufficiently smooth to be treated by a Hartree-type
approximation. In other words, we shall assume that
problems associated with the repulsive core and the
relationship of the eGective two-body force to the
observed nucleon-nucleon scattering have been solved.
It is essential for the manipulations that follow to keep
in mind the following symmetry properties of 'U,

Unpyb — UPayb UaP8y Uy8aP (2)

The generalized Bogolyubov transformation' consists
in re-expressing BC in terms of a new set of fermion
operators, the quasi-particle operators, which are the
most general linear combination of c's and c*'s,

a,*=P. (A.'c.*+B.'c.).

Thus, every quasi-particle i possesses two wave func-
tions: A ', which is the wave function of its particle
part;; and 8 ', which is the wave function of its hole
part. The requirement that the a's also form a set of
fermion operators entails the orthogonality relations

P. (A.'*A.~+B.'*B.~) =8;;, (4a)

P. (A.'B.&+B.'A.&) =0, (4b)

(A 'Ap'*+B '*Bp')=8 p (4c)

Q, (A„'Bp'*+B '*Ap')=0, (4~)

and the inverse relations

c =P; (A 'a;+B,'*a,:~).

When expressed in terms of quasi-particle operators,
K consists of four parts,

X=3Cr+BC2+K3+BC4.

The last term, X4, contains products of four operators
in normal order; to avoid having to write 16 terms, we

put it in the form

3C4= P U pzgX(c cp chic&),
ePy5

where it is understood that the normal ordering symbol

' S. S. Schweber, H. A. Bethe, and F. de Hoffmann, iVesons and
Fields (Row-Peterson and Company, Evanston, Illinois, 1955),
Vol. I, p. 203.

2. HARTREE-BOGOLYUBOV EQUATIONS

Our point of departure is a spherically symmetric
shell-model Hamiltonian with chemical potential
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E refers to the a' s, not the c's. X,3 contains products of
two creation or two annihilation operators; we require
that it vanish identically. K2 contains products of one
creation and one annihilation operator; we require that
it be of the form

Xs= Q,' ErG, re)'
with positive E,. We use these two requirements,
together with orthogonality relations (4), to determine
the A's and 8's. Finally, X,& is just a number. The
significance of the various terms is clear. The vacuum
of the quasi particles is taken as an approximation for
the ground state of our system, a generalization of the
BCS ground state, and its energy is X&. The energies
of the elementary excitations, or quasi particles, are
given by E;, while K4 is the residual interaction between
quasi particles.

When the details are worked out, one finds that A
and 8 must obey the equations

E,A '=(e —)t)A '+Q F A '+QpA pBp", (9a)'

follows as HB equations). They are well suited to
nuclear applications since the self-consistent field and
the pairing seem to be responsible for a large fraction of
systematic nuclear phenomena. '

There are many other ways to derive the HB equa-
tions. For instance, one can use a Green's function
method. "One can also show that BC&, as given in Eq.
(12), is sta, tionary against small changes in A and B
about the solutions of the HB equations. It is clear
that, to every solution with positive E;, there corre-
sponds another with energy —E;, but the latter is of
no physical interest. Like the Hartree-Fock equations,
the HB equations are nonlinear, of course, To solve
them, one procedure consists in picking two potentials
F and 5, calculating the corresponding A's and 8's,
using them to calculate new potentials, etc, until
the sequence of iterations converges, as in the usual
Hartree procedure. Another method consists in picking
a set of p's and I~."s containing some parameters and
obeying the supplementary conditions'

E,B„'=—(e.—)t)B '—Q 1' *B '—Pp A.p*Ap' (9b)
I

which are easily seen to be compatible with the orthogo-
nality relations. The quantities I' and 5 are defined by

Zv (P~vpvp «~v "vp) =p~p)

Zv («-~pvp+«pvpv-)=o,

(14a)

(14b)

~-p= ~p-= 2 Z» &-pvs«~s, (10a)

v=rv =4Zp& U pv»p& (10b)

+ 2 'U-pcs«-p*"s (12)

As usual, the chemical potential is determined by fixing
the average number of particles

e= (X)=P p .. (13)

We have assumed that there was only one kind of
particle, but one can easily generalize.

