
THEORY FOR TAO —NUCLEON SYSTEM

renormalized coupling constant is explicitly independent
of the source size. However, as the two nucleons come
closer together, the ln(h/R) term approaches zero, and
the dependence of the nuclear force on the unrenor-
malized coupling constant alone becomes increasingly
pronounced. This situation is analogous to the case of
the quantum electrodynamics in which two electrons
see each other through renormalized charges at the
large separations, while, as they approach each other,
they gradually feel the unrenormalized (bare) charges.

V. CONCLUSION

This work achieves its main objective in that it
proves explicitly the conjecture that the dependence of
the nuclear force on the unrenormalized coupling con-
stant alone becomes increasingly pronounced as the

two nucleons come closer together. For this purpose the
Serber-Pais method turns out to be both powerful and
consistent. One can expand the Hamiltonian to any
desired order in the coupling constant through a series
of unitary transformations, and then one may ask an
interesting question of whether our conclusion, valid
for the most significant terms, which are of order g„',
is also valid to all orders in g,. The answer to this
question requires some tedious calculations in a most
systematic way. It is our feeling that our conclusion is
also valid to higher order terms in g„.
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A general linear technique is discussed which constructs unitary scattering amplitudes without expanding
in partial waves and in the presence of inelastic channels. Two- and three-particle intermediate states are
discussed explicitly, but the method can be extended directly to any 6nite number of particles.

A new approximation technique suggested by this formalism is applied to electroproduction of pions
from pions and pion —E-meson scattering. A form of the impulse approximation is derived for both the
coupled form factor and the coupled scattering amplitude problems. The nucleon and deuteron form factor
system is briefly discussed.

Finally, a model field theory which contains three-particle intermediate states is formulated and solved
by the linear technique for purely pedagogical reasons.

I. INTRODUCTION

'HE conjecture of Mandelstam' concerning the
analytical structure of the scattering amplitude

has led to considerable insight into the interrelation of
the various strong interactions. This representation
has been verified in perturbation theory by Eden' and
Polkinghorne. ' The work of Chew and Mandelstam'
on the low-energy pion-pion system utilized this
analyticity together with unitarity in the form of an
expansion in partial waves to develop a set of dy-
namical equations for the determination of the scat-
tering amplitude. This program has met with diK-
culties, not the least of which is the fact that the
partial-wave expansion cannot converge along the
negative cut, and if the series is terminated beyond S
waves, false divergences are introduced into the equa-
tions. In order to make progress here, one must evi-
dently learn how to calculate the inelastic contributions.

*This work was supported in part by the U. S. Air Force
Once of Scientific Research.' S. Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741,
1752 (&959).' R. Eden, Phys. Rev. Letters 5, 213 (1960).' J. C. Polkinghorne (to be published).' G. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960).

This work has led to considerable interest in reactions
where a final-state pion-pion interaction is important
and perhaps observable. The partial-wave approach
has been applied to a variety of processes; the most
important for our later purposes are the photoproduc-
tion of pions from pions' ' and pion —E-meson scat-
tering. ' The Chew-Mandelstam program has been
extended to multichannel situations by Bjorken' and
Nauenberg. ' This generalization will be of particular
interest to us in a discussion of the impulse approxi-
mation.

A related but different approach to the problem of
the coupling of processes has been developed by
Cutkosky. "His approach is a graphical calculus which
uses the techniques of analysis of the singularities of a
Feynman graph developed by Landau" and Bjorken. "
This type of consideration will undoubtedly be an

' Gourdin and Martin, Nuovo cimento 16, 78 (1960).' H. S. Wong, Phys. Rev. Letters 5, 70 (1960).' B. W. Iee, Phys. Rev. 120, 325 (j.960).' J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).' M. Nauenberg, thesis (unpublished), and to be published."R. Cutkosky, Phys. Rev. Letters 4, 624 (1960)."L. D. Landau, Nuclear Phys. 13, 181 (1959).
'~ J. D. Bjorken, Stanford University, 1959 (to be published).
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important computational tool. Such techniques could
be used with the results of this paper to develop a
nonperturbation scheme for the calculation of the
scattering amplitude.

Our purpose here is to discuss a generalization of the
Chew-Mandelstam approach which does not involve

any illegal partial-wave expansion. Even though this
extension is quite trivial for the elastic intermediate
states, it does seem to have many formal as well as
practical advantages. It yields equations which are
highly reminiscent of Heitler damping theory, but the
knowledge of the analyticity of the scattering amplitude
is incorporated in an explicit manner. It is a simple
matter to discuss many-channel problems with this
method and it leads naturally to a generalization of
the impulse approximation. Finally, anomalous thresh-
olds can be discussed, without expanding in partial
waves, in a straightforward fashion by analytic con-
tinuation in an appropriate variable. " '4

The point of view adopted here suggests a type of
approximation in which unitarity is satisfied approxi-
mately but crossing symmetry is treated exactly. Such
a procedure should be adequate except in the case of
an elastic scattering resonance. This approach gives,
for example, a more satisfactory derivation of the
comparison function method, ' which has already been

applied to photoproduction" and electroproduction"
of pions from nucleons. Application of a generalized
version of this technique to the problems of pion —E-
meson scattering and photoproduction and electro-
production of pions from pions will be made here. A
sketch of the problem of the electromagnetic structure
of the deuteron and nucleon will be presented in order
to illustrate the ease with which a unified treatment of
these problems can be made. A new formulation of the
impulse approximation is presented which has no off-

energy-shell ambiguities. Finally, a model field theory
which contains inelastic reactions is exhibited and
solved in the two- and three-particle sectors in order
to demonstrate the general method.

II. ANALYTICITY AND UNITARITY

The application of the unitarity condition to the
four-point scattering amplitude seems to take its
simplest form if one chooses as variables the energy
and angle. The singularities of the transition amplitude
as a function of the energy at fixed angle have been
well discussed on the basis of the Mandelstam repre-
sentation. "The essential result that we need is that

» S. Mandelstarn, Phys. Rev. Letters 4, 84 (1960).
'4R. 111ankenbecler and Y. Nambu, Nuovo cimento (to be

published)."R. Blankenbecler and S. Gartenhaus, Phys. Rev. 116, 1297
(1959).

'6 S. Gartenhaus and R. Blankenbecler, Phys. Rev. 116, 1306
(1959).

''I R. Blankenbecler, S. Gartenhaus, R. Huff, and Y. Nambu,
Nuovo cimento 17, 775 (1960).

'8 M. Cini, S. Fubini, and A. Stanghellini, Phys. Rev. 114, 1633
(1959).

in addition to the expected physical branch cut when-
ever the energy is such that a real physical intermediate
state can be created, there are other cuts coming from
the possible "crossed" intermediate states. These cuts
are, in general, in the complex plane, but in the case of
equal mass particles they lie on the real axis below the
physical threshold. We will refer to these as crossed
cuts.

In order to treat the contributions of the inelastic
intermediate states in the unitarity condition, it is
necessary to make rather definite statements concerning
the analyticity domain of the production amplitudes.
It will be assumed that as a function of the square of
the center-of-mass energy of any pair of particles, for
fixed, physical values of the other variables, this
function has a physical cut. Other arbitrary singularities
may be present. These are, however, disconnected from
the physical cut. In the general case, the physical cut
must be extended below the normal threshold when the
other variables range over their possible physical values.
We will assume that the physical amplitude can be
found by analytic continuation in the external masses
and energies, in the same manner as found in the
anomalous threshold problem. ""

Armed with these reasonable assumptions, we can
proceed with the construction of a unitary scattering
amplitude. In order to develop an understandable
notation to be used in more interesting cases, the
scattering of scalar particles of equal mass will be
considered in detail.

Let us explicitly deal with the two- and three-particle
intermediate states only. The following discussion
could be extended to any finite number of particles
without any new difficulties arising, at least if our
assumptions are correct about the singularities of the
production amplitudes. The notation is that the
incoming (outgoing) particles have four-momentum
k, (k, '). Intermediate particles will have momentum p;.
Now introduce the scattering matrices:

MQg (4'], MQ )l(kr'ks
I jl (0) Iks)(2&2)',

M»= (2a» )'(k&
I
js'(0) Iktksks)(g~r~s~s)',

Mss ——(8M]'rod'Ms')-(k]'ks'ks
I g t'(0) I ksks) (4'/Ms) *y

(2.1)

I )lf ss+(t) —~ss-(&)1/2~s
~~22 (1)~22 (t)++~28 (/)&32 (/) ~

and also 3f32, which is, of course, %23 with the initial
and final variables interchanged. It should be stressed
at this point that the functions defined here contain
disconnected graphs. For example, M33 contains a term
of the form

b(ks' —ks)(kr'ks'
I
grt

I ks).

The nonanalyticity implied by the delta function is of
a trivial nature and can be readily dealt with.

We would like to construct a solution of the unitarity
relations below the four-particle threshold:
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[M23+ (t) M—28- (t))/2~i
=ZM„—(t)M28+(t)+ZM28 —(t)M88+ (&),

[M„+(~)—M„—(t))/22r8
=ZM„-(&)M„+(t)+ZM„-(t)M„+(t),

where

M, ,+(t) =M, ;(t'ai.),
t = —[P;k;)2= —[Q; k, ')2= I'2, —

determines the p; as f'unctions of the intermediate

(2 2) ™enta.The p's are, of course, real along the physical
cut. This condition insures that the iteration of these
equations will yield a normal perturbation series. For
example, if the Born approximation is inserted for the
S;,, then we require that to lowest order, 3f;;=E;,.
This is assured by the condition (2.5).

Explicitly, the two-particle phase-space factor is

(t 4M—2
t

'
dn,

~ [ e(t' —4M'), (2.6)Z2(t) =
8 (22r) 8"

d'p 0(p')s(p'+M')/(22r)8 (23r)88(Q p; I'). —
1 where Q is the relative coordinate between particles

one and two. The three-particle phase-space factor is
expressible as

1
Z, (~) = d3p, e(p,o)S(p 2+M2)

(23r) 8"
XZ2(t+M2 —2p8ot'*). (2.7)

If we choose as independent variables the set Qq, Q~,
P3', then

With the M—instruction under the Z 's on the right
is an implied complex conjugation of the suppressed
intermediate variables. Also, X is the number of
particles in the particular intermediate state in question
and P is the total available center-of-mass momentum.
The integrations involved in Z are over the suppressed
intermediate variables.