We see that F„~ is the familiar Hartree-Fock self-
consistent potential: ppq is the density of particles in
the ground state, and I'

~ is the potential arising from
this density. On the other hand, I~:» is the wave function
of the Cooper bound-pair state and gives rise to the
other potential, 6 p, which couples together the particle
and the hole parts of the quasi particle. It is a generali-
zation of the quantity 6 (or ss, half the energy gap)
occurring in the BCS theory. Without it, Eqs. (9)
would just be the Hartree-Fock equations. The addi-
tional potential 6 p introduces pairing sects on an
equal footing with the Hartree field. We call it the
"pairing potential" and we call Eqs. (9) the "Hartree-
Bogolyubov equations" (to be abbreviated in what

«,s= «,s=(c cs,)—=P, As'B, "', (11a)

pps=»p*=(cp*cs)=Z'Bp'Bs"', (11b)

where the symbol ( . ) denotes ground-state expec-
tation value. The expression for X,» is

5( t=Z (e~ )t)p~~+2 2 U~pv»~rpp&

and minimizing X~ to determine the best p and ~.
Those can then be used to determine the best I' and 6
by Eqs. (10). The supplementary conditions (14)
follow easily from a consideration of ground-state
expectation values of products of four c or c* operators,
or from the orthogonality relations (4). One way to
make sure that they are satisfied is to construct the
trial p and ~ from a set of A's and 8's which are them-
selves solutions of some HB equations with arbitrary
potentials.

The point of this general formalism is that, in addi-
tion to their spherically symmetric solution, which is
the one for which the usual BCS theory is suitable, the
HB equations may also have deformed solutions, i.e.,
solutions for which the potentials F and 6 are not
spherically symmetric. " If the value of 3'.

& for such a
solution is lower than that of the spherical solution,
the corresponding nucleus will be deformed. Then, the
HB equations give us the intrinsic excitations of this
deformed nucleus. The moment of inertia may be
obtained by the cranking formula" and the collective
excitations by the method of linearized equations of
motion. Thus, this formalism is capable of giving a
unified description of spherical and deformed nuclei,
the same shell-model Hamiltonian being used as starting
point in both cases.

rs L. P. Gor'kov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 735
(1958) /translation: Soviet Phys. —JETP 34(7), 505 (1958)].
See also footnote 17.

'~ The situation is similar to that pointed out by A. W. Over-
hanser (Phys. Rev. Letters 4, 415, 462 (1960)]; namely, for an
in6nite system, the Hartree-Fock equations may have solutions
which are not translationally invariant.

' D. R, Inglis, Phys. Rev. 96, 1059 (&954).



SELF —CONSISTENT F I ELD THEORY OF NUCLEAR SHAPFS 995

3. APPLICATION TO PAIRING PLUS
QUADRUPOLE FORCES

The rotational invariance of the interaction 'U will

now be explicitly exhibited. There are two ways of
proceeding, one being in terms of a rotationally in-
variant particle-particle matrix element G,

'U, p, i = —-,'psst G(abed J)C(j j tJ; m, mpM)

XC(j,jdJ; m, mMi), (15a)

the other in terms of an invariant particle-hole matrix
element Ii,

'U p, p
———

2 QJ ia F(acdbJ')s, C(j j,J';m m, M—')

XspC(j dj bJ'; m& mpM'), —(15b)

One can say that the pairing potential is a constant
and that every state is paired with its time-reversed.
This is the same simple situation as in the BCS theory.
As for the Hartree potential, it becomes

I'~, = —Q.c Q ~ s~C (j aj c2; m m—,M)D~*
=I', *=s.s,I', , „, (23)

where the D~'s are 5 parameters describing the quad-
rupolar deformation and dered by

D~=x Pp) Qp„s&C(j bjd2; mp m—&M)ppp

( ) MD 4 (24)
Kith the further substitution

C'=s 8
with

s, = (—)&'~m„ (16) the HB equations (9) become

Q-= (—)"+"+'Q (20)

If relations (2) are to be satisfied, there must actually
be an additional part to Ii. But this will again be neg-
lected, together with the whole quadrupole part of G,
because the recoupling makes these terms small. "
Therefore, we use Eqs. (15a) and (17) in the expression
(10a) for 6, but Eqs. (15b) and (18) in Eq. (10b) for I'.