Consider the integral equations

ZM22(/) D22(/)+ZM28(/) D82(/) /22(/)~
P2 P3

1 1
ZM22(/) D23(/)+ZM28(/) D83(/) E28(/) )

(2.3)
1

ZM82(~) D22(~)+ZM33(~) D32(~) ~ 82(~))
P2 P3

1 1
ZM32(t) D23(t)+ZM38(t) —D88(t) =&38(~)y

P2 P3

where the lower limit is either 4M' or 9M' depending
on whether i is two or three. The delta function, 8;,,
if formal and is actually a Dirac delta function in all
the suppressed intermediate variables. Then the
condition

1
ZM, ,'(t)—8;,=M;, (t)

Pj
(2.5)

where t is the square of the center-of-mass energy of the
initial and hence final particles in the various M;;.
The other independent variables have been suppressed.
The $,, (t) will be chosen to have crossed cuts in t
corresponding to those in M;, (t), and, in addition, the
physical cuts arising from intermediate states contain-
ing four or more particles. X,, (t) might in some cases
have kinematic cuts coming from the three-particle
phase-space integral of a trivial nature. These will be
discussed in more detail later. In order that E have
these properties, D,; is defined as

~
16'

D;, (t)=8,;— dt' p;(t')X;;(t')(t' —t) ~, (2.4)

1
Z, (t) = dn, dn, dp o e(p o—M)

16(22r) 8"

xe(t—3M' —2p, 't&) {[(p,')' —M')

XP—3M' —2p of*)p+M2 —2p o('*) '}*.

Instead of P88, ~™yprove convenient in some cases
to choose the center-of-mass energy of the (1—2) pair
as a variable. It should be pointed out that in both the
Z2 and the Z3 terms, there is one trivial azimuthal
variable. For reasons of symmetry, it is convenient to
keep this redundancy in both integrals.

Using this set of variables, we find

~22 ~(QQ QQ), &88=&(QQ' —QQ)6(n
' —Q,)5(p,"—p,'),

and
1 (t 4M2) &-

)
e(t-4M ), (2.8)

8(22r)8 E

p8=- {[(poo)2—M2)p —3M2 —2p3o/l)
16(2n-) '

Xp+M2 —2p8ot&) '}'e(p8o—M)

Xe (t—3M2 —2P88&*). (2.9)

Therefore, the three-particle contribution to the M~2
equation can be written explicitly as

1 f
ZM28—D82(t) = dnodn3 dp8o

P3 ~ ilI

XM28(t; Qg) QQI Q8) p8'&2o) t dt'(t' —3)
—'

9M

Xpo(&,p3 )X32(~ i QQ) Q8~ p8 W )n8oj).
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where
Mp

—'D= X,

16M2

D= 1—)
dt'(t' —t) 'p(t')N(t').

(2.11)

(2.12)

Along the crossed cuts and above the four-particle
threshold, define the discontinuity function A as

Then
pQO

+ dt, '(&' —&)-'A (&')p-'D(t'). (2.13)
—oo 16M-

Let us prove that if A is a symmetric matrix in all its
variables, including the suppressed ones, then the
solution to (2.11) will satisfy time-reversal invariance,
that is, M will also be symmetric. Now, if 3f is sym-

'9 Castillejo, R. Dalitz, and F. Dyson, Phys. Rev. 101, 453
(2956); referred to hereafter as CDD.

The (PP+ie) instruction is to be particularly noted,
as well as the fact that the lower limit on the 3' inte-
gration is actually

p 0+ (3M2+ (p 0)2)$]2

instead of 9M', due to the theta function present in p3.
This particular choice for p3 has the advantage that
possible kinematic cuts coming from the three-particle
intermediate state do not occur. These would occur,
for example, if pa was chosen to be given by Eq. (2.9)
without the theta functions. Then the limits of inte-
gration of P3' are functions of t with square-root type
singularities. Below the three-particle threshold, one
is also forced into an analytic continuation in these
limits.

By taking the discontinuity of (2.3) across the
physical cut and by using (2.2), it is seen that any
solution of (2.3) will satisfy unitarity. Therefore, this
is a generalization of the procedure used by Chew and
Mandelstam to discuss the elastic unitarity condition
for the partial-wave amplitude. The Castillejo, Dalitz,
and Dyson" ambiguity due to the zeroes of 3f;, is
present here, as it must be in any such formulation.
This approach does clarify the effect of a CDD zero in
a coupled situation.

A solvable field theory is discussed in the Appendix
to clarify the structure of these equations and their
physical content.

Let us now rewrite the linear unitarity relations in a
more concise notation which can be readily generalized
to multichannel situations. The matrices 3f, E, D, and
the diagonal matrix p are introduced'' in an obvious
fashion. The unitarity relation then takes the form

M+(/) —M—
(t) = 2n-iM (t)M+(/), (2.10)

where the Z on the right-hand side of this equation has
been suppressed, as it is to be implied by the matrix
multiplication. The integral equation for the scattering
matrix takes the familiar looking form

Drp 'N(t)=Nr(t)p 'D. (2.14)

Since Eq. (2.14) must hold between two analytic
functions of t, it is sufIicient in this case to prove that
the equality is satisfied at the singularities of each.
Using the definition of D, Eq. (2.14) is readily seen to
be satisfied along the two- and three-particle physical
cuts. If A is symmetric, then it is satisfied along the
remaining cuts as well. Thus M is unitary and satisfies
time reversal invariance if A is chosen symmetric.

The relation between this formulation of the unitarity
condition and the partial-wave procedure of Chew and
Mandelstam is easily made apparent. If the inelastic
contributions to unitarity are neglected, and the first
equation of (2.3) is expanded in partial waves, one
finds the standard N/D result. However, if one imagines
that the functions A,; are given, then (2.3) allows a
concise statement of unitarity including the inelastic
contributions for all partial waves. Equations (2.3)
bear a very close relationship to the Heitler integral
equation, which is essentially a linear unitarity require-
ment.

The Mandelstam representation for M2~ allows one
to express the negative energy part of the function A
in terms of the absorptive amplitudes for the crossed
reactions. This then allows one to develop a dynamical
set of equations since the same type of unitarity
equations as (2.11) can be written down for each of the
variables describing the energies of the three possible
reactions implicit in M~~. At present, our knowledge of
the structure of the five- and six-point functions does
not allow such definite statements to be made, so that
we do not yet have a complete dynamical scheme. It is
clear that this state of ignorance will not last."How-
ever, the possibility of using (2.11) as the basis for
approximations on the three-particle contributions is
very appealing.

One might entertain the possibility in practical
calculations of replacing the inelastic E's by simple
functions with a few adjustable parameters in the spirit
of an effective range approach. This procedure will be
illustrated in a later section, where the nucleon and
deuteron form factors are discussed with emphasis upon
the effect of the three-pion state.

The form factors corresponding to the external
current J are readily obtainable in terms of the scat-
tering solutions. Introduce the row matrix F, where
the elements are labeled by the channel to which they
refer, i.e.,

20 See, for example, the work on the five-point function by L.
Cook and J. Tarski, Phys. Rev. Letters 5, 585 (2960), and by
Y. S. Kim (to be published).

metric, then the matrix (T means transpose in all
variables)

D~p '3fp 'D

will certainly have the same property. This, in turn,
requires that
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Also, introduce the row matrix g, which has constant
(or polynomial) elements for the two-particle channels
and perhaps crossed cuts in the three-particle channels.
As we shall see in an example, in a certain approxima-
tion these are determined by an analytic continuation
of the Mandelstam representation for the four-point
function. Then a solution for F which satisfies unitarity
1S

Ft 'D(t)=g(t) (2.16)

This result will be discussed further in Sec. IV B. It
can be interpreted as a type of impulse approximation
for the coupled-form-factor problem.

I.et us now turn to a brief discussion of the relation
of this method to perturbation theory.

~22 N22

g/@gal(4) —N2 (4) /~22(2) D2 (2)

p2

1 1
M22(" = N22(" —ZM22(4) —D2$("—ZM$2")—D22("

p2 p2

(3 1)

(3.2)

~~3")=&~3")=&32")

—ZM23&3'—D32 "&, (3.3)

(3.4)

where the superscripts refer to the order in perturbation
theory of the function involved.

The difFiculty in this procedure is that we must
imagine that only %22"' (or equivalently 222"') is
given as input information, since it corresponds to the
Born approximation. In terms of the two appropriate
variables, energy and angle, Eq. (3.2) can be written
explicitly as

M22 ($,$13)= /22 ($)$13) d02 X22 ($)s12)

X ds'(s' —s) 'p21V22&@(s', 223). (3.5)

In order to determine N2~(4), one uses the fact that a
dispersion relation in s for fixed t holds if t is sufFiciently
small. This will determine N2~(4) except for terms with
denominators of the form (t' —t) and/or (u' —u). In
order to determine these contributions, one must repeat
the procedure using the unitarity condition in the t or
N reaction. Now imagine that this has been carried out

III. PERTURBATION THEORY

In order to clarify the physical content of this
generalized matrix approach to unitarity, let us attempt
to reconstruct the perturbation series for %2~ from the
set of equations (2.3). Much of the following discussion
was first given by Mandelstam. ' It is reproduced here
for completeness.

Through sixth order, which means that the four-
particle states are neglected, we find

to fourth order. Then in sixth order in the s reaction,
one must determine two functions, N~~(') and N23('),

by the same requirement of a fixed t dispersion relation.
This procedure is almost identical with that of Mandel-
stam' in his iterative construction of the scattering
amplitude.

The new point here is the possibility of using these
equations for a nonperturbative construction of the
scattering amplitude. There seems to be no obvious
diKculty in doing this except for the technical problem
of solving these nonsingular integral equations. The
scheme presented here would, in principle at least,
augment the partial-wave approach with a procedure
that does not inherently contain false or unphysical
divergences. In practice, it seems very difFicult to use
this approach as a dynamical tool in most physically
interesting problems even if one neglects the inelastic
contributions. It is quite useful in relating one process
to another, and we will now turn to this particular
application.

IV. APPLICATIONS AND APPROXIMATIONS

As the first application of this method, let us consider
electroproduction of pions from pions. In this discussion
we will follow closely the notation of Gourdin and
Martin. ' The squares of the center-of-mass energies in
the three reactions described by the Green's function
of interest are called s, t, and N. They are connected
by the relation

s+t+u=3+X' (4 1)

where the pion mass has been set equal to unity and X

is the mass of the virtual photon. It is convenient to
introduce a symmetry point by

So= to= uo= 1+F2/3.