These approximations make both G and F separable,
and therefore the form of the two self-consistent
potentials becomes immediately apparent. The pairing
potential can be written'4

with
Ap ——8 ps',

&= —
2g p. s~~~,-~

(21)

(22)

"Those are the same approximations that were made in Sec.
4A of reference 6.

'4 The state —P is de6ned as having the same quantum numbers
as P, except for the magnetic quantum number which is opposite.

The relation between G and Ii involves a Racah co-
efficient. It is immediately seen that form (15a) is the
convenient one to use in Eq. (10a), because. the sum-
mation there is over y and b, while form (15b) is suitable
for Eq. (10b) where the sum is over P and b. Our two
potentials I' and 6 are thus decomposed into their
tensor components.

The assumed force has two parts. The pairing part
ls given by

G(abed J)=gb, t b,&bzo(j,+~) l (j,+2)'*. (17)

To this value of G, there corresponds also an Ii; but
the recoupling spreads the strength of the latter over
many angular momenta and it can therefore be neg-
lected whenever it appears. On the other hand, the
quadrupole part of the force is

F(acdb J)= 2xbg2Q„Qd g,
— (18)

where Q is defined by

(u~r'I', sr(e)q) ~v)= Q«,sC(j.j, 2;m. —m, M), (19)

and satisfies

E = (q'+6')l

A '=u, .t/t/' ', C '=v;8' ',

(27)

(28)

~ =L2(1+q'/&)j', '=L2(1—q'/&*)3', (29)

where q, and W ' (normalized) are solutions of the
eigenvalue equation

q~W '= (c.—X)W '++~ I'.,W, ', (30)

which involves only the Hartree potential.
It is clear that, if there exists a solution with D~&0,

it must have the appropriate degeneracy to contain all

possible orientations of the nucleus in space. Therefore,
we can require that the axes of the deformation be the
coordinate axes, i.e., assume D~——D ~

——0 and D2 ——D 2

(real). Then our solution contains three parameters:
6, Do, and D2. To determine these parameters, we have
three self-consistency conditions, obtained from Eqs.
(22) and (24), namely,

E~'=/a
D-=xZ, ~, (W I

"I. IW)

(31)

Of course, the problem is complicated by the fact that
we have to solve Eq. (30), i.e., find the energy levels of
a particle in a deformed well. A fourth parameter, the
chemical potential, is determined by Eq. (13) which
takes the form

ii=P, i,2. (33)

Instead of trying to solve the self-consistency con-
ditions directly, it is probably easier to minimize BC&

with assumed values of 6, Do, and D2. Expression (12)
for X~ becomes in the present case

K] ——P (W'
~

6—X
~

W')v '—(gA'/16) (g 8 ')'
—:xZ (Z, , (W'I"I". lW)), (34)

E,A.'= (e —X)A '+Q, I'.,A, '+AC ', (26a)

E,C '= —(e 'A)C—.' Q,—I' .C, '+A*A. '. (26b)

One can take 6 real and positive without loss of
generality. Then the solution is
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where TV', v,', and E, must be considered as functions
of 6, Do, and Ds through Eqs. (30), (29), (27), (23).
If one uses the self-consistency conditions, K& takes the
simpler form

with
Pyq s —)t ) g ')tt —D /2X —jg/g

D'= Dos+ 2Dss

(35)

(36)

with
tt = -', il. (1—yA), (38)

A=+ b (E +Eb) 'Q, bs(u, vb+t.ub)'. (39)

This result is actually identical with Eq. (29) of
reference 5.