The matrix element has the form

(4 2)

(4.4)

for the reaction described by the energy s. It is con-
sistent with the neglect of rescattering in the higher

&3PlpP2vPop
M = 3),„„, — o„s,F(s,t,u), (4.3)» L16p 'p 'p 'p '3'

where n, P, and y are the isotopic labels of the pions
and F is a completely symmetric function of its argu-
ments. It is easily seen that the final pions are in a
T=1 isotopic state and hence their relative angular
momentum is odd. The unitarity condition then forces
F(s,t,u) to have the phase of the T=J=1 state in
pion-pion scattering if higher angular momentum states
are neglected.

Using the matrix formulation for two channels, and
neglecting higher order electromagnetic eRects, we have
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angular momentum states to approximate D by

D..(s,222) =8(Q2' —Qp) e—~&'

where

2rh(s) =," ds'8(s')[(s' —s—ip)-' —F(s'—sp)
—'],

d4

and 8(s) is the J=T=1 phase shift and P means
principal value. Actually, any function of angle and s
with the required analyticity can be used in place of
the delta function. Then, restoring the original vari-
ables, Ii achieves the form

F(s,t,u) =f(s, t,u)e~&'&.

Since Ii must be symmetric in all variables, the simplest
function satisfying this crossing condition is

F(s,t,u) =gp exp[A(s)+h(t)+D(u)]. (4.6)

Ke will assume that g3 has a weak dependence on X2

[see Eq. (4.14)].
A "omparison with the results of the partial-wave

method for X2=0 can easily be made by expanding
about the point s=4. The result, using the same phase
shift as in reference 5 but with the new Frazer-Fulco
parameters, is

F= (constant) [1—A (s—4)/4] exp[A (s)],

where 2=0.38. The numerical evaluation by Gourdin
and Martin' of their partial-wave equation yields
3=0.31.The result of Kong's' one-pole approximation
is A=0.41. Thus, the agreement is quite good. If
)9&0, one should replace the coefficient of A/4 by
(s—4—X2),

The three-dimensional solution (4.6) can be used in
the description of electroproduction of pions from
nucleons and the process virtual photon —+3m, which
arises in the problem of the isotopic scalar nucleon
form factor. It would seem quite difIicult to use the
partial-wave approach in the present stage of approxi-
mation to the latter process. In order to apply any
solution for Ii to this three-particle production process,
the photon mass )2 must be continued analytically
above 9. Thus all three variables, s, t, I, approach their
cuts from the same half-plane, which insures that the
three-particle state will satisfy the final-state phase
theorem. This point will be discussed further in part B
of this section.

The comparison function method" can also be
derived in a very simple manner. Consider, for example,
a two-channel problem in which the final state inter-
actions are important in only one of the channels. The
transition matrix M» satisfies the unitarity relation,

~=&.pA (s,t,u), (4.8)

where n and p are the pion isotopic labels and

A (s,t,u) =A (u, t,s).

The unitarity relation for low energies in the t reaction is

dn, A(t, s„)D (t,s„)=1V(t,s„),

where D involves only the T=O states of the pion
system. Making the same type of approximation as
before, we find that

A (s,t,u) = a(s, t,u) e~ "1 (4 9)

where the relevant x—x phase shift is that in the
T=J=O state. YVe are now in a position to satisfy the
unitarity condition in the s and I reactions for the
J=O partial waves by the approximate solution

Ap t" dxp(x) f(x)
A(s, t,u)=Ape~~e 1——

~~

pr & (2r+11~ (x—sp)

$—$0 I—Np

X — +, (4.10)
S—$ S—Q

where A~ is a projection operator for the /th state.
The transition amplitude becomes

~12=fl 12+%12 [1 exp( —61($))].

Applying 4& to this equation yields a relation between
M12 and E12 which leads to the result

~12 fl 12+fan 12 [e (4.7)

If E12 is chosen so as to have the cuts and poles coming
from the Born approximation and the crossed rescat-
tering process, one achieves the type of solution given
explicitly in reference 15, but with the assurance that
no spurious singularities occur.

Let us now consider a slightly different type of
example, that of pion-kaon scattering. To reiterate,
our philosophy here is to treat crossing symmetry
exactly but to take into account approximately, if
necessary, the lowest possible partial waves in each of
the three reactions. The notation of Lee~ will be fol-
lowed, for ease in reading.

The square of the energies for the three possible
reactions are again called s, t, and I, where t is the
energy squared for the annihilation process 2r+2r —+ k
+k. Following Lee, we will assume that as long as
baryon loops are neglected, there is no splitting of the
two isotopic spin states. Thus, the invariant amplitude
is assumed to be of the form,

1
~~12 D2 2 +12

P2

Now assume that rescattering in only one angular
momentum state, 1, is important. Then approximate
D» by

D22 822 [1—exp(61(s))]A.1,

where
1

f(x) =-', t ds exp[A, (t(x,s))],

t (x,s) = —2q2 (1—s)
q'= [x—(&+1)'][x—(M—1)']/4x,
So= No,

(4.11)



CONSTRUCTION OF UNITARY SCATTERI NG AM PLITU DES 989

p (x)= q(2:)/42rxt.

Unitarity is approximately satisfied since near threshold
the angular dependence of the denominator is weak.

The subtraction points are arbitrary, but in order to
improve the agreement with unitarity near the threshold
for s or u, it is convenient to choose

sp=lp= (M—1), tp=43II.

A (4o ,+ + etc.

In order to illustrate the application of the matrix
approach, let us consider the form factors of the
deuteron and the iso scalar nucleon. This coupled
system is assumed to consist of four channels: 1—
deuteron pair, 2—nucleon pair, 3—three-pion state,
4—nucleon pair plus pion. If Eq. (2.15) is written out
in component form, the result is

~F1D11/pl+~F2D21/p2+~F8D81/p8
+ZF4D41/p8= gl(t), (4.12)

ZF2D22/p2+ZF8D82/pl g2 (t), (4—.13)

ZF,D„/p, =g, (t), (4.14)

ZF2D24/p2+ZF8D44/pp= g4(t), (4.15)

where the effect of the deuteron and nucleon pair
states have been neglected in the less massive channels.
It should be noted that the g's are polynomials, except
for g3 and g4 which may have crossed cuts.

An approximate solution to (4.14) for F8 was given
in Eq. (4.6). It corresponds roughly to using the fact
that D33 contains disconnected parts which allows the
interactions to be between only two pions at a time.
The explicit three-pion interaction terms which do not
come from iterated two-particle interactions were
neglected. This is the physical statement implicit in
our final-state theorem.

The form factor F4 is an analytic continuation of
electroproduction of pions on nucleons. "It was found
in a certain approximation to involve the nucleon form
factor F2(t) as simple factor. This contribution corrects
the zero-range wave function character of the term D2»
for effects due to the finite range of the binding po-
tential, as has been discussed in references 10 and 14.

The anomalous thresholds present in F» are in the
terms D2»~ and D4»~. Their contribution is found by
standard continuation methods. "'

In order to calculate Fl(F2), it is convenient and.
obviously sufficient to approximate D»(D22) by 811(822).
It is now necessary to evaluate D» in the particular
angular momentum state J which is projected out by
the integrations. In order to evaluate the matrix D~,
one must supply S~. This, in turn, is best expressed
in terms of the matrix A~ Lsee Eq. (2.13)].

Thus, the problem of calculating F», F~, and F3 is to
choose a suitable symmetric matrix A~, solve for the
matrix D~ and then to evaluate (4.12)—(4.14) with a

r
+I

A„. + —-~—- + etc.

FIG. j.. Graphs contributing to the nucleon, deuteron,
and three-pion form factors.

suitable subtraction or assumption about the behavior
of F for large t.

A sketch will now be made of how one might carry
out an approximate but ambitious evaluation of this
system of equations. We will assume that F3 and F4
are known. This implies a knowledge of D33, D24, and
D44. The choice of the matrix A~ is essentially a
decision as to what types of graphs are to be considered
in. the calculation. The graphs that will be considered
here are shown in Fig. 1. Thus, A~ is chosen to be of
the form,

0
A»2
0
A»4

A)2 0 A»4

0 A23 A24

A33 0
A24 0 0

%41— LA 41D11+A42D21j
& (t'-t)

dt'
LA 82D21+A 88D81],

~ (t' —t)

dt'
1V21= LA21D11+A28D81+A24D41)y

(t' —t)

dt'
LA 82D2.+A 88D82],

~ (t' —t)

where the summation over intermediate variables in
the three-particle states has been suppressed. When
these relations are inserted in the definition of the D s,

The superscript J will be omitted from now on. The
explicit functional form of A is to be found by examining
perturbation theory or the Mandelstam representation
for the graphs considered.

The S's are therefore
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coupled integral equations result which are dificult to
solve analytically.

If the solution to Eq. (4.14) is used as a guide,
approximate solutions for the D's involving the three-
pion state are readily constructed:

Dst(t) = —exp[A(st)+d, (tt)+0 (ut)]
po0

dt'(t' —t) 'ps dx(x —t ) 'A22D21(x)&

D„(t)= —exp[a(s )jh(t )+.A(u )]
goo

Ct'(t' —t)
—'P2X»'(t'),

where

X»s(t) = dx(x —t)
—'A, 2(x),

J

and the variables (st, tt, u1) are the relative energies
(squared) between the three pions. They satisfy the
relation s+tt +1u=13 t+1.t

In this approximation, for example, the nucleon form
factor becomes

F (t)=a (t)+~a p 'lexp[~(s)+~(t)+~(u)jl'

X)~dx(x t) 'P—s(x)X22'(x)

A similar but more complicated result holds for
F,(t'). The customary choice for gt is, of course, zero.
One interesting point is that if Ass(t) is strongly peaked
about some point t = to, then to a good approximation,

Dsl(t) D32(t)D21(t0) ~

If this is put into Eq. (4.12), then explicit reference to
Fs can be eliminated in favor of F2 by using Eq. (4.13).

The impulse approximation for scattering processes
also arises naturally in the matrix formalism. Consider
nucleon-deuteron elastic scattering, and neglect the
pionic effects. Setting D~~ ——8~~, an excellent approxi-
mation, yields

M, 1(t)=%21(t)—XM22(t) p, 'D, ,(t). (4.16)

Now this must be continued to the region where t is
space-like and s describes the energy of the scattering.
The usual formulation of the impulse approximation
follows by assuming that M» is a slowly varying
function of the energy s and the crossed energy N. If
this is the case, then the factor 3f22 can be taken outside
the integration, and one achieves the form

M21(sqtqu) %21(sqt)u)+M22(sl)t)ul)FD(t)q (4 17)

where
FD (t) = —Zp,

—'D„(t),

and s& is an appropriately chosen energy variable with

the restriction that

$1+u1+2MD =s+u+2m .