It is interesting to make a comparison with the
equation giving the vibrational frequency co of the
spherical nucleus, as calculated with linearized equa-
tions of motion, which is"

(E,+Eb)Q, b'(u, nb+a itb)'
= 1. (40)

(E,+Eb)' —bo'

The vibrational frequency is that solution co which is
smaller than all combinations (E,+Eb). It exists only
if x is suKciently small or the nucleus sufficiently
near closed shells. Otherwise, the value of oP may turn
out to be negative, i.e., ~ is imaginary. We see by
comparing Eqs. (38) and (40) that the point at which
co vanishes to become imaginary is precisely the point

'b This is Eq. (88) of reference 6, with L b=20mgb.

but expression (34), not (35), is the one that must be
mlnlmlzed.

Numerical calculations based on this method are in
progress. Even away from the minimum, one can still
interpret the variational expression (34) as giving the
energy of the nucleus when a certain deformation and
a certain pairing potential have been imposed upon it.
This energy is the same as that derived by Belyaev'
and Kisslinger and Sorensen' using a Lagrange
multiplier.

To investigate the stability of the spherical solution,
we can expand Eq. (34) in powers of Dsr and 8= 6—d, s,
where 60 is the value taken by the pairing potential for
the spherical solution. Since there must be no first-order
terms, the expansion has the form

Kr=BCro+aD'+bP+higher order terms. (37)

The sign of u tells us whether the spherical solution is
stable against small deformations (b is always positive).
If a&0, we cannot guarantee that there does not exist
a solution of energy lower than K&0 with a large de-
formation. But if a(0, we are sure that the lowest
solution is deformed. The calculation of u by the
methods of perturbation theory is straightforward and
one finds

where a becomes negative and the spherical solution
becomes unstable against small deformations.

This semiclassical result, which we verified explicitly
in the case of pairing plus quadrupole forces, is actually
much more general and will hold whenever a many-
fermion system is treated in the self-consistent 6eld
approximation. The proof is very simple" . The linear-
ized equations of motion used on the spherical side
are obtained by linearizing"

i7idp. ,/ct = fp.„xf, (41a)

(41b)tbMK /tft = LK,Xj,
about the spherical solution. The HB equations, on
the other hand, can be obtained from the equations"

Pp.,PCj=0, Ls.„Xj=0. (42)

An additional approximation, Hartree factorization, "
is used in both cases. Clearly, if the linearized Eqs. (41)
have a zero-frequency solution, there exist two small
quantities that can be added to p and ~ without de-
stroying the validity of Eqs. (42). In other words, the
energy surface (as a function of deformation and pairing
potential, for instance) has an inflexion point there,
which indicates the boundary between a stable and an
unstable situation. Thus, the fact that a certain
oscillation frequency reaches zero means that the ground
state is about to become unstable against this particular
kind of deformation, just as it wouM in a classical
problem.

As we mentioned at the end of the introduction, the
transition region between two different types of ground
states is complicated by nonlinear eGects and quantum
mechanical zero-point motion. In nuclei, because of
their small size, this region is particularly large, but a
proper theory of it does not exist." At the moment,
agreement must be restricted to rather stiff spherical
nuclei and to strongly deformed ones and one has to be
content if the transition calculated by the above
methods falls somewhere in between the two. A sharp
transition between two diferent kinds of nuclei does
occur in nature, as evidenced by the systematics of
collective levels, "but it is not clear that this is exactly
the transition we have been talking about.
"'Note added iN Proof Further discu. ssion of this point has now

been published by D. J. Thouless, Nuclear Phys. 21, 225 (1960);
22, 78 (1960)."In the following, (P») P=c *cP and (If.,p) P=cPc .

"This is one of the alternative ways of deriving the HB
equations. Let us look upon Eqs. (9) as the eigenvalue equation
for an operator X', whose number of lines and columns is twice
the number of states. One finds that Kqs. (42), when factorized,
state that a certain operator involving p and f~: (the operator E
of reference 3) must commute with 3.".To find this operator E,
one must therefore diagonalize K', i.e., solve the HB equations.

' H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
' J. Sawicki (to be published) has drawn attention to the

problems presented by a nonlinear theory of collective oscillations.
"G.S. Goldhaber and J. Weneser, Phys. Rev. 98, 212 (1955).