FD is recognized as the form factor of the deuteron.
The term E2~ is conventionally dropped, but there is
no compulsion to do so here. This term is necessary in
order to satisfy unitarity in the s reaction. In addition,
iV2~ also contains the exchange graphs which involve
both intermediate nucleons in an inseparable manner.
Notice that no ambiguities associated with off-energy-
shell effects arise in this approximation. These effects,
of course, show up in higher mass states, which corre-
spond to the shorter range forces.

V. DISCUSSION

The generalized matrix formulation of unitarity
described here allows the coupled nonlinear unitarity
conditions to be replaced by a set of coupled linear
equations. These equations involve the discontinuity
of the relevant scattering amplitudes across their
crossed cuts and above the highest mass intermediate
state considered explicitly. Thus in this sense it is
similar to the program of Symanzik" and Zimmerman. "
The main point which must be understood before these
relations form a complete dynamics concerns the
location of the crossed singularities of the multiparticle
amplitudes and the expression of the resultant discon-
tinuities in terms of physical processes. In spite of these
shortcomings, the use of these methods in an approxi-
mate treatment of the inelastic contributions to scat-
tering amplitudes is very appealing. A model 6eld
theory involving inelastic reactions was formulated and
solved in the Appendix as an illustration of our method.

The possibility of breaking away from a partial-wave
expression of unitarity suggests a new approximation
scheme which was applied in this paper to electro-
production of pions from pions and pion —E-meson
scattering. The solutions thus obtained seem to have
an interesting structure and the agreement near
threshold with the partial-wave treatment is quite good.

Finally, an impulse approximation for the coupled
form factor and scattering amplitude problem was
formulated and discussed by means of an example, the
nucleon and deuteron system.

It is clear that the generalized matrix approach does
not make the three-particle contributions trivial to
evaluate. It does seem, however, to build into a calcu-
lation the purely geometrical restrictions of unitarity.
It therefore serves as a convenient base for approximate
calculations.
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Interaction Coupling constant

2M 2M
2M 2M'+p

2M'+p 2M'+p

The renormalized coupling constants will be defined
in terms of the appropriate scattering amplitude at
zero energy.

The notation to be followed is that the momenta of
the M' particles are to be called k;, that of the M
particle p, , and the )(2 momenta q;. The scattering
amplitudes on the energy shell are introduced as:

M)1=(kl'~ j3~k k2+)( )i

M 2=(P1'l j.lP P ')( ")',
M 3=(P1'l j,lk k V')( )',
M =( p'p'lj'Ikk')(" )'',

M33=( kl'k2'q'~y, +~klk2+)( )i.

Now the E's must be chosen in such a way as to be
consistent with unitarity. If the k~ particle in the
second form for M» is contracted, the unitarity relation
leads immediately to the conclusion that M»(s, w'), as
a function of the variable w'= —(k,+k2)', has the phase
discontinuity of (M'+M') scattering. Thus w' is a
convenient variable to hold fixed in the discussion of
unitarity in s. A similar statement can be made about
the w' and w" dependence of M33(s,w",w').

We choose the X's and thus define the model as
follows:

Agi=a,

2

+23=+32($)w ) = C/Dll(w ),
1V33——d/D„(w") D11 (w').

"R.Amado (to be published).
'4 F. Zachariasen, Phys. Rev. 121, 1851 (1961).

APPENDIX

In order to illustrate the utility of the matrix method
and to clarify its physical content, let us attempt to
solve a model field theory in which no more than three
particles are allowed in any intermediate state. One
such example is supplied by the I.ee model in the
(U—8) sector. The solution for (U —8) scattering has
recently been given by Amado. " Rather than solve
this problem, which can be done with the matrix
approach, it is perhaps equally instructive to solve a
model field theory in the sense of Zachariasen. " In
this type of model, aB particles are treated relativisti-
cally but crossing symmetry is completely destroyed.

The model theory will consist of three types of
particles with masses 3f, M', and p. Since the particles
will be scalar, we are free to introduce the following
four types of point interactions:

The definition of the D's lead to

Dll(s) = 1—saI2(s, M'),

D22(s) = 1 sbI—2(s,M),

D2, (s,w) = —$/23(w) I2 (s)M),

D32 (s,w) = —$1V32 (w) I3 (s,w),

D33 (s) = 5 (w' —w) —$E33(w', w) I3 (s,w'),

I2(s,M) = ds'p2(s', M)[s'(s' —s)] ',

I,(s,w) = t ds'p3(s', w)[s'(s' —s)] '.
~ (2&&'+V) '

The p; here di8er by trivial factors of 4x from the
ones introduced in the text. These factors come from
the angular integrations.

The function p3 is the three-particle phase-space
factor, including the theta functions, which can be
found from Eq. (2.9) by using (in the center-of-mass
system of s) the relation

w'= s+)(12—2q's l.

If the matrix system for the M's are written out, the
integral equations in the variable x are directly solvable
because the kernels are separable and only s waves
interact. This is, of course, what the model was designed
to do. The solutions are

M33 ($ ) w qw) = [E33(w )w) —M32(siw )D23 ($)w)]D3 ($) )

M23 ($ ) w) —[X23 (w) M22 ($)D22($)w)]D3 ($)q

( C2) C~

M22(s)=cv22 D3(s)
I

1 ID3(s)+-

dbms

db

Mll ($) F11/Dll ($)

where

D3(s) = 1—sdI4(s),

I4(s)= " [s'(s' —s)] '
(2 &&'+~) '

l»($', w) ID»(w) I

'.
( dw&

The finite range of the m integration arising from
the theta functions in p3 is from 2M' to (s'*'—p). The
interested reader can easily check that these functions
satisfy unitarity by taking the s discontinuity of
3E33D3, for example, assuming that M32 satisfies uni-
tarity, and then rearranging to yield the discontinuity
of M33.

The structure of these solutions may well hold true
in a more realistic field theory. Their form is certainly
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correct if the crossed cuts in the S's were given func-
tions. It is interesting to note that, depending on the
coupling constants c and d, the inelastic contribution
to %22 can have a very large effect on the position of a
resonance, even if it has an energy considerably below
the inelastic threshold. Another amusing point is the
possibility of a bound state in the (M' —M') system
of mass Mo which should yield a two-particle cut in
Mss starting at (Ms+tt)'. Continuing analytically in
the coupling constant a, one sees that this cut arises
from the Is(s) terms in Mrs(s). The procedure f'or
performing this continuation has been described else-
where. "The essential point is that since all develops

"R. Blankenbecler, M. Goldberger, S. MacDowell, and S.
Treiman (to be published). For a preliminary account see R.
Blankenbecler, Proceedings of the 1960 Annual International

a zero at the bound-state mass, the s' integral in I4
must be deformed to avoid the resulting singularity
of the integrand. This procedure then yields an "anom-
alous threshold" beginning at the point (Ms+tt)'. By
picking out the residue at Mo in the variable m, one
can calculate the processes (Mo+tt —+ Mo+ p) and
(M+M —& tt+Mo) from M» and M», respectively.

One final observation concerns the possibility of a
three-particle bound state. This occurs when the
denominator in M22 develops a zero below the point
4M'. The bound-state pole is also seen to be present
in 3f~s and M33 due to the general structure of the
solutions.

Conference on High Pner-gy Physics at Rochester (Interscience
. Publishers, New York, 1960).
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Self-Consistent Field Theory of Nuclear Shapes*
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The Hartree-Fock equations are generalized to include pairing eGects on the same footing with Geld-

producing effects. In addition to the Hartree potential, there enters a pairing potential. When applied to a
spherically symmetric shell-model Hamiltonian, these equations may possess deformed solutions. Appli-
cation is made to pairing plus quadrupole forces, with results identical to those of Belyaev and Kisslinger
and Sorensen. The spherical shape becomes unstable when some collective vibration of the spherical nucleus
reaches zero frequency.

1. INTRODUCTION

HE question to be considered here is the calcu-
lation of nuclear shapes starting from a spheri-

cally symmetric Hamiltonian. In a Hartree-Pock type
of theory, all nuclei are deformed except at closed shells.
It is well known that residual interactions tend to keep
nuclei spherical for a while as one goes away from closed
shells. Since a prominent effect of residual interactions
is to produce pairing correlations, one might think that
the inclusion of pairing' effects together with the
Hartree-Fock field would be able to give realistic
estimates of shapes.

This problem has been treated by Belyaev, ' who
gave it an approximate solution for the case where the
single-particle levels are degenerate and the two-body
force is a combination of pairing force and quadrupole
force. In this paper, we would like to consider the more
practical case of nondegenerate single-particle levels
and also to develop a formalism which can be used with

*This work was supported by the OKce of Naval Research.' J. Bardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Rev.
108, 1175 (1957), referred to in the following as BCS; A. Bohr,
B, R. Mottelson, and D. Pines, Phys. Rev. 110, 936 (1958).'S. T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 31, No. 11 (1959). Some of Belyaev's results were derived
in a diferent way by A. Kerman, Ann. Phys. 12, 300 (1961).

any two-body interaction. The inclusion of a general
two-body interaction was also considered by Belyaev
at the beginning of his paper, but his solution involves
three successive canonical transformations, which
makes it of limited practical value. In the present work,
a single transformation is made, the generalized
Bogolyubov transformation. ' It differs from the more
familiar Bogolyubov-Valatin transformation in the
following way. In the latter, a speci6c assumption is
made about the bound state (the Cooper pair) into
which pairs of particles are allowed to condense; for
instance, in the application to spherical nuclei, ' ' the
two particles are assumed to have opposite angular
momenta. On the other hand, in the generalized trans-
formation, the bound-state wave function is left com-
pletely arbitrary and is determined by minimizing the

' N. N. Bogolyubov, Uspekhi Fiz. Nauk 67, 549 (1959) /trans-
lation: Soviet Phys. —Uspekhi 67(2), 236 (1959)). See also Y.
Nambu, Phys. Rev. 117, 648 (1960).

4N. N. Bogolyubov, Nuovo cimento 7, 794 (1958); J. G.
Valatin, Nuovo cimento 7, 843 (1958).

5 I.. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 32, No. 9 (1960).

'M. Baranger, Phys. Rev. 120, 957 (1960). We follow many
of the notations of this paper. See also R. Arvieu and M. Vendroni,
Compt. rend. 250, 992, 2155 (1960);T. Marumori, Progr. Theoret.
Phys. (Kyoto) 24, 331 (1960); G. E. Brown, J. A. Evans, and
D. J. Thouless (to be published).


